Part II: Inference & Limit Theorems

The videos in Part II describe the laws of large numbers and introduce the main tools of Bayesian inference methods.

The textbook for this subject is Buy at Amazon Bertsekas, Dimitri, and John Tsitsiklis. Introduction to Probability. 2nd ed. Athena Scientific, 2008. ISBN: 9781886529236.

The authors have made this Selected Summary Material (PDF) available for OCW users. 

L = Lecture Content

S = Supplemental Content

SES # & TOPICS SLIDES
Lecture 14: Introduction to Bayesian Inference

View Lecture Videos

Lecture 14 Slides (PDF - 2.2MB)

Lecture 14 Slides Annotated (PDF - 1.3MB)

Lecture 15: Linear Models With Normal Noise

View Lecture Videos

Lecture 15 Slides (PDF - 1.8MB)

Lecture 15 Slides Annotated (PDF - 1.8MB)

Lecture 16: Least Mean Squares (LMS) Estimation

View Lecture Videos

Lecture 16 Slides (PDF - 1.0MB)

Lecture 16 Slides Annotated (PDF - 1.2MB)

Lecture 17: Linear Least Mean Squares (LLMS) Estimation

View Lecture Videos

Lecture 17 Slides (PDF - 1.0MB)

Lecture 17 Slides Annotated (PDF - 1.2MB)

Lecture 18: Inequalities, Convergence, and the Weak Law of Large Numbers

View Lecture Videos

Lecture 18 Slides (PDF - 1.3MB)

Lecture 18 Slides Annotated (PDF - 1.9MB)

Lecture 19: The Central Limit Theorem (CLT)

View Lecture Videos

Lecture 19 Slides (PDF - 2.1MB)

Lecture 19 Slides Annotated (PDF - 2.0MB)

Lecture 20: An Introduction to Classical Statistics

View Lecture Videos

Lecture 20 Slides (PDF - 1.3MB)

Lecture 20 Slides Annotated