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JOSH

TENENBAUM:

We're going to-- I'm just going to give a bunch of examples of things that we in our field have

done. Most of them are things that I've played some role in. Maybe it was a thesis project of a

student. But they're meant to be representative of a broader set of things that many people

have been working on developing this toolkit.

And we're going to start from the beginning in a sense-- just some very simple things that we

did to try to look at ways in which probabilistic, generative models can inform people's basic

cognitive processes. And then build up to more interestingly kinds of symbolically structured

models, hierarchical models, and ultimately to these probabilistic programs for common sense.

So when I say a lot of people have been doing this, I mean here's just a small number of these

people. Every year or two, I try to update this slide.

But it's very much historically dated with people that I knew when I was in grad school

basically. There's a lot of really great work by younger people who maybe their names haven't

appeared on this slide. So those dot dot dots are extremely serious. And a lot of the best stuff

is not included on here.

But in the last couple of decades, across basically all the different areas of cognitive science

that cover basically all the different things that cognition does, there's been great progress

building serious mathematical-- and what we could call reverse engineering models in the

sense that they are quantitative models of human cognition, but they are phrased in the terms

of engineering, the same things you would use to build a robot to do these things, at least in

principle. And it's been developing this toolkit of probabalistic generative models.

I want to start off by telling you a little bit about some work that I did together with Tom

Griffiths. So Tom is now a senior faculty member at Berkeley, one of the leaders in this field--

as well as a leading person in machine learning, actually. One of the great things that he's

done is to take inspiration from human learning and develop fundamentally new kinds of

probabilistic models, in non-parametric Bayes in particular, inspired by human learning.



But when Tom was a grad student, we worked together. He was my first student. We're almost

the same age. So at this point, we're more like senior colleagues than student advisor. But I'll

tell you about some work we did back when he was a student, and I was just starting off.

And we were both together trying to tackle this problem and trying to see, OK, what are the

prospects for understanding even very basic cognitive intuitions, like senses of similarity or the

most basic kinds of causal discovery intuitions like we were talking about before, using some

kind of idea of probabilistic inference in a generative model? And at the time-- remember in

the introduction I was talking about how there's been this back and forth discourse over the

decades of people saying, yeah, rah rah, statistics, and, statistics, those are trivial and

uninteresting?

And at the time we started to do this, at least in cognitive psychology, the idea that cognition

could be seen as some kind of sophisticated statistical inference was very much not a popular

idea. But we thought that it was fundamentally right in some ways. And it was at the time--

again, this was work we were doing in the early 2000s when it was very clear in machine

learning and AI already how transformative these ideas were in building intelligent machines or

starting to build intelligent machines.

So it seemed clear to us that at least it was a good hypothesis worth exploring and taking

much more seriously than psychologists had much before that. That this also could describe

basic aspects of human thinking. So I'll give you a couple examples of what we did here.

Here's a simple kind of causal inference from coincidences, much like what you saw going on

in the video game. There's no time in this. It's really mostly just space, or maybe a little bit of

time. The motivation was not a video game, but imagine-- to put a real world context on it--

what's sometimes called cancer clusters or rare disease clusters. You can read about these

often in the newspaper, where somebody has seen some evidence suggestive of some maybe

hidden environmental cause-- maybe it's a toxic chemical leak or something-- that seems to

be responsible for-- or maybe they don't have a cause.

They just see a suspicious coincidence of some very rare disease, a few cases that seem

surprisingly clustered in space and time. So for example, let's say this is one square mile of a

city. And each dot represents one case of some very rare disease that occurred in the span of

a year.



And you look at this. And you might think that, well, it doesn't look like those dots are

completely, uniformly, randomly distributed over there. Maybe there's some weird thing going

on in the upper left or northwest corner-- some who knows what-- making people sick. So let

me just ask you. On a scale of 0 to 10, where 10 means you're sure there's some kind of thing

going on and some special cause in some part of this map.

And 0 means no, you're quite sure there's nothing going on. It's just random. What do you

say? To what extent does this give evidence for some hidden cause? So give me a number

between 0 and 10.

AUDIENCE: 5.

JOSH

TENENBAUM:

OK, great. 5, 2, 7. I heard a few examples of each of those. Perfect. That's exactly what

people do. You could do the same thing on Mechanical Turk, and get 10 times as much data,

and pay a lot more. It would be the same. I'll show you the data in a second.

But here's the model that we built. So again, this model is a very simple kind of generative

model of a hidden cause that various people in statistics have worked with for a while. We're

basically modeling a hidden cause as a mixture. Or I mean it's a generative model, so we have

to model the whole data.

When we say there's a hidden cause, we don't necessarily mean that everything is caused by

this. It's just that the data we see in this picture is a mixture of whatever the normal random

thing going on is plus possibly some spatially localized cause that has some unknown position,

unknown extent. Maybe it's a very big region. And some unknown intensity-- maybe it's

causing a lot of cases or not that many.

The hypothesis space maybe is best visualized like this. Each of these squares is a different

hypothesis of a mixture density or a mixture model-- which is a mixture of just whatever the

normal uniform process is that causes a disease unrelated to space and then some kind of

just Gaussian bump, which can vary in location, size, and intensity, that is the possible hidden

cause of some of these cases.

And what the model that we propose says is that your sense of this spatial coincidence-- like

when you look at a pattern of dots really and you see, oh, that looks like there's a hidden

cluster there somewhere. It's basically you're trying to see whether something like one of

those things on the right is going on as opposed to the null hypothesis of just pure



randomness. So we take this log likelihood ratio, or log probability, where we're comparing the

probability of the data under the hypothesis that there's some interesting hidden cause, one of

the things on the right, versus the alternative hypothesis that it's just random, which is just the

simple, completely uniform density.

And what makes this a little bit interesting computationally is that there's an infinite number of

these possibilities on the right. There's an infinite number of different locations and sizes and

intensities of the Gaussian. And you have to integrate over all of them. So again, there's not

going to be a whole lot of mathematical details here. But you can read about this stuff if you

want to read these papers that we had here.

But for those of you who are familiar with this, with working with latent variable models,

effectively what you're doing is just integrating either analytically or in a simulation over all the

possible models and sort of trying to compute on average how much does the evidence

support something like what you see on the right, one of those cluster possibilities, versus just

uniform density. And now what I'm showing you is that model compared to people's judgments

on an experiment. So in this experiment, we showed people patterns like the one you just saw.

The one you saw is this one here. But in the different stimuli, we varied parameters that we

thought would be relevant. So we varied how many points were there total, how strong the

cluster was in various ways, whether it was very tightly clustered or very big, the relative

number of points in the cluster versus not. So what you can see here, for example, is it's a

very similar kind of geometry, except here this is a sort of biggish cluster. And then we're

making basically there's four points that look clustered and two that aren't. And in these cases,

we just make the four points more tightly clustered.

Here, what we're doing is we're going from having no points that look clustered to having

almost all of the points looking clustered and just varying the ratio of clustered points to non-

clustered points. Here, we're just changing the overall number. So notice that this one is

basically the same as this one.

So again, at both of these, we've got four clustered points and two seemingly non-clustered

ones. And here we just scale up in set-- or scale up from four to two, to eight and four. And

here we scale it down to two and one, and various other manipulations.

And what you can see is that they have various systematic effects on people's judgments. So

what I'm calling the data there is the average of about 150 people who did the same judgment



you did-- 0 to 10. What you can see is the one I gave you was this one here. And the average

judgment was almost exactly five.

And if you look at the variance, it looks just like what you saw here. Some people say two or

three. Some people say seven. I chose one that was right in the middle.

The interesting thing is that, while you maybe felt like you were guessing-- and if you just

listened to what everyone else was saying, maybe it sounds like we're just shouting out

random numbers-- that's not what you're doing. On that one, it looks like it, because it's right

on the threshold. But if you look over all these different patterns, what you see is that

sometimes people give much higher numbers than others. Sometimes people give much lower

number than others.

And the details, that variation, both within these different manipulations we did and across

them, are almost perfectly captured by this very simple probabilistic generative model for a

latent cause. So the model here is-- this is the predictions that model I showed you is making,

where again, basically, a high bar means there's strong evidence in favor of the hidden latent

cause hypothesis. Some, one, or more-- some cluster-- that low bar means strong evidence

for the alternative hypothesis.

The scale is a bit arbitrary. And it's a log probability ratio scale. So I'm not going to comment

on the scale. But importantly, it's the same scale across all of these. So a big difference is, it's

the same big difference in both cases. And I don't think this is fairly good evidence that this

model is capturing your sense of spatial coincidence and showing that it's not just random or

arbitrary, but it's actually a very rational measure of how much evidence there is in the data for

a hidden cause.

Here's the same model now applied to a different data set that we actually collected a few

years before, which just varies the same kinds of parameters, but has a lot more points. And

the same model works in those cases, too. The differences are a little more subtle with these

more points.

So I'll give you one other example of this sort of thing. Like the one I just showed you, we're

taking a fairly simple statistical model. This one, as you'll see, isn't even really causal. This one

at least, that I showed you, is causal. The advantage of this other one is that it's both a kind of

textbook statistics example, it's one where people do something more interesting than what's

in the textbook. Although you can extend the textbook analysis to make it look like what people



in the textbook. Although you can extend the textbook analysis to make it look like what people

do.

And unlike in this case here, you can actually measure the empirical statistic. You can go out,

and instead of just like positing, here's a simple model of what a latent environmental cause

would be like, you can actually go and measure all the relevant probability distributions and

compare people not just with a notional model, but with what, in some stronger sense, is the

rational thing to do, if you were doing some kind of intuitive Bayesian inference.

So these are, again stuff that Tom Griffiths did with me, in an in and then after grad school.

We asked people to make the following kind of everyday prediction. So we said, suppose you

read about a movie that's made $60 million to date. How much money will it make in total?

Or you see that something's been baking in the oven for 34 minutes. How long until it's ready?

You meet someone who's 78 years old. How long will they live? Your friend quotes to you from

line 17 of his favorite poem. How long is the poem? Or you meet a US congressman who has

served for 11 years. How long will he serve in total?

So in each of these cases, you're encountering some phenomenon or event in the world with

some unknown total duration. We'll call that t, total. And all we know is that t, total, is

somewhere between zero and infinity.

We might have a prior on it, as you'll see in a second. But we don't know very much about this

particular t, total except you get one example, one piece of data, some t, which we'll just

assume is just randomly sampled between zero and t, total. So all we know is that whatever

these things are, it's something randomly chosen, less than the total extent or duration of

these events.

And now we can ask, what can you guess about the total extent or duration from that one

observation? Or in mathematical terms, there is some unknown interval from zero up to some

maximal value. You can put a prior on what that interval is. And you have to guess the interval

from one sampled point sampled randomly within it. It's also very similar-- and another reason

we studied this-- to the problem of learning a concept from one example.

When you're learning what horses are from one example, or when you're learning what that

piece of rock climbing question is-- what's a cam-- from one example, or what's a tufa from

one example. You can think, there's some region in the space of all possible objects or

something, or some set out there. And you get one or a few sample points, and you have to



figure out the extent of the region. It's basically the same kind of problem, mathematically.

But what's cool about this is we can measure the priors for these different classes of events

and compare people with an optimal Bayesian inference. And you see something kind of

striking. So here's, on the top-- I'm showing two different kinds of data here. On the top are

just empirical statistics of events you can measure in the world; nothing behavioral, nothing

about cognition. On the bottom, I'm showing some behavioral data and comparing it with

model predictions that are based on the statistics that are measured on top.

So what we have in each column is one of these classes of events, like movie grosses in

dollars. You can get this data from iMDB, the Internet Movie Database. You can see that most

movies make $100 million or less. There's sort of a power law. But a few movies make

hundreds, or even many hundreds, maybe a billion dollars even, these days.

Similarly with poems, they have a power law distribution of length. So most poems are pretty

short. They fit on a page or less. But there are some epic poems, or some multi-page-- many,

many hundreds of lines. And they fall off with a long tail.

Lifespans, movie runtimes are kind of unimodal, almost Gaussian-- not exactly. Those red

curves, histograms' bars, show the empirical statistics that we measured from public data. And

the red curves show just the best fit of a simple parametric model, like a Gaussian or a power

law distribution that I'm mentioning.

House of representatives-- how long people serve in the House has this kind of gamma, or

particular gamma called an Erlang shape with a little bit of an incumbent effect. Cake baking

times-- so remember we asked how long is this cake going to bake for. They don't have any

simple parametric form when you go in and look at cookbooks. But you see, there's something

systematic there. There's a lot of things that are supposed to bake for exactly an hour. There

are some which have a smaller, or a shorter, but broad mode. And then there's a few epic 90-

minute cakes out there.

So that's all the empirical statistics. Now what you're seeing on the bottom is people's-- well,

on the y-axis, the vertical axis, you have the average-- it's a median-- of a bunch of human

predictions for the total extent of any one of these things, like your guess of the total length of

a poem given that, basically, there is a line 17 in it. And on the x-axis, what you're seeing is

that one data point, the one value of t, which is, all you know is that it's somewhere between

zero and t, total.



zero and t, total.

So different groups of subjects were given five different values. So you see five black dots,

which correspond to what five different subgroups of subjects said for each of these possible t

values. And then the black and red curves are the model fit, which comes from taking a certain

kind of Bayesian optimal prediction, where the prior is what's specified on the top-- that's the

prior on t, total. The likelihood is a sort of uniform random density.

So it's just saying t is just a uniform random sample from zero up to t, total. You put those

together to compute a posterior. And then you-- the particular estimator we're using is what's

called the posterior median. So we're looking at the median of the exterior and comparing that

with a median of human subjects. And what you can see is that it's almost a perfect fit. And it

doesn't really matter whether you take the red curve, which is what comes from approximating

the prior with one of these simple parametric models, or the black one, which comes from just

taking the empirical histogram. Although, for the cake baking times, you really can only go for

the empirical one. Because there is no simple parametric one. That's why you just see a

jagged black line there.

But it's interesting that it's almost a perfect fit. There are a couple-- just like somebody asked

in Demis's talk-- there's one or two cases we found where this model doesn't work, sometimes

dramatically, and sometimes a little bit. And they're all interesting. But I have time to talk about

it. That's one of the things I decided to skip. If you'd like to talk about it, I'm happy to do that.

But most of the time, in most of the cases we've studied, these are representative.

And I think, again, all of the failure cases are quite interesting ones. That point to, this is one of

the many things we need to go beyond. But the interesting thing isn't just that the curves fit the

data, but the fact that the actual shape is different in each case. Depending on the prior of this

different classes of events, you get a fundamentally different, or qualitatively different,

prediction function. Sometimes it's linear. Sometimes it's non-linear. Sometimes it has some

weird shape.

And really, quite surprisingly to us, people seem to be sensitive to that. So they seem to

predict in ways that are reflective of not only the optimal Bayesian thing to do, but the optimal

Bayesian thing to do from the optimal prior, from the correct prior. And I certainly don't want to

suggest that people always do this. But it was very interesting to us that for just a bunch of

everyday events, and really, the places where this analysis works best are ones, again, where

we think people actually might plausibly have good reasons to have the relevant experiences



with these everyday events, they seem to be sensitive to both the statistics in the sense of just

what's going on in the world and doing the right statistical prediction.

So that's what we did. 10 years ago or so, that was like the state of the art for us. And then we

wanted to know, well, OK, can we take these sorts of ideas and scale them up to some

actually interesting cognitive problems, like say, for example, learning words for object

categories. And we did some of that. I'll show you a little bit of that before showing you what I

think was missing there.

I mean, in a lot of ways, this is a harder problem. I mean, it's very similar, as I said. It's

basically like, there's just like the problem I just showed you, where there was an unknown

total extent or duration, and you got one random sample from it, here there is some un--

imagine the space of all possible objects-- could be a manifold or described by a bunch of

knobs. I mean, these are all generated from some computer program. If these were real,

biological things, they would be generated from DNA or whatever it is.

But there's some huge, maybe interestingly structured, space of all possible objects. And

within that space is some subset, some region or subset, somehow described that is the set of

tufas. And somehow you're able to grasp that subset, more or less, if you get its boundaries,

to be able to say yes or no as you did at the beginning of the lecture from just, in this case, a

few points-- three points-- randomly sampled from somewhere in that region. It would work

just as well if I showed you one of them, basically.

So in some sense, it's the same problem. But it's much harder, because here, the space was

this one dimensional thing. It was just a number. Whereas here, we don't know what's the

dimensionality of the space of objects. We don't know how to describe the regions. Here we

knew how to describe the regions. They were just intervals with a lower bound at zero and an

upper bound at some unknown thing. And the hypothesis space of possible regions was just

all the possible upper bounds of this event duration.

Here we don't know how to describe this space. We don't know how to describe the regions

that correspond to object concepts. We don't know how to put a price on those hypotheses.

But in some work that we did-- in particular, some work that I did with Fei Xu, who is also a

professor at Berkeley. We were colleagues and friends in graduate school. We sort of did what

we could at the time.

So we made some guesses about what that hypothesis space-- what that space might be like,



what the hypothesis space might be like, how to put some priors, and so, on there. Used

exactly the same likelihood, which was just this very simple idea that the observed examples

are a uniform random draw from some subset of the world. And you have to figure out what

that subset is. And we were able to make some progress.

So what we did was we said, well, like in biology, perhaps-- and if you saw-- how many people

saw Surya Ganguli's lecture yesterday morning? Cool. I sort of tailored this for assuming that

you probably had seen that. Because there's a lot of similarities, or parallels, which is neat.

And it's, again, part of engaging on generative models and neural networks. As you saw him

do, you'll get my version of this.

So also, like he mentioned, there are actual processes in the world which generate objects--

something like this. We know about evolution-- produces basically tree-structured groups,

which we call species, or genus, or something like that, or just taxa, or something. There's

groups of organisms that have a common evolutionary descent. That's the way a biologist

might describe it. And we know, these days, a lot about the mechanisms that produce that.

Even going back 100 or 200 years, say, to Darwin, we knew something about the mechanisms

that produced it, even if we didn't know the genetic details, ideas of something like mutation,

variation, natural selection as a kind of mechanistic account, about right up there with Newton

and forces.

But anyway, scientists can describe some process that generates trees. And maybe people

have some intuition, just like people seem to have some intuitions about these statistics of

everyday events, maybe they have some intuitions, somehow, about the causal processes in

the world, which give rise to groups and groups and subgroups. And they can use that to set

up a hypothesis space.

And the way we went about this is, we have no idea how to describe people's internal mental

models of these things, but you can do some simple-- there are simple ways to get this picture

by just basically asking people to judge similarity and doing hierarchical clustering. So this is a

tree that we built up by just asking people-- getting some subjective similarity metric and then

doing hierarchical clustering, which we thought could roughly approximate maybe the internal

hierarchy that our mental models impose on this. Were you raising your hand or just-- no. OK.

Cool.

We ultimately found this dissatisfying, because we don't really know what the features are. We



don't really know if this is the right tree or how people built it up. But it actually worked pretty

well, in the sense that we could build up this tree. We could then assume that the hypotheses

for concepts just corresponded to branches of the tree. And then you could-- again, to put it

just intuitively, the way you do this learning from one or a few examples, let's say that you see

those few tufas over there. You're basically asking, which branch of the tree do I think-- those

are randomly drawn from some internal branch of the tree, some subtree. Which subtree is it?

And intuitively, if you see those things and you say, well, they are randomly drawn from some

branch, maybe it's the one that I've circled. That sounds like a better bet, for example, than

this one here, or maybe this one, which would include one of these things, but not the others.

So that's probably unlikely. And it's probably a better bet than, say, this branch, or this branch,

or these ones, which are logically compatible, but somehow it would have been sort of a

suspicious coincidence. If the set of tufas had really been this branch here, or this one here,

then it would have been quite a coincidence that the first three examples you saw were all

clustered over there in one corner.

And what we showed was that, that kind of model, where that suspicious coincidence came

out from the same kinds of things I've just been showing you for the causal clustering

example, and for the interval thing, it's the same Bayesian math. But now with this tree-

structured hypothesis space, that was actually-- did a pretty good job of capturing people's

judgments. We gave people one or a few examples of these concepts that, the examples

could be more narrowly or broadly spread, just like you saw in the clustering thing, but just sort

of less extensive.

We did this with adults. We did this with kids. And I won't really go into any of the details. but If

you're interested, check out these various Xu and Tenenbaum papers. That's the main one

there. And you know, the model kind of worked. But ultimately, we found it dissatisfying.

Because we couldn't really explain-- we didn't really know what the hypothesis space was. We

didn't really know how people were building up this tree.

And so we did a few things. We-- meaning I with some other people-- turned to other problems

where we had a better idea, maybe, of the feature space and the hypothesis space, but the

same kind of ideas could be explored and developed. And then ultimately-- and I'll show you

this maybe before lunch, or maybe after lunch-- we went back and tackled the problem of

learning concepts from examples with other cases where we could get a better handle on

really knowing what the representations that people were using were, and also where we



could compare with machines in much more compelling apples and oranges ways.

In some sense here, there's no machine, as far as I know, that can solve this problem as well

as our model. On the other hand, that's, again, it's just very much like the issue that came up

when we were talking about-- I guess maybe it was with you, Tyler-- when we were talking

about the deep learning-- or with you, Leo-- the deep reinforcement network. A machine that's

looking at this just as pixels is missing so much of what we bring to it, which is, we see these

things as three-dimensional objects.

And just like the cam in rock climbing, or any of those other examples I gave before, I think

that's essential to the abilities that people are doing. The generative model we build, this tree

is based not on pixels, or even on ConvNet features, but on a sense of the three-dimensional

objects, its parts, and their relations to each other. And so, fundamentally, until we know how

to perceive objects better, this is not going to be comparable between humans and machines

on equal terms. But I'll show you a little bit later some still pretty quite interesting, but simpler,

visual concepts that you can still learn and generalize from one example, but where they are

comparable in equal terms.

But first I want to tell you a little bit about these-- yet another cognitive judgment, which like the

word learning, or concept learning cases, involved generalizing from a few examples. They

also involve using prior knowledge. But they're ones where maybe we have some way of

capturing people's prior knowledge by using the right combination of statistical inference on

some kind of symbolically structured bottle. So you can already see, as-- I mean, just sort of to

show the narrative here.

The examples I was giving here, this doesn't require any symbolic structure. All that stuff I was

talking at the beginning, about how we have to combine statistical inference, sophisticated

statistical inference, with sophisticated symbolic representations, you don't need any of that

here. All the representations could just be counting up numbers or using simple probability

distributions that statisticians have worked with for over 100 years. Once we start to go here,

now we have to define a model with some interesting structure, like a branching tree structure,

and so on.

And as you'll see, we can quickly get to lots more interesting causal, compositionally-

structured generative models in similar kinds of tasks. And in particular, we were looking for--

for a few years, we were very interested in these property induction tasks. So this was-- it



happened to be-- I mean, I think this was a coincidence. Or maybe we were both influenced by

Susan Carey, actually.

So the work that Surya talked about, that he was trying to explain as a theoretician--

remember, Surya and Andrew Saxe, they were trying to give the theory of these neural

network models that Jay McClelland and Tim Rogers had built in the early 2000s, around the

same time we were doing this work. And they were inspired by some of Susan Carey's work

on children's intuitive biology, as well as other people out there in cognitive psychology-- for

example, Lance Rips, and Smith, Madine. Many, many cognitive psychologists studied things

like this-- Dan Osherson.

They often talked about this as a kind of inductive reasoning, or property induction, where the

idea was-- so it might look different from the task I've given you before, but actually, it's deeply

related. The task was often presented to people like an argument with premises and a

conclusion, kind of like a traditional deductive syllogism, like all men are mortal, Socrates is a

man, therefore Socrates is mortal. But these are inductive in that there is no-- you can't

conclude with deductive certainty the conclusion follows from the premises or is falsified by the

premise, but rather you just make a good guess. The statements above the line provide some,

more or less, good or bad evidence for the statement below the line being true.

These studies were often done with-- they could be done with just sort of familiar biological

properties, like having hairy legs or being bigger than a breadbox. I mean, it's also-- it's very

much the same kind of thing that Tom Mitchell was talking about, as you'll start to see. There's

another reason why I wanted to cover this. We worked on these things because we wanted to

be able to engage with the same kinds of things that people like Jay McClelland and Tom

Mitchell were thinking about, coming from different perspectives. Remember, Tom Mitchell

showed you his way of classifying brain representations of semantics with matrices of objects

and 20-question-like features that included things like is it hairy, or is it alive, or does it eggs,

or is it bigger than a car, or bigger than a breadbox, or whatever.

Any one of these things-- basically, we're getting at the same thing. Here there's just what's--

often these experiments with humans were done with so-called blank predicates, something

that sounded vaguely biological, but was basically made up, or that most people wouldn't know

much about. Does anyone know anything about T9 hormones? I hope so, because I made it

up. But some of them were just done with things that were real, but not known to most people.



So if I tell you that gorillas and seals both have T9 hormones, you might think it's sort of, fairly

plausible that horses have T9 hormones, maybe more so than if I hadn't told you anything.

Maybe you think that argument is more plausible than the one on the right; given that gorillas

and seals have T9 or hormones, that anteaters have hormones. So maybe you think horses

are somehow more similar to gorillas and seals than anteaters are. I don't know. Maybe.

Maybe a little bit.

If I made that bees-- gorillas and seals have T9 on hormones. Does that make you think it's

likely that bees have T9 hormones, or pine trees? The farther the conclusion category gets

from the premises, the less plausible it seems. Maybe the one on the lower right also seems

not very plausible, or not as plausible. Because if I tell you that gorillas have T9 hormones,

chimps, monkeys, and baboons all have T9 on hormones, maybe you think that it's only

primates or something. So they're not a very-- it's, again, one of these typicality-suspicious

coincidence businesses.

So again, you can think of it as-- you can do these experiments in various ways. I won't really

go through the details, but it basically involves giving people a bunch of different sets of

examples, just like-- I mean, in some sense, the important thing to get is that abstractly it has

the same character of all the other tasks you've seen. You're giving people one or a few

examples, which we're going to treat as random draws from some concept, or some region in

some larger space.

In this case, the examples are the different premise categories, like gorillas and seals are

examples of the concept of having T9 hormones. Or gorillas, chimps, monkeys, and baboons

are an example of a concept. We're going to put a prior on possible extents of that concept,

and then ask what kind of inferences people make from that prior, to figure out what other

things are in that concept. So are horses in that same concept? Or are anteaters? Or are

horses in it more or less, depending on the examples you give? And what's the nature of that

prior?

And what's good about this is that, kind of like the everyday prediction task-- the lines of the

poems, or the movie grosses, or the cake baking-- we can actually sort of go out and measure

some features that are plausibly relevant, to set up a plausibly relevant prior, unlike the

interesting object cases. But like the interesting object cases, there are some interesting

hierarchical and other kinds of causal compositional structures that people seem to be using

that we can capture in our models.



So here, again, the kinds of experiments-- these features were generated many years ago by

Osherson and colleagues. But it's very similar to the 20 questions game that Tom Mitchell

used. And I don't remember if Surya talked about where these features came from, that he

talked a lot about a matrix of objects and features. I don't know if he talked about where they

come from. But actually, psychologists spent a while coming up with ways to get people to just

tell you a bunch of features of animals.

This is, again, it's meant to capture the knowledge that maybe a kid would get from maybe

plausibly reading books and going to the zoo. We know that elephants are gray. They're

hairless. They have tough skin. They're big. They have a bulbous body shape. They have long

legs. These are all mostly relative to other animals. They have a tail. They have tusks. They

might be smelly, compared to other animals-- smellier than average is sort of what that

means. They walk, as opposed to fly. They're slow, as opposed to fast. They're strong, as

opposed to weak. It's that kind of business.

So basically what that gives you is this big matrix. Again, the same kind of thing that you saw in

Surya's talk, the same kind of thing that Tom Mitchell is using to help classify things, the same

kind of thing that basically everybody in machine learning uses-- a matrix of data with objects,

maybe as rows, and features, or attributes, as columns. And the problem here is-- the problem

of learning is to say-- the problem of learning and generalizing from one example is to take a

new property, which is a new concept, which is like a new column here, to get one or a few

examples of that concept, which is basically just filling in one or a few entries in that column,

and figure out how to fill in the others, to decide, do you or don't you have that property,

somehow building knowledge that you can generalize from your prior experience, which could

be captured by, say, all the other features that you know about objects.

So that's the way that you might set up this problem, which again, looks like a lot of other

problems of, say, semi-supervised learning or sparse matrix completion. It's a problem in

which we can, or at least we thought we could, compare humans and many different

algorithms, and even theory, like from Surya's talk. And that seemed very appealing to us.

What we thought, though, that people were doing, which is maybe a little different than what--

or somewhat different-- well, quite different than what Jay McClelland thought people were

doing-- maybe a little bit more like what Susan Carey or some of the earlier psychologists

thought people were doing-- was something like this. That the way we solve this problem, the



way we bridged from our prior experience to new things we wanted to learn was not, say, by

just computing the second order of statistics and correlations, and compressing that through

some bottleneck hidden layer, but by building a more interesting structured probabilistic model

that was, in some form, causal-- in some form-- in some form, compositional and hierarchical--

something kind of like this.

And this is a good example of a hierarchical generative model. There's three layers of

structure here. The bottom layer is the observable layer. So the arrows in these generative

models point down, often, usually, where the thing on the bottom is the thing you observe, the

data of your experience. And then the stuff above it are various levels of structure that your

mind is positing to explain it.

So here we have two levels of structure. The level above this is sort of this tree in your head.

The idea-- it's like a certain kind of graph structure, where the objects, or the species, are the

leaf nodes. And there's some internal nodes corresponding, maybe to higher level taxa, or

groups, or something. You might have words for these, too, like mammal, or primate, or

animal.

And the idea is that there's some kind of probabilistic model that you can describe, maybe

even a causal one on top of that symbolic structure, that tree, that produces the data that's

more directly observable, the observable features, including the things you've only sparsely

observed and want to fill in. And then you might also have higher levels of structure. Like if you

want to explain, how did you learn that tree in the first place, maybe it's because you have

some kind of generative model for that generative model.

So here I'm just using words to describe it, but I'll show you some other stuff in a-- or I'll show

you something more formal a little bit later. But you could say, well, maybe the way I figure out

that there's a tree structure is by having a hypothesis-- the way I figure out that there's that

particular tree-structured graphical model of this domain is by having the more general

hypothesis that there is some latent hierarchy of species. And I just have to figure out which

one it is.

So you could formulate this as a hierarchical inference by saying that what we're calling the

form, the form of the model, it's like a hypothesis space of models, which are themselves

hypothesis spaces of possible observed patterns of feature correlation. And that, that higher

level knowledge, puts some kind of a generative model on these graph structures, where each



graph structure then puts a generative model on the data you can observe. And then you

could have even higher levels of this sort of thing. And then learning could go on at any or all

levels of this hierarchy, higher than the level of experience.

So just to show you a little bit about how this kind of thing works, what we're calling the

probability of the data given the structure is actually exactly the same, really, as the model that

Surya and Andrew Saxe used. The difference is that we were suggesting-- may be right, may

be wrong-- that something like this generative model was actually in your head. Surya

presented a very simple abstraction of evolutionary branching process, a kind of diffusion over

the tree, where properties could turn on or off. And we built basically that same kind of model.

And we said, maybe you have something in your head as a model of, again, the distribution of

properties, or features, or attributes over the leaf nodes of the tree.

So if you have this kind of statistical model. If you think that there's something like a tree

structure, and properties are produced over the leaf nodes by some kind of switching, on-and-

off, mutation-like process, then you can do something like in this picture here. You can take an

observe a set of features in that matrix and learn the best tree. You can figure out that thing

I'm showing on the top, that structure, which is, in some sense, the best guess of a tree

structure-- a latent tree structure-- which if you then define some kind of diffusion mutation

process over that tree, would produce with high probability distributions of features like those

shown there.

If I gave you a very different tree it would produce other patterns of correlation. And it's just

like Surya said, it can be all captured by the second order statistics of feature correlations. The

nice thing about this is that now this also gives a distribution on new properties. So if I

observe-- because each column is conditionally independent given that model. Each column is

an independent sample from that generative model. And the idea is if I observe a new

property, and I want to say, well, which other things have this, well, I can make a guess on

using that probabilistic model. I can say, all right, given that I know the value of this function

over the tree, this stochastic process, at some points, what do I think the most likely values are

at other points?

And basically, what you get is, again, like in the diffusion process, a kind of similarity-based

generalization with a tree-structured metric, that nearby points in the tree are likely to have the

same value. So in particular, things that are near to, say, species one and nine are probably

going to have the same property, and others maybe less so. And you build that model. And it's



really quite striking how much it matches people's intuitions.

So now you're seeing the kinds of plots I was showing you before, where-- all my data plots

look like this. Whenever I'm showing the scatterplot, by default, the y-axis is the average of a

bunch of people's judgments, and the x-axis is the model predictions on the same units or

scale. And each of these scatterplots is from a different experiment-- not done by us, done by

other people, like Osherson and Smith from a couple of decades ago.

But they all sort of have the same kind of form, where each dot is a different set of examples,

or a different argument. And what typically varied within an experiment-- you vary the

examples. And you fix constant the conclusion category. And you see, basically, how much

evidential support to different sets of two or three examples gives to a certain conclusion. And

it's really, again, quite striking that-- sometimes in a more categorical way, sometimes in a

more graded way-- but basically, people's average judgments here just line up quite well with

the sort of Bayesian inference on this tree-structured generative model.

These are just examples of the kinds of stimuli here. Now, we can compare. One of the

reasons why we were interested in this was to compare, again, many different approaches. So

here I'm going to show you a comparison with just a variant of our approach. It's the same

kind of hierarchical Bayesian model, but now the structure isn't a tree, it's a low-dimensional

Euclidean space. You can define the same kinds of proximity smoothness thing.

I mean, again, it's more a standard in machine learning. It's related to Gaussian processes. It's

much more like neural networks. You could think of this as kind of like a Bayesian version of a

bottleneck hidden layer with two dimensions, or a small number of dimensions. The pictures

that Surya showed you were all higher dimensions than two dimensions in the latent space, or

the hidden variable space, of the neural network, the hidden layer space. But when he

compress it down to two dimensions, it looks pretty good.

So it's the same kind of idea. Now what you're saying is you're going to find, not the best tree

that explains all these features, but the best two-dimensional space. Maybe it looks like this.

Where, again, the probabilistic model says that things which are relatively-- things that are

closer in this two-dimensional space are more likely to have the same feature value. So you're

basically explaining all the pairwise feature correlations by distance in this space.

It's similar. Importantly it's not as causal and compositional. The tree models something about,

possibly, the causal processes of how organisms come to be. If I told you that, oh, there's this-



- that I told you about a subspecies, like whatever-- what's a good example-- different breeds

of dogs. Or I told you that, oh, well, there's not just wolves, but there's the gray-tailed wolf and

the red-tailed wolf. Red-tailed wolf? I don't know.

Again, they're probably similar, but they might-- one red-tailed wolf, whatever that is, more

similar to another red-tailed wolf, probably has more features in common than with a gray-

tailed wolf, and probably more to the gray-tailed wolf than to a dog. The nice thing about a tree

is I can tell you these things, and you can, in your mind-- maybe you'll never forget that there's

a red-tailed wolf. There isn't. I just made it up. But if you ever find yourself thinking about red-

tailed wolves and whether their properties are more or less similar to each other than to gray-

tailed wolves, or less so to dogs, or so on, it's because I just said some things, and you grew

out your tree in your mind. That's a lot harder to do in a low-dimensional space.

And it turns out that, that model also fits this data less well. So here I'm just showing two of

those experiments. Some of them are well fit by that model, but others are less well fit. Now,

that's not to say that they wouldn't be good for other things. So we also did some experiments.

This was experiments that we did. Oh, actually, I forgot to say, really importantly, this was all

worked done by Charles Kemp, who's now a professor at CMU. And it was part of the stuff that

he did in his PhD thesis.

So we were interested in this as a way, not to study trees, but to study a range of different

kinds of structures. And it is true, going back, I guess, to the question you asked, this is what I

was referring to about low-dimensional manifolds. There are some kinds of knowledge

representations we have which might have a low-dimensional spatial structure, in particular,

like mental maps of the world. So our intuitive models of the Earth's surface, and things which

might be distributed over the Earth's surface spatially, a two-dimensional map is probably a

good one for that.

So here we considered a similar kind of concept learning from a few examples task, where we

said-- but now we put it like this. We said, suppose that a certain kind of Native American

artifact has been found in sites near city x. How likely is it also to be found in sites near city y?

Or we could say sites near city x and y, how about city z.

And we told people that different Native American tribes maybe had-- some lived in a very

small area, some lived in a very big area. Some lived in one place, some another place. Some

lived here, and then moved there. We just told people very vague things that taps into people's



probably badly remembered, and very distorted, versions of American history that would

basically suggests that there should be some kind of similar kind of spatial diffusion process,

but now in your 2D mental map of cities.

So again, there's no claim that there's any reality to this, or fine-grained reality. But we thought

it would sort of roughly correspond to people's internal causal generative models of

archeology. Again, I think it says something about the way human intelligence works that none

of us are archaeologists, probably, but we still have these ideas.

And it turned out that, here, a spatially structured model actually works a lot better. Again, it

shouldn't be surprising. It's just showing that actually, the way-- the judgments people make

when they're making inferences from a few examples, just like you saw with the predicting the

everyday events, but now in the much more interestingly structured domain, is sensitive to the

different kinds of environmental statistics.

There it was different power laws versus Gaussian's of cake bake-- or of movie grosses

versus lifetimes or something. Here it's other stuff. It's more interestingly structured kinds of

knowledge. But you see the same kind of picture. And we thought that was interesting, and

again, suggests some of the ways that we are starting to put these tools together, putting

together probabilistic generative models with some kind of interestingly structured knowledge.

Now, again, as you saw from Surya, and as Jay McClellan and Tim Rogers worked on, you

can try to capture a lot of this stuff with neural networks. The neat thing about the neural

networks that these guys have worked on is that exactly the same neural network can capture

this kind of thing, and it can capture this kind of thing. So you can train the very same hidden

multilayer neural network with one matrix of object and features. And the very same neural

network can predict the tree-structured patterns for animals and their properties, as well as the

spatially-structured patterns for Native American artifacts and their cities.

The catch is that it doesn't do either of them that well. It doesn't do as well as the tree-

structured models do for peop-- when I say either, it doesn't do that well, I mean, in capturing

people's judgments. It doesn't do as well as the best tree-structured models do for people's

concepts of animals and their properties. And it doesn't do as well as the best spacial

structures. But again, it's in the same spirit as the DeepMind networks for playing lots of Atari

games. The idea there is to have the same network solve all these different tasks.

And in some sense, I think that's a good idea. I just think that the architecture should have a



more flexible structure. So we would also say, in some sense, the same architecture is solving

all these different tasks. It's just that this is one setting of it. And this is another setting of it.

And where they differ is in the kind of structure that-- well, they differ in the fact that they

explicitly represent structure in the world. And they explicitly represent different kinds of

structure. And they explicitly represent that different kinds of structure are appropriate to

different kinds of domains in the world and our intuitions about the causal processes that are

at work producing the data. And I think that, again, that's sort of the difference between the

pattern classification and the understanding or explaining view of intelligence.

The explanations, of course, go a lot beyond different ways that similarity can be structured.

So one of the kind of nice things-- oh, and I guess another-- two other points beyond that. One

is that to get the neural networks to do that, you have to train them with a lot of data.

Remember, Surya, as Tommy pushed him on in that talk, Surya was very concerned with

modeling the dynamics of learning in the sense of the optimization time course, how the

weights change over time. But he was usually looking at infinite data. So he was assuming that

you had, effectively, an infinite number of columns of any of these matrices. So you could

perfectly compute the statistics.

And another important thing about the difference being the neural network models and the

ones I was showing you is that, suppose you want to train the model, not on an infinite matrix,

but on a small finite one, and maybe one with missing data. It's a lot harder to get the-- the

neural network will do a much poorer job capturing the structure than these more structured

models. And again, in a way that's familiar with-- have you guys talked about bias-variance

dilemma?

So it's that same kind of idea that you probably heard about from Lorenzo. Was it Lorenzo or

one of the machin learni-- OK. So it's that same kind of idea, but now applying in this

interesting case of structured estimation of generative models for the world, that if you have

relatively little data, and sparse data, then having a more structured inductive bi-- having the

inductive bias that comes from a more structured representation is going to be much more

valuable when you have sparse and noisy data.

The key-- and again, this is something that Charles and I were really interested in-- is we

wanted to-- like the DeepMind people, like the connectionists, we wanted to build general

purpose semantic cognition, wanted to build general purpose learning and reasoning systems.



And we wanted to somehow figure out how you could have the best of both worlds, how you

could have a system that relatively quickly could come to get the right kind of strong

constraint-inductive bias in some domain, and a different one for a different domain, yet could

learn in a flexible way to capture the different structure in different domains. More on that in a

little bit.

But the other thing I wanted to talk about here is just ways in which our mental models, our

causal and compositional ones, go beyond just similarity. I guess, since time is short-- well, I

was planning to go through this relatively quickly. But anyway, mostly I'll just gesture towards

this. And if you're interested, you could read the papers that Charles has, or his thesis. But

here, there's a long history of asking people to make these kind of judgments, in which the

basis for the judgment isn't something like similarity, but some other kind of causal reasoning.

So for example, consider these things here. Poodles can bite through wire, therefore German

shepherds can bite through wire. Is that a strong argument or weak? Compare that with,

dobermans can bite through wire, therefore German shepherds can bite through wire. So how

many people think that the top argument is a stronger one? How many people think the

bottom line is a stronger one?

So that's typical. About twice as many people prefer the top one. Because intuitively-- do I

have a little thing that will appear? Intuitively, anyone want to explain why you thought so?

AUDIENCE: Poodles are really small.

JOSH

TENENBAUM:

Poodles are small or weak. Yes. And German shepherds are big and strong. And what about

dobermans?

AUDIENCE: They're just as big as German shepherds.

JOSH

TENENBAUM:

Yeah. That's right. So they're more similar to German shepherds, because they're both big

and strong. But notice that something very different is going on here. It's not about similarity.

It's sort of anti-similarity. But it's not just anti-similarity. Suppose I said, German shepherds can

bite through wire, therefore poodles can bite through wire. Is that a good argument?

AUDIENCE: No. It's an argument against.

JOSH

TENENBAUM:

No. It's sort of a terrible argument, right? So there's some kind of asymmetric dimensional

reasoning going on. Or similarly, if I said, which of these seems better intuitively; Salmon carry



some bacteria, therefore grizzly bears are likely to carry it, versus grizzly bears carry this,

therefore salmon are likely to carry it. How many people say salmon, therefore grizzly bears?

How many people say grizzly bears, therefore salmon?

How do you know? Those who-- yeah, you're right. I mean, you're right in that's what people

say. I don't know if it's right. Again, I made it up. But why did you say that, those of you who

said salmon?

AUDIENCE: Bears eat salmon.

JOSH

TENENBAUM:

Bears eat salmon. Yeah. So assuming that's true, so we're told or see on TV, then yeah. So

anyway, these are these different kinds of things that are going on.

And to cut to the chase, what we showed is that you could capture these different patterns of

reasoning with, again, the same kind of thing, but different. It's also a hierarchical generative

model. It also has, the key level of the hierarchy is some kind of directed graphical structure

that generates distribution on observable properties. But it's a fundamentally different kind of

structure. It's not just a tree or a space. It might be a different kind of graph and a different

kind of process.

So to be a little bit more technical, the things I showed you with the tree and the low-

dimensional space, they had a different geometry to the graph, but the same stochastic

process operating over it. It was, in both cases, basically a diffusion process. Whereas to get

the kinds of reasoning that you saw here, you need a different kind of graph. In one case it's

like a chain to capture a dimension of strength or size, say. In the other case, it's some kind of

food web thing. It's not a tree. It's that kind of directed network.

But you also need a different process. So the ways-- the kind of probability model to find that

out is different. And it's easy to see on the-- for example-- on the reasoning with these

threshold things, like the strength properties, if you compare a 1D chain with just symmetric

diffusion, you get a much worse fit people's judgments than if you'd used what we called this

drift threshold thing, which is basically a way of saying, OK, I don't know. There's some

mapping from strength to being able to bite through wire. I don't know exactly what it is. But

the higher up you go on one, it's probably more likely that you can bite-- that you can do the

other.

So that provides a wonderful model of people's judgments on these kind of tasks. But that sort



of diffusion process, like if it was like mutation in biology, then that would provide a very bad

model. That's the second row here. Similarly, this sort of directed kind of noisy transmission

process on a food web does a great way of modeling people's judgments about diseases, but

not a very good way of modeling people's judgments about these biological properties. But the

tree models you saw before that do a great job of modeling people's judgments about the

properties of animals, they do a lousy job of modeling these disease judgments.

So we have this picture emerging that, at the time, was very satisfying to us. That, hey, we can

take this domain of, say, animals and their properties, or the various things we can reason

about, and there's a lot of different ways we can reason about just this one domain. And by

building these structured probabilistic models with different kinds of graphs structures that

capture different kinds of causal processes, we could really describe a lot of different kinds of

reasoning. And we saw this as part of a theme that a lot of other people were working on.

So this is-- I mentioned this before, but now I'm just sort of throwing it all out there. A lot of

people at the time-- again, this is maybe somewhere between 5 to 10 years ago-- more like six

or seven years ago-- we're extremely interested in this general view of common sense

reasoning and semantic cognition by basically taking big matrices and boiling them down to

some kind of graph structure. In some form, that's what Tom Mitchell was doing, not just in the

talk you saw, but remember, he said there's this other stuff he does-- this thing called NELL,

the Never Ending Language Learner. I'm showing a little glimpse of that up there from a New

York  Times piece on it in the upper right.

In some ways, in a sort of at least more implicit way, it's what the neural networks that Jay

McClelland, Tim Rogers, Surya were talking about do. And we thought-- you know, we had

good reason to think that our approach was more like what people were doing than some of

these others. But I then came to see-- and this was around the time when CBMM was actually

getting started-- that none of these were going to work. Like the whole thing was just not going

to work. Liz was one of the main people who convinced me of this. But you could just read the

New  York  Times article on Tom Mitchell's piece, and you can see what's missing.

So there's Tom, remember. This was an article from 2010. Just to set the chronology right,

that was right around-- a little bit after Charles had finished all that nice work I showed you,

which again, I still think is valuable. I think it is capturing something about what's going on. It

was very appealing to people, like at Google, because these knowledge graphs are very much

like the way, around the same time, Google was starting to try to put more semantics into web



search-- again, connected to the work that Tom was doing.

And there was this nice article in the New  York  Times talking about how they built their system

by reading the web. But the best part of it was describing one of the mistakes their system

made. So let me just show this to you. About knowledge that's obvious to a person, but not to

a computer-- again, it's Tom Mitchell himself describing this. And the challenge of, that's where

NELL has to be headed, is how to make the things that are obvious to people obvious to

computers.

He gives this example of a bug that happened in NELL's early life. The research team noticed

that-- oh, let's skip down there. So, a particular example-- when Dr. Mitchell scanned the

baked goods category recently, he noticed a clear pattern. NELL was at first quite accurate,

easily identifying all kinds of pies, breads, cakes, and cookies as baked goods. But things went

awry after NELL's noun phrase classifier decided internet cookies was a baked good.

NELL had read the sentence "I deleted my internet cookies." And again, think of that as, it's

kind of like a simple proposition. It's like, OK. But the way it parses that is cookies are things

that can be deleted, the same way you can say horses have T9 hormones. It's basically just a

matrix. And the concept is internet cookies. And then there's the property of can be deleted, or

something like that. And it knows something about natural language processing. So it can see-

- and it's trying to be intelligent. Oh, internet cookies. Well, maybe like chocolate chip cookies

and oatmeal raisin cookies, those were a kind of cookies. Basically, that's what it did. Or no,

actually did the opposite. [LAUGHS]

It said-- when it read "I deleted my files," it decided files was probably a baked good, too. Well,

first it decided internet cookies was a baked good, like those other cookies. And then it

decided that files were a baked goods. And it started this whole avalanche of mistakes, Dr.

Mitchell said. He corrected the internet cookies error and restarted NELL's bakery education.

[LAUGHS] I mean, like, OK. Now rerun without that problem.

So the point, the lesson Tom draws from this, and that the article talks about, is, oh, well, we

still need some assistance. We have to go back and, by hand, set these things. But the key

thing is that, really-- I think the message this is telling us is no human child would ever make

this mistake. Human children learn in this way. They don't need this kind of assistance. It's true

that, as Tom says, you and I don't learn in isolation either. So, all of the things we've been

talking about, about learning from prior knowledge and so on, are true.



But there's a basic kind of common sense thing that this is missing, which is that at the time a

child is learning anything about-- by the time a child is learning anything about computers, and

files, and so on, they understand well before that, like back in early infancy, from say, work

that Liz has done, and many others, that cookies, in the sense of baked goods, are a physical

object, a kind of food, a thing you eat. Files, email-- not a physical object. And there's all sorts

of interesting stuff to understand about how kids learn that a book can be both a no-- a novel

is both a story and it's also a physical object, and so a lot of that stuff.

But there's a basic common sense understanding of the world as consisting of physical

objects, and for example, agents and their goals. You heard a little bit about this from us, from

me and Tomer, on the first day. And that's where I want to turn to next. And this is just one of

many examples that we realized, as cool as this system is, as great as all this stuff is, just

trying to approach semantic knowledge and common sense reasoning as some kind of big

matrix completion without a much more fundamental grasp of the ways in which the world is

real to a human mind, well before they're learning anything about language or any of this

higher level stuff, it was just not going to work, in the same way that I think if you want to build

a system that learns to play a video game, even remotely like the way a human does, there's a

lot of more basic stuff you have to build on. And it's the same basic stuff, I would argue.

A cool thing about Atari video games is that, even though they were very low resolution, very

low-bit color displays, with very big pixels, what makes your ability to learn that game work is

the same kind of thing that makes the ability, even as a young child, to not make this mistake.

And it's the kind of thing that Liz and people in her field of developmental psychology-- in

particular, infant research-- have been studying really excitingly for a couple of decades. That,

I think, is as transformative for the topic of intelligence in brains, minds, and machines as

anything.

So that's what motivated the work we've been doing in the last few years and the main work

we're trying to do in the center. And it also goes hand-in-hand with the ways in which we've

realized that we have to take what we've learned how to do with building problematic models

over interesting symbolically-structured representations and so on, but move way beyond what

you could call-- I mean, we need better, even more interesting, symbolic representations. In

particular, we need to move beyond graphs and stochastic processes defined over graphs to

programs. So that's where the probabilistic programs come back into the mix.

So again, you already saw this. And I'm trying to close the loop back to what we're doing in



CBMM. I've given you about 10 to 15 years of background in our field of how we got to this,

why we think this is interesting and important, and why we think we need to-- why we've

developed a certain toolkit of ideas, and why we think we needed to keep extending it. And I

think, as you saw before, and as you'll see, this also, in some ways-- I think we're getting more

and more to the interesting part of common sense.

But in another way, we're getting back to the problems I started off with and what a lot of other

people at this summer school have an interest in, which is things like much more basic aspects

of visual perception. I think the heart of real intelligence and common sense reasoning that

we're talking about is directly connected to vision and other sense modalities, and how we get

around in the world and plan our actions, and the very basic kinds of goal social

understandings that you saw in those little videos of the red and blue ball, or that you see if

you're trying to do action recognition and action understanding.

So in some sense, it's gotten more cognitive. But it's also, by getting to the root of our common

sense knowledge, it makes better contact with vision, with neuroscience research. And so I

think it's a super exciting development in what we're doing for the larger Brains, Minds, and

Machines agenda. So again, now we're saying, OK, let's try to understand the way in which--

even these kids playing with blocks, the world is real to them. It's not just a big matrix of data.

That is a thing in their hands. And they have an understanding of what a thing is before they

start compiling lists of properties.

And they're playing with somebody else. That hand is attached to a person, who has goals. It's

not just a big matrix of rows and columns. It's an agent with goals, and even a mind. And they

understand those things before they start to learn a lot of other things, like words for objects,

and advanced game-playing behavior, and so on.

And when we want to talk about learning, we still are interested in one-shot learning, or very

rapid learning from a few examples. And we're still interested in how prior knowledge guides

that, and how that knowledge can be built. But we want to do it in this context. We want to

study in the context of, say, how you learn how magnets work, or how you learn how a

touchscreen device works-- really interesting kinds of grounded physical causes.

So this is what we have, or what I've come to call the common sense core. Liz, are you going

to talk about core knowledge at all? so there's a phrase that Liz likes to use called core

knowledge. And this is definitely meant to evoke that. And it's inspired by it. I guess I changed



it a little bit, because I wanted it to mean something a little bit different. And I think, again, to

anticipate a little bit, the main difference is-- I don't know. What's the main difference?

The main difference is that, in the same way that lots of people look at me and say, oh, he's

the Bayesian guy, lots of people look at Liz and say, oh, she's the nativist gal or something.

And it's true that, compared to a lot of other people, I tend to be more interested, and have

done more work prominently associated with Bayesian inference. But by no means do I think

that's the whole story. And part of what I tried to show you, and will keep showing you, is ways

in which that's only really the beginning of the story.

And Liz is prominently associated, and you'll see some of this, with really fascinating

discoveries that key high level concepts, key kinds of real knowledge, are present, in some

sense, as early as you can look, and in some form, I think, very plausibly, have to be due to

some kind of innately unfolding genetic program that builds a mind the same way it builds a

brain. But just as we'll hear from her, that's, in some ways, only the beginning, or only one part

of a much richer, more interesting story that she's been developing.

But for that, among other reasons, I'm calling it a little different. And I'm trying to emphasize

the connection to what people in AI call common sense reasoning. Because I really do think

this is the heart of common sense. It's this intuitive physics and intuitive psychology. So again,

you saw us already give an intro to this. Maybe what I'll just do is show you a little bit more of

the-- well, are you going to talk about the stuff at all?

LIZ SPELKE: I guess. Yeah.

JOSH

TENENBAUM:

Well, OK. So this is work-- some of this is based on Liz's work. Some of this is based on Renée

Baillargeon, a close colleague of hers, and many other people out there. And I wasn't really

going to go into the details. And maybe, Liz, we can decide whether you want to do this or not.

But what they've shown is that, even prior to the time when kids are learning words for objects,

all of this stuff with infants, two months, four months, eight months-- at this age, kids have, at

best, some vague statistical associations of words to kinds of objects. But they already have a

great deal of much more abstract understanding of physical objects.

So I won't-- maybe I should not go into the details of it. But you saw it in that nice video of the

baby playing with the cups. And there's really interesting, sort of rough, developmental

timelines. One of the things we're trying to figure out in CBMM is to actually get much, much

clearer picture on this. But at least if you look across a bunch of different studies, sometimes



by one lab, sometimes up by multiple labs, you see ways in which, say, going from two months

to five months, or five months to 12 months, kids seem to-- their intuitive physics of objects is

getting a little bit more sophisticated.

So for example, they tend to understand-- in some form, they understand a little bit of how

collisions conserve momentum, a little bit, by five months or six months-- according to one of

Baillargeon's studies-- in the sense that if they see a ball roll down a ramp and hit another one,

and the second one goes a certain distance, if a bigger object comes, they're not too surprised

if this one goes farther. But if a little object hits it, then they are surprised. So they expect a

bigger object to be able to move it more than a little object.

But a two-month-old doesn't understand that. Although a two-month-old does understand--

this is, again, from Liz's work-- that if an object is colluded by a screen, it hasn't disappeared,

and that if an object is rolling towards a wall, and that wall looks solid, that the object can't go

through it, and that if it somehow-- when the screen is removed, as you see on the upper left--

appears on the other side of the screen, that's very surprising to them. I think-- I'm sure what

Liz will talk about, among other things, are the methods they use, the looking time methods to

reveal this.

And I think there's really-- this is one of the two main insights that I, and I think our whole field,

needs to learn from developmental psychology, is how much of a basic understanding of

physics like this is present very early. And it doesn't matter whether it's-- in some sense, it

doesn't matter for the points I want to make here, how much or in what way this is innate, or

how the genetics and the experience interact. I mean, that does matter.

And that, that's something we want to understand, and we are hoping to try to understand in

the hopefully not-too-distant future. But for the purpose of understanding what is the heart of

common sense, how are we going to build these causal, compositional, generative models to

really get at intelligence, the main thing is that it should be about this kind of stuff. That's the

main focus.

And then the other big insight from developmental psychology, which has to do with how we

build this stuff, is this idea sometimes called the child as scientist. The basic idea is that, just

as this early commonsense knowledge is something like a scientific theory, something like a

good scientific theory, the way Newton's laws are a better scientific theory than Kepler's laws

because of how they capture the causal structure of the world in a compositional way. That's



another way to sum up what I'm trying to say about children's early knowledge.

But also, the way children build their knowledge is something like the way scientists build their

knowledge, which is, well, they do experiments, of course. We normally call that play. That's

one of Laura's Schulz's big ideas. But it's not just about the experiments. I mean, Newton

didn't really do any experiments. He just thought.

And that's another thing you'll hear from Laura, and also from Tomer, is that a lot of children's

learning looks less like, say, stochastic gradient descent, and more like scratching your head

and trying to make sense of, well, that's really funny. Why does this happen here? Why does

that happen over there? Or how can I explain what seemed to be diverse patterns of

phenomena with some common underlying principles, and making analogies between things,

and then trying out, oh, well, if that's right, then it would make this prediction.

And the kid doesn't have to be conscious of that the way scientists maybe are. That process of

coming up with theories and considering variations, trying them out, seeing what kinds of new

experiences you can create for yourself-- call them an experiment, or call them just a game, or

playing with a toy, but that dynamic is the real heart of how children learn and build the

knowledge from the early stages to what we come to have as adults. Those two insights of

what we start with and how we grow, I think, are hugely powerful and hugely important for

anything we want to do in capturing-- making machines that learn like humans, or making

computational models that really get at the heart of how we come to be smart.


