| LEC # | TOPICS | KEY DATES |
|---|---|---|
| 1 | Review of thermodynamics | |
| 2 | E, A, and S: macroscopic properties for microscopic probabilities {Pi} | |
| 3 | Canonical partition function: replace {Pi} by Q | |
| 4 | Microcanonical ensemble: replace {Pi} by Ω, Q vs. Ω | |
| 5 | Molecular partition function: replace E (assembly) by ε (molecule) | Problem set 1 due |
| 6 | Q corrected for molecular indistinguishability | |
| 7 | Translational part of Boltzmann partition function | |
| 8 | Boltzmann, Fermi-Dirac, and Bose-Einstein statistics | Problem set 2 due |
| 9 | Calculation of macroscopic properties from microscopic energy levels: qtrans | |
| 10 |
Quantum vs. classical qtrans Equipartition Internal degrees of freedom |
|
| 11 | Internal degrees of freedom for atoms and diatomic molecules | Problem set 3 due |
| 12 |
Rotational partition function Equipartition |
|
| First hour exam | ||
| 13 | Nuclear spin statistics: symmetry number, σ Low temperature limit for rotational partition function | |
| 14 | Low and high-T limits for qrot and qvib | |
| 15 | Polyatomic molecules: rotation and vibration | |
| 16 | Chemical equilibrium I | |
| 17 | Chemical equilibrium II | Problem set 4 due |
| 18 | Model intermolecular potentials | |
| 19 | Configurational integral: cluster expansion | |
| 20 | Virial equation of state | Problem set 5 due |
| 21 | Thermodynamics of solid: Einstein and Debye models | |
| Second hour exam | ||
| 22 | Einstein and Debye solids | |
| 23 | Phonons: 1-D linear chain of atoms | |
| 24 | Free electron theory of a metal | |
| 25 | Heat capacity in metals | |
| 26 | Band theory of solids | Problem set 6 due |
| 27 | Crystal phase equilibria | |
| 28 | Kinetic theory of gases: Maxwell-Boltzmann distribution | |
| 29 | Kinetic theory of gases: effusion and collisions | |
| 30 | Kinetic theory of gases: collision dynamics and scattering | Problem set 7 due |
| 31 | Kinetic theory of gases: mean free path and transport | |
| Third hour exam | ||
| 32 | Kinetic theory of gases: transport coefficients | |
| 33 | Transition state theory I | Problem set 8 due |
| 34 |
Transition state theory II Kinetic isotope effect |
|
| 35 | Statistical mechanics for photons | |
| 36 | Rates of unimolecular reactions: RRKM | |
| Final exam | ||
