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MIT 8.02 Spring 2002
Assignment #6 Solutions

Problem 6.1
Flip coil. (Giancoli 29-62)

The coil starts out with its face perpendicular to the magnetic field (more formally speaking,
the normal to the plane surface bounded by the coil is parallel to the magnetic field). If we
choose our sign convention such that the magnetic flux throught the coil (i.e. through an
open surface bounded by the coil) is initially ®p,; = NAB, then after the 180° flip the flux
will be ®p ; = —NAB. So the total change in flux through the coil over the course of the
flip is |A®p| = 2N AB.

Putting Faraday’s law together with Ohm’s law and the definition of current as charge-flow

per unit time, we have
d®p dQ
—=¢=RI=R—
dt dt
at any instant during the flip. We can eliminate ¢ to obtain the relation |[d®g| = RdQ, which
when integrated over the entire flip becomes |[A®p| = RQ. From above, |A®gp| = 2NAB,

so 2NAB = RQ, or B = RQ/2NA.

Problem 6.2

Displacement current. (Giancoli 32-4.)

Using Giancoli Equation (24-2) (p. 615) for the capacitance of a parallel-plate capacitor of
plate area A and plate separation d (and the fact that the electric field is nearly uniform
between the plates at any given time),
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Now let’s apply Ampeére’s law in the form of Giancoli Equation (32-1) (p. 789) to a circular
Amperian loop of radius r = 10.0cm as shown in the diagram above (note: diagram not
to scale). We can expect based on the rotational symmetry of this arrangement that the
magnetic field along the loop will be tangent to the loop, with magnitude dependent only
upon r. The left-hand side of Ampere’s law then becomes

fB-dl:del:dezz%rB .

For the right-hand side of Ampeére’s law we consider the plane surface passing between the
plates of the capacitor and bounded by our loop. There is no current passing through
this surface, so I, = 0. However, there is an electric flux through the surface, given by
& = EA (A is the area of the capacitor plates: there is no electric field in the region outside
the capacitor). From our results above, we may calculate

d@E—d(EA>=%(QA)—1@ .

dt ~ dt A T e dt
Ampere’s law then gives us
dd d dQ/dt
fB-dl = ,uofencl-i-,uoeo—E — 2mrB = No—Q — B = M )
dt dt 2nr

Note that this result does not depend upon the precise dimensions of the capacitor. Putting
in numbers for the charge-up,

(47 x 10-7)(0.0350)
27(0.100)

B = =70nT .

When the capacitor is fully charged, d@Q/dT = 0, and therefore B = 0.

Problem 6.3
Self-inductance of a toroid. (Giancoli 30-48.)

(a) First let’s address the issue of treating the magnetic field inside the toroid as uniform. At
any point inside the toroid, the distance from the center of the big circle may be expressed as
r =ro—+0, where § < d. Using the result of Giancoli Example 28-8 (p. 718) for the magnetic
field inside a toroid, we have

_ NI NI poNI _ NI
T o2mr T 2m(ro+6)  2mre(14+6/r) T 2mrg

B when ro > d > 6.

Within this approximation, the magnetic flux through one winding of the toroid (and due
to a current in that same toroid) is

NId?
Oy~ w(d)2)2B ~ 22

87’0
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By Giancoli Equation (30-4) (p. 758), the toroid’s self-inductance is then

Nop _ poN’d’

L =
I 87‘0 ’

as we were to show. This is indeed consistent with the result for a solenoid of length [ = 27rg
and cross-sectional area A = 7(d/2)? (see Giancoli Example 30-3, p. 759), as it should be:

_ wN2A _ woN2m(d/2)? _ poN2d?
[ 271y 870

L

Our toroid is just a solenoid bent into a donut, and to the extent that we can ignore terms
of order d/ry, the bending has no effect.

(b) Plugging in the given numbers,

(47 x 1077)(550)2(0.020)2
L~ =76 uH .
8(0.25) a

Problem 6.4

Magnetic field energy and self-inductance.

(a) From the results of problem 5.2, we have the following expression for the magnetic field
magnitude inside the wire as a function of distance r from the wire’s axis:

polr
B=—- .
2m R?

Using Giancoli Equation (30-7) (p. 761), we can express the magnetic field energy density
(that is, Joules per cubic meter) as

" B? 1 (,uOIT)Q_,uOIQrQ

- 240 - 2uo \2rR?) ~ 8m2R!

Consider now a cylindrical shell of length ¢, radius r, and
thickness dr within the wire. Such a shell has volume

d(volume) = 2xrédr

and in the limit dr — 0 the magnetic field energy density
is constant throughout the shell. The total magnetic field
energy inside a length ¢ of the wire can thus be found by
integrating:

R (0 ]2r2 120\ (R I*
pol®r 7 7
U = /ud(volume) =/0 (8;2]%4) (27rldr) = (4;R4>/0 rdr = {)67r :
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(b) From the relationship between stored magnetic field energy and self-inductance (Giancoli
Equation (30-6), p. 761), we can identify the self-inductance due to the interior of the wire:

(]in = lLinI2 = IU/OIQK in = N—Og .
2 167 8T
The wire therefore has a self-inductance per unit length /87 associated with its internal

magnetic field.

Problem 6.5
RL circuit.

Giancoli Equation (30-9) (p. 762) gives us an expression for the time-dependent current in
an LR circuit connected to a battery of voltage V4 at time ¢ = 0:

_h

1) ==

(1-e*), r=L/R .
We will make good use of this! For our circuit, the time constant is 7 = (0.09)/(0.05) = 1.8s.

(a) The final value of the current is simply Vp/R. Let o = 0.05; the condition that the
current has reached 95% of its final value can then be expressed as

_% —t/T _ ‘/0
1_5(1—6 ) = (1-a)5
et = ¢
=t = —7lna=54s .

(b) Using Giancoli Equation (30-6) (p. 761), we have for the energy stored in the magnetic

field ( >2
12
005 = 5007

1 1 172 |
=_LI?=-L(1 —a)>=X = (0. .95)2
U= SL(1 - o)’ 5 = 5(0.09)(0.95)

(c) The power delivered by the battery at any instant is

P(t) = VoI(t) = %’2 (1—e)

To find the total energy W delivered by the battery up to the time ¢ found in part (a) we
integrate:

_ t ! r_ %2 t —t'/T r_ ‘/02 ! —t' /T ¢
W—/OP(t)dt—EO(l—e )dt—f[t-l-’i'e |,
143 (12)?
= —t—-(1- = 4 — (0. 1.8)| ~1 .
B [t — (1 - a)7] (0'05>[5 (0.95)(1.8)] ~ 10600 J
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So, ~ 10600 — 2300 = 8300 J have been dissipated in the resistor.

Problem 6.6
RL circuit. (Giancoli 30-30.)

The inductor in the upper branch of the circuit will resist instantaneous changes in I5. Neg-
ligible inductance in the rest of the circuit means that I; and I, can respond essentially
instantaneously to the opening and closing of the switch. (Note: these solutions use V in-
stead of £ to denote the battery voltage.)

(a) Before the switch is closed, all currents are I
. . . 2
zero. Immediately after the switch is closed, -
I3 =0 still. At this instant, we may regard the /\/\/\,
circuit effectively as shown at right. This situa- R
tion solves easily to give 2 IlT% R,
v
L=L=—— . |
TR T Rt R, ]
\%
Ry
/\/\/\/ (b) After the switch has been closed for a long
I <I_ time, all the currents will have reached unchang-
<2z 3 ing, steady-state values. Inductors have no effect
/\/\/\/ when currents are not changing in time, so we
R may treat the circuit as shown at left. Applying
2 I ITE R, Kirchhoft’s rules we obtain
II IIZIQ+I3 y I1R1+IQR2:I1R1+I3R3:V .
'
\% A bit of algebra then yields
RyRy \7' R1R2)_1 ( R1R3)_1
L=V IR +—— L=V R +R L=V R +R :
1 (1+R2+R3) y A2 (1+ 2+ . y 13 1+ g+ i
(c) Immediately after the switch is opened again, L R,
the branch containing the battery and Ry is taken 5575 /\/\/\/
out of action, so I; = 0. The remaining circuit is -
as shown at right. I3 must be continuous in time 12 I 3
due to the inductor, so it has the same value as /\/\/\/
found in part (b). Kirchhoff’s loop rule (a.k.a.
charge conservation) then dictates I» = —Is. Ry
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(d) A long time after the switch is reopened, the currents of part (c) will have decayed,
leaving Il = I2 = I3 =0.

Problem 6.7
Integrating circuit. (Giancoli 30-57.)

Let’s define the current I as shown in the diagram at

right. Also take the sign conventions for Vi, and Vo as L

shown. Vi, can be regarded as a sort of time-dependent + 1\ 0000 1\+
battery voltage, and Vi, as the readout of a voltmeter

with a very large internal resistance compared to R. Es- Vin IlzR Vout
sentially, Vout is just a measure of the current in the re- l/ l/

sistor: Vout = RI. — -

Expressing Faraday’s law for the LRV, loop, we have

dl
Viw—L——RI=0 .
dt
Following Giancoli’s hint, we multiply by e/~ and recognize that we can “undo the product
rule”:
eRt/LMn _ eRt/LL% _ eRt/LRI = 0
d
Rt/Ly, _ @ ( Ri/L _
=e Vin 7 (e LI ) = 0 .

Integrating this equation from 0 to time ¢, we get
t !
/ eRILV () dt' = PP LI(E) — L,
0

Now, if the time constant L/R is very large compared with the time over which V;, varies,
we may take e/’ ~ ¢ = 1. This leaves us with

t
/ V() dt' = LI(t) - LI
0
R t
= Voult) = Voult=0)+ 7 [ Va()at' .
0
This is the sense in which the circuit integrates. Note that the assumption of L/R being
much greater than the timescale of variation means that the typical magnitude of V¢ will

be much less than that of Vi,. A sketch of the output voltage for the given square-wave input
signal is shown below (taking Vou(t = 0) = 0).
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Vout

END



