WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

selfassembled structures Whitesides Lab Department of Chemistry and Chemical Biology

Harvard University

unpublished

bacterial analysis

C. Buie Lab

Massachusetts Institute of Technology Braff, W.A., Willner, D, Hugenholtz, P. "Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties." *PLOS ONE* (October, 2013).

micro reactor

Jensen Lab

Massachusetts Institute of Technology

Losey, M.W., Schmidt, M.A., and Jensen, K.F. "Microfabricated multiphase packed-bed reactors: Characterization of mass transfer and reactions". *Industrial & Engineering Chemistry Research*, 40.(2001).

solar cell

T. Buonassisi Lab Photovoltaic Research Laboratory

Massachusetts Institute of Technology

Steinmann, V., Jaramillo, R., Hartman, K., et al. "3.88% Efficient Tin Sulfide Solar Cells Using Congruent Thermal Evaporation." Advanced Materials 26, no. 44 (August 20, 2014).

bacterial analysis

C. Buie Lab

Massachusetts Institute of Technology

Braff, W.A., Willner, D., Hugenholtz, P., "Dielectrophoresis-Based Discrimination of Bacteria at the Strain Level Based on Their Surface Properties." PLOS ONE (October, 2013).

Belousov-Zhabotinsky reaction A. Zhabotinsky Laboratory

Brandeis University

Fife, P. C.
"Understanding the
Patterns in the BZ
Reagent." Journal of
Statistical Physics 39,
nos. 5–6 (June 1985).

WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

block copolmers time-lapse Ned Thomas Lab

Massachusetts Institute of Technology

"Dynamic Changes in Structural Color of a Lamellar Block Copolymer Photonic Gel during Solvent Evaporation", Lee,W., Yoon, J.,Lee, H., Macromolecules 2013, 46

reversible collapse

A. Hosoi Lab

Massachusetts Institute of Technology

unpublished

integrated optical components

Alice White Laboratory

Bell Laboratories, Lucent Technologies White, A. E. "Integrated Optical Components for WDM Systems." *Optics and Photonics News* 11, no. 3 (March 2000).

patterned drops of water

G. Whitesides, Department of Chemistry and Chemical Biology; Whitesides Research Group

Harvard University

Abbott, N.L., Folkers, J.P. and Whitesides, G.M. "Manipulation of the Wettability of Surfaces on the 0.1 to 1-Micrometer Scale through Micromachining and Molecular Self-Assembly." Science 257, no. 5075 (September 4, 1992).

black silicon

E. Mazur, Mazur Group

Harvard University

Wu, C., C.H. Crouch, L. Zhao, et al. "Near-Unity Below-Band-Gap Absorption by Microstructured Silicon." *Applied Physics Letters* 78, no. 13 (March 26, 2001).

magnetic core memory

Frankel, F. Envisioning Science: The Design and Craft of the Science Image. Cambridge, MA: MIT Press. 2002.

WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

morpho butterfly wing Frankel, F. Envisioning Science: The Design and Craft of the Science Image. Cambridge, MA: MIT Press, 2002.

3D-printed layered composites with varying microstructure parameters (cover)

Boyce Lab, Department of Mechanical Enginneering

Massachusetts Institute of Technology

Rudykh, S. and Boyce, M.C. "Transforming Small Localized Loading into Large Rotational Motion in Soft Anisotropically Structured Materials." Advanced Engineering Materials Volume 16. Issue 11, (November 2014)

Frankel, F., and Whitesides, G.M. No Small Matter: Science on the Nanoscale. Cambridge, MA: Belknap Press of Harvard University Press. 2009.

flexible electronic circuit

J. Rogers, Department of Materials Science and Engineering; Rogers Research Group

Previosuly for this research: Bell Labs. Presently: University of Illinois at Urbana-Champaign

Rogers, J.A., Z. Bao, K. Baldwin, et al. "Paper-Like Electronic Displays: Large-Area Rubber-Stamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks." PNAS Volume 19, no. 28 (April 24, 2001).

threedimensional metallic tetrahedron microstructure Harvard University

G. Whitesides, Department of Chemistry and Chemical Biology; Whitesides Research Group

Jackman, R.J., Brittain, S.T., and Adams, A. "Three-Dimensional Metallic Microstructures Fabricated by Soft Lithography and Microelectrodeposition." Langmuir 15, no. 3 (February 2, 1999).

"lotus effect"

Chemistry and Chemical Reactivity, Feb 7, 2008 John C. Kotz and Paul M. Treichel Brooks Cole; 7 edition (February 7, 2008)

VISUAL INDEX WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

refractive index changes

J. Dijksman, Physics Department

Duke University

Dijksman, J.A., Rietz, F., Lőrincz, K.A., et al. "Invited Article: Refractive Index Matched Scanning of Dense Granular Materials." *Review of Scientific Instruments* 83, no. 1 (January 2012).

bioreactor

Linda Griffith Lab

DuPont MIT Alliance Massachusetts Institute of Technology

unpublished

instrument detail Microsystems Technology Laboratories

Massachusetts Institute of Technology

beer (cover)

Frankel, F., and Whitesides, G.M. No Small Matter: Science on the Nanoscale. Cambridge, MA: Belknap Press of Harvard University Press, 2009.

sea urchin

DuPont MIT Alliance

Massachusetts Institute of Technology

bubbles

Assolombarda

Polli, R., and Faliva, G. Bilancio Sociale 2005. Versione executive. Milan, Italy: Assolombarda, 2005.

VISUAL INDEX WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

assay

H. Sikes Laboratory, Department of Chemical Engineering

Massachusetts Institute of Technology

Heimer, B.W., Shatova, T.A., and Lee, J.K. "Evaluating the Sensitivity of Hybridization-Based Epigenotyping Using a Methyl Binding Domain Protein." *Analyst* 139, no. 15 (August 7, 2014).

Gas Pillars in the Eagle Nebula (M16): Pillars of Creation in a Star-Forming Region

Jeff Hester, Paul Scowen

NASA

http://hubblesite.org/ga llery/album/entire/pr19

quantum dots

Moungi Bawendi Lab

Massachusetts Institute of Technology

MIT PUBLICATION: MIT.nano, The Future of Innovation, 2014

Hubble images

NASA

http://www.stsci.edu/po rtal/http://hubblesite.or g/gallery/album/

Hubble images

NASA

http://www.stsci.edu/po rtal/http://hubblesite.org /gallery/album/

optical fibers

Y. Fink, Materials Science and Engineering Department; Research Laboratory of Electronics

Massachusetts Institute of Technology

VISUAL INDEX WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

High pressure microreactor

K. Jensen, Jensen Research Group

Massachusetts Institute of Technology

Marre, S., Adamo, A., Basak, S., et al. "Design and Packaging of Microreactors for High Pressure and High Temperature Applications." Industrial Engineering and Chemistry Research 49, no. 22 (November 2010).

patterned drops of water

G. Whitesides, Department of Chemistry and Chemical Biology; Whitesides Research Group

Harvard University

Abbott, N.L., Folkers, J.P., and Whitesides, G.M. "Manipulation of the Wettability of Surfaces on the 0.1 to 1-Micrometer Scale through Micromachining and Molecular Self-Assembly." Science 257, no. 5075 (September 4, 1992).

patterned drops of water

G. Whitesides, Department of Chemistry and Chemical Biology; Whitesides Research Group

Harvard University

Abbott, N.L., Folkers, J.P., and Whitesides, G.M. "Manipulation of the Wettability of Surfaces on the 0.1 to 1-Micrometer Scale through Micromachining and Molecular Self-Assembly." Science 257, no. 5075 (September 4, 1992).

block copolymers

Ned Thomas Lab

Massachusetts Institute of Technology

"Dynamic Changes in Structural Color of a Lamellar Block Copolymer Photonic Gel during Solvent Evaporation", Lee, W., Yoon, J., Lee, H., *Macromolecules* 2013, 46

soft microfluidic sensor

J. Rogers, Department of Materials Science and Engineering; Rogers Research Group

University of Illinois at Urbana-Champaign

Xu, S., Zhang, Y., Jia, L., et al. "Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin." *Science* 344, no. 6179 (April 4, 2014).

nanowires

Charles Lieber Lab

Harvard University

"The Incredible Shrinking Circuit", Scientific American 285 (2001).

WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

yeast colony

G. Fink. Whitehead Institute for Biomedical Research

Massachusetts Institute of Technology

Reynolds, T. B. and Fink, G.R. "Bakers" Yeast, a Model for Fungal Biofilm Formation." Science 291, no. 5505 (February 2, 2001).

Handy, E.S., Pal, A.J., and Rubner, M.F. "Solid-State **Light-Emitting Devices** Based on the Tris-Chelated Ruthenium(II) Complex. 2. Tris(bipyridyl)ruthenium (II) as a High-Brightness Emitter." Journal of the American Chemical Society 121, no. 14 (April 14, 1999).

microrotor blades

A. Epstein, Gas Turbine Laboratory, and M. Schmidt; Microsystems **Technology Laboratories**

Massachusetts Institute of Technology

Gabriel, K.J. "Engineering Microscopic Machines." Scientific American 273, no. 3 (September 1995).

Oya, T. et al.,

"Reversible Molecular

light-emitting device

M. Rubner, Department of Materials Science and Engineering

Massachusetts Institute of Technology

acrylamide monomers

Toyoichi Tanaka's Lab

Adsorption Based on Multiple-Point Interaction by Massachusetts Institute Shrinkable Gels," of Technology Science 286 (1999).

all-electronic **DNA** array sensor

D. Ehrlich and P. Matsudaira

Whitehead Institute for Biomedical Research

unpublished

proteus colonies James Shapiro's Lab

University of Chicago

Shapiro, J.A. et al., "Sequential Events in **Bacterial Colony** Morphogenesis, Physica D 49 (1991).

WEEK 5: PRESENTING YOUR WORK

MAKING SCIENCE AND ENGINEERING PICTURES A PRACTICAL GUIDE TO PRESENTING YOUR WORK

vortices left by strider

John Bush Lab

Massachusetts Institute of Technology

Frankel, F., "Walk on Water." *American Scientist*, 92 (July-August 2004).

ocean wave analysis

Department of Civil and Environmental Engineering

Massachusetts Institute of Technology

Landry, B., Hancock, M., et al., "Note on sediment sorting in a sandy bed under standing water waves", Coastal Engineering 54 (2007).

quantum dots

Original images by P. Zou and A. Ting

Massachusetts Institute of Technology

Howarth, M., et al.,
"Monovalent
Reduced-size Quantum
Dots for Imaging
Receptors on Living
Cells, *Nature Methods*5 (2008).

silicon optical bench submount

Alice White Lab, Bell Laboratories

Lucent Technologies

Gates, J., Muehlner, D. et al., "Hybrid Integrated Silicon Optical Bench Planar Lightguide Circuits", Proceedings of the 48th Electronic Comp. and Tech. Conf., Seattle, Washington, S15P1, (1998).

DNA analysis

Phillip A. Sharp Lab

Massachusetts Institute of Technology

Zhou, Q.A., Sharp, P.A., "Tat-SF1: Cofactor for stimulation of transcriptional elongation by HIV-1 Tat." *SCIENCE* 274 (Oct 25 1996).

aligned carbon nanotubes

SEMs and research by John Hart

Massachusetts Institute of Technology

"Needlework", Frankel, F. *American Scientist*, 94, (2006).

MIT OpenCourseWare http://ocw.mit.edu

Resource: Making Science and Engineering Pictures: A Practical Guide to Presenting Your Work Felice Frankel

The following may not correspond to a particular ourse on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.