Course Meeting Times
Lectures: 2 sessions / week, 1.5 hours / session
Course Description
In this course you will learn to construct kinetic and equilibrium mathematical models of biomolecular interactions, and apply these quantitative analyses to biological problems across a wide range of levels of organization, from individual molecular interactions to populations of cells.
Textbook
Lauffenburger, Douglas A., and J. Jennifer Linderman. Receptors: Models for Binding, Trafficking, and Signaling. New York, NY: Oxford University Press, 1995. ISBN: 9780195106633.
Supplemental Texts
Hammes, Gordon G. Thermodynamics and Kinetics for the Biological Sciences. Hoboken, NJ: John Wiley and Sons, 2000. ISBN: 9780471374916.
Creighton, Thomas E. Proteins: Structures and Molecular Properties. 2nd ed. New York, NY: W.H. Freeman and Company, 1993. ISBN: 9780716723172.
Bailey, James, and David F. Ollis. Biochemical Engineering Fundamentals. 2nd ed. New York, NY: McGraw Hill Higher Education, 1986. ISBN: 9780070032125.
Steinfeld, Jeffrey I., J. S. Francisco, and W. L. Hase. Chemical Kinetics and Dynamics. 2nd ed. E. Upper Saddle River, NJ: Prentice Hall PTR, 1998. ISBN: 9780137371235.
Cantor, Charles R., and Paul R. Schimmel. Biophysical Chemistry. New York, NY: W.H. Freeman, 1980. ISBN: 9780716711889, ISBN: 9780716711902, and ISBN: 9780716711926.
Blanch, Harvey W., and D. S. Clark, eds. Biochemical Engineering. Boca Raton, FL: CRC, 1997. ISBN: 9780824700997.
Shargel, Leon, et al. Applied Biopharmaceutics and Pharmacokinetics. New York, NY: McGraw-Hill Professional Publishing, 2004. ISBN: 9780071375504.
Carberry, James J. Chemical and Catalytic Reaction Engineering. New York, NY: McGraw-Hill, 1976. ISBN: 9780070097902.
Strogatz, Steven H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Cambridge, MA: Perseus Publishing, 2001. ISBN: 9780738204536.
Assignments
There will be a total of twelve assignments. Initial homework assignments will focus on mathematical modeling and concepts covered in class, including some work in MATLAB®. Later assignments will consist of more involved work in MATLAB®, implementing models described in assigned papers from the literature.
Grading Scale for Model Implementations (PDF)
Literature Paper Presentations and Discussion
Format
- 2 papers presented and discussed per class meeting (additional background papers may be provided).
- Each paper will be presented in 2 parts of roughly equivalent length.
- Biological background and model formulation
- Key terms and simplified basic concepts of the relevant biology (scanned figures from basic textbooks might help).
- Open questions in the field.
- Potential technological and/or biomedical applications.
- Present a schematic cartoon of the essential components of the model.
- Highlight and discuss the model equations, origin of each term, and reason for rejection of alternative forms.
- Experimental basis of parameter estimates or regression fits.
- Method of solution, analytical or numerical.
- Model results and their interpretation
- Critical presentation of the model outcomes.
- Consistency with available experimental data.
- Testable predictions.
- Biological background and model formulation
- Two students will prepare to present each section above, and will make a joint presentation together.
Grading
activities | percentages |
---|---|
Homework | 50% |
Final (Finals Week) | 30% |
Class Participation | 20% |