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Final Exam at 9:00am sharp Fall 2005 
Tuesday, December 20, 2005 

More 18.01 Final Practice Problems


Here are some further practice problems with solutions for the 18.01 Final Exam. Many of these 
problems are more difficult than problems on the exam. 

Goal 1. Differentiation. 
x1.1 Find the equation of every tangent line to the curve y = e containing the point (−1, 0). This 

is not a point on the curve. 

1.2 Let a and b be positive real numbers. Find the equation of every tangent line to the ellipse 
with implicit equation, 

2 2x y
+ = 1, 

a2 b2 

containing the point (2a, 2b). This is not a point on the ellipse. 

1.3 Let a be a real number different from 0. Use the definition of the derivative as a limit of 
difference quotients to find the derivative to the following function, 

1 
f (x) = , 

x 

at the point x = a. 

1.4 Use the definition of the derivative as a limit of difference quotients to find the derivative of 
the following function, 

f (x) = tan(x), 

at the point x = 0. You may use without proof that the following limits exist and have the given 
values, 

sin(x) 1 − cos(x)
lim = 1, lim = 0. 
x 0 x x 0 x→ →

1.5 For x > 0, let f (x) be the function, 
√

xf (x) = e . 

Thus the inverse function, 
y = f −1(x), 
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satisfies the equations, 
e
√

y = x, and 
√

y = ln(x). 

Compute the derivative, 
dy 

. 
dx 

Goal 2. Sketching graphs. 

2.1	 Sketch the graph of the function, 

1 2 1 
f (x) = + . 

x − 1 
− 

x x + 1 

2.2 Sketch the implicit function, 
y 2 − xy − x 2 = 1. 

2.3 Sketch the graph of the function, 

x2 x2 

f (x) = + . 
x + 1 x − 1 

Goal 3. Applications of differentiation. 

3.1 A sculpture has the form of a right triangle. The material used for the vertical leg has twice 
the cost of the material used for the horizontal leg. The length of the hypotenuse is fixed (thus 
its cost is irrelevant). What ratio of vertical leg to horizontal leg minimizes the total cost of the 
material? 

3.2 A farmer has a fence running diagonally across her property at a 45 degree angle to the north­
south and east­west lines. She decides to build a corral by adding a length b − a of fence running 
north­south, a length b − a of fence running east­west, and then connect the two corners with 2 
length b of fence running north­south and east­west. Thus, the total new length of fence needed is 
4b − 2a, and the corral has the form of a square of length b, with a small isosceles triangle of leg 
length a removed from one corner (where the square corral meets the pre­existing diagonal fence). 
What ratio of a to b gives maximal area of the corral for a fixed length of new fence? 

3.3 An icicle has the shape of a right circular cone whose ratio of length to base radius is 10. 
Assuming the icicle melts at a rate of 1 cubic centimeter per hour, how fast is the length of the 
icicle decreasing when it is 10 centimeters long? 

3.4 A cube of ice rests on the ground. The cube of ice melts at a rate proportional to the surface 
area of the cube exposed to the air (thus, the area of the 5 sides other than the side sitting on the 
ground). Assuming it takes 5 hours before the volume of the melted cube equals 1/2 the initial 
volume, how much longer does it take for the cube to melt entirely? 

Goal 4. Integration. 
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4.1 An integrable function f(x) is defined on the interval [0, 1]. Give the formula for the Riemann 
sum of f(x) on [0, 1] with respect to the partition of [0, 1] into n subintervals of equal length, 
evaluating the function f(x) at the right endpoint of each subinterval. 

4.2 Let r be a positive real number. Use your formula for the Riemann sum to reduce the following 
limit, 

n
1 � 

lim kr , 
n→∞ nr+1 

k=1 

to a Riemann integral. Then evaluate that Riemann integral (using whatever integration technique 
you like), and determine the limit. 

4.3 Use your formula for the Riemann sum to reduce the following limit, 

n� 1 
lim ,√

4k2 + nn→∞ 
k=1 

2 

to a Riemann integral. Use an inverse hyperbolic substitution to evaluate the Riemann integral, 
and determine the limit. You are free to use the following formulas, 

cosh2(t) − sinh2(t) = 1, 

d d 
dt 

sinh(t) = cosh(t), 
dt 

cosh(t) = sinh(t). 

See also Problem 6.1. 

4.4 Compute the following integral, � 2 � 1 
t2 

e dt − 2 e 4u2 
du. 

0 0 

Hint: It is not possible to write down the antiderivatives of either of the seperate integrands. 

4.5 Compute the following integral, 

π/3 1 
dθ. 

sec(θ) + tan(θ)0 

Goal 5. Applications of integration. 

5.1 Denote by a the unique angle in the range 0 < a < π/2 satisfying, 

x − 2 tan(x) =
8 − π

. 
4 

Compute the area bounded by the curve, 

y = tan(x), −π/2 < x < π/2, 
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and the tangent line to the curve at (x, y) = (−π/4, −1). 

5.2 Find the unique, positive value of h making the area of the region bounded by the parabola, 

2 y = x , 

and the parabola, 
y = h − x 2 , 

equal one half the area of the region bounded by the parabola, 

2 y = x , 

and the parabola, 
y = 1 − x 2 . 

5.3 Let a and b be positive real numbers. Find the volume of the solid obtained by rotating about 
the y­axis the region in the first quadrant of the xy­plane bounded by the x­axis, the y­axis, the 
line x = aπ and the curve, 

y = b sin(x/a). 

You may use either the washer method or the shell method. 

5.4 Compute the arc length of the segment of the curve, 

y = ln(x), 

bounded by (x, y) = (1, 0) and (x, y) = (e, 1). At some point, it will help to make an inverse 
substitution. You may make either an inverse trigonometric substitution or an inverse hyperbolic 
substitution (the resulting integrals are comparable). See also Problem 6.2. 

5.5 Compute the area of the surface obtained by rotating about the y­axis the segment of the 
curve, 

y = ln(x), 

bounded by (x, y) = (1, 0) and (x, y) = (e, 1). At some point, it will help to make an inverse 
substitution. It is best to make an inverse hyperbolic substitution. You are free to use the following 
formulas, 

cosh2(t) = 
1
(cosh(2t) + 1),

2 

sinh2(t) = 
1
(cosh(2t) − 1). 

2 
See also Problem 6.3. 

Goal 6. Techniques of integration. 

6.1 Do the inverse substitution part of Problem 4.3. 
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6.2 Do the inverse substitution part of Problem 5.4. 

6.3 Do the inverse substitution part of Problem 5.5. 

6.4 Compute the following antiderivative, 

sin−1(x)
√

1 − x2dx. 

Hint: Use the half­angle formula and integration by parts. 

6.5 Compute the following antiderivative, 

sin−1(x)dx. 

6.6 Compute the following antiderivative, 

cos−1(x)dx. 

6.7 Compute the following antiderivative, 

tan−1(x)dx. 

Goal 7. L’Hospital’s rule. 

7.1 Compute the following limit, 
x + 1 

lim . 
x 0+ x2 + 1 →

7.2 Compute the following limit, 

x + 1 
lim ln(x) ln . 

x 0+ x2 + 1 →

7.3 Try to find nonzero, analytic functions f (x) and g(x) defined near x = 0 such that f (0) = 
g(0) = 0 but 

lim f (x)g(x), 
x 0+ →

does not equal 1. Remark. Don’t try too hard! No problem on the final will ask anything this 
vague. Also, functions f (x) and g(x) satsifying the conditions do not exist :) 

7.4	 Denote, � 
e1/x2 

, x = 0� ,
f (x) = 

0, x = 0 
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and denote, 
g(x) = x 2 . 

Compute the limit, 
lim f (x)g(x) . 

x 0+ →

7.5	 Compute the limit, 
lim ln(1 − cos(x)) − ln(sin2(x)). 

x 0+ →

Goal 8. Improper integrals. 

8.1 Determine whether the following improper integral converges or diverges. If it converges, 
evaluate it. � 1 

− ln(x)dx. 
0+ 

8.2 Determine whether the following improper integral converges or diverges. If it converges, 
evaluate it. � ∞ 1 

dx. 
2 

1 x
√

1 + x

Goal 9. Taylor series. 

9.1	 Compute the Taylor series expansion about x = 0 of, 

f (x) = ln(1 + x). 

9.2	 Let a > −1 be a real number. Compute the Taylor series expansion about x = a of, 

f (x) = ln(1 + x). 

9.3	 Let a be a real number. Compute the Taylor series expansion about x = a of, 

f (x) = sin(x). 

9.4	 Let a be a real number. Compute the Taylor series expansion about x = a of, 

f (x) = cos(x). 

9.5	 Compute the Taylor series expansion about x = 0 of, 

f (x) = tan−1(x) = arctan(x). 

9.6 Compute the Taylor series expansion about x = 0 of, 

x sin(t)
f (x) = dt. 

t0 
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Solutions. 

Solution to 1.1 Denote by (a, ea) a point on the curve. The tangent line to the curve has slope, 

dy 
dx 

(a) = e a . 

Therefore the equation of the tangent line is, 

ay = e (x − a) + e a . 

The tangent line contains (−1, 0) if and only if, 

a0 = e a((−1) − a) + e . 

Simplifying gives, 
0 = −ae a . 

Since ea is always nonzero, the equation holds if and only if a equals 0. Therefore, the equation of 
the unique tangent line to the curve containing (−1, 0) is, 

y = x + 1. 

Solution to 1.2 Implicit differentiation with respect to x gives, 

2x 
a2 

+ 
2y 
b2 

y� = 0. 

Solving gives, 

y� = − 
b2x 
a2

. 
y 

So for a point (x0, y0) on the ellipse, the equation of the tangent line to the ellipse is, 

b2x0 
y = (x − x0) + y0. 2

− 
a y0 

Multiplying both sides by a2y0 and simplifying gives, 

2 2 2 2b2 x0x + a y0y = b2 x0 + a y0 . 

Because the point (x0, y0) lies on the ellipse, the right­hand side is, 

2 2 
2b2 x0 0 a + 

y
= a 2b2 . 

a2 b2 

Therefore the equation of the tangent line is, 

2b2 x0x + a y0y = a 2b2 . 
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Plugging in (x, y) = (2a, 2b), the tangent line contains (2a, 2b) if and only if, 

22ab2 x0 + 2a by0 = a 2b2 . 

Solving for y0 gives, 
2ay0 = −2bx0 + ab. 

Because (x0, y0) is contained in the ellipse, the pair satisfies the equation, 

2 2 2b2 x0 + a y0 = a 2b2 , 

which is equivalent to, 
24b2 x0 + (2ay0)

2 − a 2b2 = 0. 

Substituting the equation for 2ay0 gives the quadratic equation in x0, 

28b2 x0 − 4ab2 x0 − 3a 2b2 = 0. 

Simplifying, this becomes, 
28x0 − 4ax0 − 3a 2 = 0. 

By the quadratic formula, the solutions are, 

1 + 
√

7 1 −
√

7 
x0 = a, x0 = a. 

4 4 

The corresponding solutions for y0 are, 

1 −
√

7 1 + 
√

7 
y0 = b, y0 = b. 

4 4 

The corresponding equations of the tangent lines are, 

and,


Solution to 1.3 The difference quotient at x = a is,


(
√

bx − (
√

7 − 1)ay ab, 

(
√

ay − (
√

7 − 1)ax ab. 

7 + 1) = 4

7 + 1) = 4

f (a + h) − f (a) 1 1 1 
= . 

h h a + h 
− 

a 

Clearing denominators gives, 
1 1 
h a(a + h)

(a − (a + h)). 
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Cancelling gives, 
1 1 
h a(a + h)

(−h). 

Simplifying gives, 
f (a + h) − f (a) 1 

= . 
h 

− 
a(a + h) 

Taking the limit as h → 0 gives, 

1 1 
f �(a) = lim 

f (a + h) − f (a)
= − 

a(a + 0) 
= 

2 
. 

h 0 h 
− 

a→

Therefore the derivative function is, 
f �(x) = 

Solution to 1.4 By definition, the difference quotient at x = 0 is, 

f (h) − f (0) 
= 

1 
(tan(h) − tan(0)). 

−1/x2 . 

h h 

Since tan(0) = 0, this simplifies to, 

tan(h) 1 sin(h) 
= . 

h cos(h) h 

Taking the limit h → 0 gives, 

1 sin(h)
f �(0) = lim 

f (h) − f (0) 
= lim lim . 

h 0 h h 0 cos(h) h→0 h→ →

Evaluating gives, 
1 1 

1 
× 1 = 1. 

cos(0) 
× 1 = 

Therefore the derivative at 0 is, 
f �(0) = 1. 

Solution to 1.5 Directly, 
y = [ln(x)]2 . 

Therefore, by the chain rule, 

dy d 2 ln(x)
= 2[ln(x)] ln(x) = . 

dx dx x 

Alternatively, implicitly differentiating, 
e
√

y = x, 

9 
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gives, 
1 dy√

ye
2
√

y dx 
= 1. 

Plugging in e
√

y = x and 
√

y = ln(x) gives, 

1 dy 
x = 1. 

2 ln(x) dx 

Solving gives, 
dy 2 ln(x) 

= . 
dx x 

Thus, both methods give the answer, 

dy 
= 

dx 
x)/x.2 ln(

Solution to 2.1 From the form of the function, it is clear the function has vertical asymptotes at 
x = −1, x = 0 and x = +1. Also, the function has a horizontal asymptote y = 0. Observe that, 

1 2 1 2 
f (x) = + = . 

x − 1 
− 

x x + 1 x(x2 − 1) 

Similarly, 

f �(x) = − 
(x − 

1 
1)2 

+
2 1 −2(3x2 − 1) 

. 
x2 
− 

(x + 1)2 x2(x2 − 1)2 

Therefore the only critical points are, 

1 1 
x = , and x = + .−√

3 
√

3 

The corresponding points on the curve are, 

1 
(x, y) = , −

√
3 , (x, y) = + 

√
3 
, +
√

3 

� 

.−√
3 3 

The function f (x) is decreasing for x < −1/
√

3, increasing for −1/
√

3 < x < 1/
√

3, and decreasing 
for x > 1/

√
3 (except, of course, where f (x) is undefined at x = −1, 0, +1). It is clear from the 

form of the derivative that x = −1/
√

3 is a local minimum and x = +1/
√

3 is a local maximum. 
The second derivative is, 

2 4 2 4(6x4 − 3x2 + 1) 
+ = .f ��(x) =

(x − 1)3 
− 

x3 (x + 1)3 x3(x2 − 1)3 

The numerator is a quadratic equation in x2 . However, there are no real solutions of the quadratic 
equation. Therefore there are no inflection points. The function is concave down for x < −1, 
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concave up for −1 < x < 0, concave down for 0 < x < +1, and concave up for x > +1. Finally, 
f(x) is an odd function. This is more than enough to sketch the graph. A sketch is included on 
the course webpage. 

Solution to 2.2 This is the equation of a hyperbola. The asymptotes of the hyperbola are the 
lines with equations, 

2y − (
√

5 + 1)x = 0, 

and, 
2y + (

√
5 − 1)x = 0. 

Implicit differentiation gives, 
2yy� − y − xy� − 2x = 0, 

or, 
2x + y 

y� = . 
2y − x 

Thus the critical points are the intersection points of the hyperbola with the line, 

y = −2x. 

Solving gives a local minimum at, � 
2
√

5 
�√

5 
(x, y) = , + ,− 

5 5 

and a local maximum at, � 
2
√

5 
�√

5 
(x, y) = + . 

5 
,− 

5 

There are no inflection points. A sketch of the hyperbola is included on the course webpage. 

Solution to 2.3 Clearly there are vertical asymptotes at x = −1 and x = +1. Simplifying, 

1 1 2x3 

f(x) = 2x + + = . 
2x− 1 x + 1 x − 1 

In particular, y = f(x) is asymptotic to the line y = 2x as x goes to ±∞. Also, f(x) is an odd 
function that clearly has an inflection point at (0, 0). The derivative is, 

21 1 2x2(x − 3) 
= .f �(x) = 2 − 

(x− 1)2 
− 

(x + 1)2 (x2 − 1)2 

Thus the critical points are x = −
√

3, x = 0 and x = +
√

3. The function is increasing for

x < −

√
3, it is decreasing for −

√
3 < x < −1, it is decreasing for −1 < x < +1, it is decreasing for
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+1 < x < +
√

3, and it is increasing for x > +
√

3. Therefore x = −
√

3 is a local maximum, and 
x = +

√
3 is a local minimum. Finally, the second derivative is, 

2 2 4x(x2 + 3) 
f ��(x) = + = . 

(x − 1)3 (x + 1)3 (x2 − 1)3 

In particular, the only inflection point is x = 0. The function is concave down for x < −1, it is 
concave up for −1 < x < 0, it is concave down for 0 < x < +1, and it is concave up for x > +1. 
This is more than enough to sketch the graph. A sketch is included on the course webpage. 

Solution to 3.1 Denote by x the length of the horizontal leg. Denote by y the length of the 
vertical leg. Denote by s the length of the hypotenuse. The constraint is that, 

2 2 2 s = x + y , 

is a constant. The cost function is, 
C = x + 2y. 

Take x as the independent variable. The endpoints are x = 0 and x = s. Implicitly differentiating 
with respect to x gives, 

dC dy
= 1 + 2 . 

dx dx 
Thus, at every critical point of C, 

dy 1 
= . 

dx 
− 

2 
Implicitly differentiating the constraint equation with respect to x gives, 

dy
2x + 2y = 0. 

dx 

Plugging in dy/dx = −1/2 at a critical point gives the linear equation, 

2x − y = 0. 

In other words, y = 2x. Substituting in to the constraint, the one critical point of C is, 
√

5s 2
√

5s 
x = , y = . 

5 5 

The cost at this point is, 
4
√

5s 
C = . 

5 
In fact, this critical point is a local maximum. At the endpoint x = 0, y equals s and the cost is,


C = 2s.
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At the endpoint x = s, y equals 0 and the cost is, 

C = s. 

Therefore, the ratio of vertical leg to horizontal leg minimizing the total cost is, 

y 
= 0. 

x 

Solution to 3.2 The total length of fence is, 

L = 4b − 2a. 

The area of the corral is, 
1 2A = b2 a .− 
2 

Choose b as the independent variable. From the constraint equation, 

L 
a = 2b − . 

2 

Since a must be between 0 and b, the endpoints of b are b = L/4 and b = L/2. Substituting 2b − L 
2 

for a in the equation for A gives, � �2
1 L L2 

A(b) = b2 − 
2

2b − = −b2 + Lb − . 
2 4 

Differentiating, 
dA 

= −2b + L. 
db 

Thus the only critical point is at b = L/2, which is also an endpoint. This gives a local maximum 
for A, 

L2 

A(L/2) = . 
8 

The value of A at the other endpoint is, 

L2 

A(L/4) = . 
16 

Thus the global maximum is when b = L/2, and thus a = L/2. Therefore, the ratio of a to b giving 
the maximal area of the corral is, 

a 
= 

b 
1. 

Solution to 3.3 Denote the radius by r and the length by l. The volume of the icicle is, 

1 πr2l 
(πr 2)(l) = . 

3 3 

13 
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Using the constraint that l = 10r, the volume is, 

10πr3 

V (r) = . 
3 

Therefore the rate of change of V is, 
dV dr 

= 10πr 2 . 
dt dt 

By hypothesis, dV /dt equals −1 cubic centimeter per hour. Thus solving gives, 

dr 1 cm3 

= . 
dt 

− 
10πr2 hr 

When the length is l = 10cm, the radius is r = 1cm. Plugging in, the radius of the icicle is 
decreasing at the rate, 

dr 1 cm 
= . 

dt 
− 

10π hr 
Therefore the length is decreasing at the rate, 

dl dr 1 cm 
= 10 = . 

dt dt 
− 

π hr 

To summarize, the length of the icicle is decreasing at the rate, 

dl 
dt 

= −(1/π) centimeter per hour. 

Solution to 3.4 Denote by x the edge length of the cube. Then the volume is, 

V (x) = x 3 . 

Also, the area of the 5 exposed sides is, 

A(x) = 5x 2 . 

By hypothesis, the rate of change of the volume is proportional to the area of the exposed sides, 
i.e., 

dV 
dt 

= CA, 

for some constant C. Differentiating gives, 

dV 
= 3x 2 dx 

. 
dt dt 

Substituting gives, 
dx 5C 

= . 
dt 3 
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But this is just another constant. Because dx/dt is a constant, x(t) is a linear function,


x(t) = x0 − at, 

for some constant a. By hypothesis, V (x(5)) = V (x0)/2. Solving gives, 

1 
x(5) = 

3
√

2 
x0 = x0 − 5a. 

Solving for a gives, 

a = 
3
√

2 − 1 

5 3
√

2 
x0. 

Therefore the cube is completely melted at time, 

5 3
√

2 
t = . 

3
√

2 − 1 

So the additional time from t = 5 before the ice cube melts is, 

5/( 3
√

2 − 1) hours. 

Solution to 4.1 The endpoints of the kth interval are xk−1 = (k − 1)/n and xk = k/n. The length 
of each interval is Δxk = 1/n. Thus the formula for the Riemann sum is, 

n

f (xk )Δxk = 
k=1 

(1/n) 
� n 

k=1 f ( ).k/n

Solution to 4.2 Plugging in k = nxk gives, 

n n n n� 1 � � (nxk )
r � 

rkr 

nr+1 
= 

nr+1 
= xk Δxk . 

k=1 k=1 k=1 k=1 

rTherefore the function is f (x) = x . The Riemann integral is, � 1 � 1 1 � 
r+1 
��1 1 

f (x)dx = x r dx = x 
0 

= . 
r + 1 r + 1 0 0 

Therefore the limit equals, 
n

1 � 
krlim = 

n→∞ nr+1 
1/(r + 1). 

k=1 

Solution to 4.3 Plugging in k = nxk gives, 

n n n� 1 � 1 1 � 1 
= = Δxk .22 2 + 1 n 

k=1 
4xk + 1 

k=1 

√
4k2 + n

k=1 

� 
4xk 
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Thus the function is, 
1 

f (x) = .√
4x2 + 1 

So the limit of the Riemann sums equals the Riemann integral, � 1 1 
dx. 

0 

√
4x2 + 1 

To evaluate this integral, make the inverse hyperbolic substitution, 

1 1 
x = sinh(t), dx = cosh(t)dt. 

2 2 

The new integral is, � sinh−1(2) 1 1 
dt = sinh−1(2). 

2 20 

In fact, 
sinh−1(2) = ln(2 + 

√
5). 

Therefore, the limit is, 
n� 1 

lim =√
4k2 + nn→∞ 

k=1 
2 

√
5)/2.ln(2 + 

Solution to 4.4 To simplify the second integral, make the substitution, 

v = 2u, dv = 2du. 

The new integral is, � 2 � 2 
2v2 e 4u2 

dx = e dv. 
0 0 

But this equals the first integral. Therefore the difference is, � 2 � 2 
2 

e t
2 
dt − e v dv = 0. 

0 0 

Solution to 4.5 To simplify the integral, multiply numerator and denominator by cos(θ), 

π/3 cos(θ) 
dθ. 

1 + sin(θ)0 

Substituting, √
3 + 2 

u = 1 + sin(θ), du = cos(θ)dθ, u(0) = 1, u(π/3) = 
2 

, 
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gives the new integral, � (
√

3+2)/2 dv (
√

3+2)/2= (ln(v)|1 . 
1 v 

Thus the integral equals, 

π/3 1 
dθ = 

sec(θ) + tan(θ)0 
ln(
√

−3 + 2) ln(2). 

Solution to 5.1 The derivative of tan(x) is, 

dy 2= sec (x). 
dx 

In particular, the slope of the tangent line to the curve at x = −π/4 is, 

12sec (−π/4) = . 
2 

So the equation of the tangent line is, 

1 π 
y = x + − 1. 

2 4 

Therefore the other intersection point of the line with the curve y = tan(x) occurs at the unique 
point x such that, 

1 π 
tan(x) = x + − 1. 

2 4 
This is precisely the equation defining a. The area of the region is thus, � a � �1 π a 1 a − sin(x)
Area = x + 

� 
− 1 − [tan(x)] dx = 

� 
xdx − 

8 − π
dx + 

a 

dx. 
−π/4 2 4 −π/4 2 −π/4 8 −π/4 cos(x) 

The first 2 integrals give, 
a 1 16a2 − π2 

,xdx = 
64−π/4 2 

and, � a 8 − π (8 − π)(4a + π)
dx = . 

32−π/4 8 

For the third integral, substitute, 

u = cos(x), du = − sin(x)dx, 

to get, 
− sin(x) 

dx = 
du 

= ln(u) + C = ln(cos(x)) + C. 
cos(x) u 

17 
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Therefore,

a 1− sin(x) 

dx = ln(cos(a)) + ln(2). 
−π/4 cos(x) 2 

Altogether, the area is, 

1 
4 a

2 − 8−π 
8 a a π2 

64 − π 
4 + 1 

2
Area = + ln(cos( )) + ln(2). 

2Solution to 5.2 The parabola y = x2 intersects the parabola y = h − x at (x, y) only if, 

2 x = y = h − x 2 . 

Equivalently, 
2x 2 = h, 

or, √
2h 

x = .± 
2 

In particular, when h = 1, the intersection points are, 
√

2 
√

2 
x = , and x = + .− 

2 2 

Therefore the area of the bigger region is, 

+
√

2/2 � √2/2 

Area = 
−
√

2/2 
[1 − x 2] [x 2]dx = 2 1 − 2x 2dx.− 

0 

Evaluating gives, √
2/2 

2
√

22x3 

2 x − = . 
3 30 

Thus the goal is to find the unique value of h so that, 

+
√

2h/2 
2 2Area = √

2h/2 
[h − x ] [− ]dx,
x 

−

equals 
√

2/3. Simplifying gives, 
√

2h/2� √2h/2 2x3 

Area = 2 h − 2x 2dx = 2 hx − . 
30 0 

Evaluating gives, 
2h
√

2h 
Area = . 

3 
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So the equation is, 
2h
√

2h 
√

2 
= . 

3 3 
Simplifying and squaring gives, 

8h3 = 2. 

Thus the solution is, 

h = 

Solution to 5.3 Using the shell method, the infinitesimal volume of a shell with inner radius x, 
outer radius x + dx, and height y = b sin(x/a) is, 

3
√

2/2. 

dV = 2π(radius)(height)(width) = 2πxydx = 2bπx sin(x/a)dx. 

Therefore the total volume equals, � � x=aπ 

V = dV = 2bπx sin(x/a)dx. 
x=0 

To compute this integral, use integration by parts, 

u = 2bπx dv = sin(x/a)dx 
du = 2bπdx v = −a cos(x/a) 

This gives, 

udv = uv − vdu, � x=aπ � aπ 

2bπx sin(x/a)dx = (−2abπx cos(x/a) aπ + 2abπ cos(x/a)dx.0|
x=0 0 

For the second integral, notice that cos(x/a) is positive for 0 < x < aπ/2, and then for aπ/2 < x <

aπ, cos(x/a) is the negative of cos(x/a) on the first interval. Therefore the integral from 0 to aπ/2

cancels exactly the integral from aπ/2 to aπ. Therefore,


Volume =


Observe that the volume of the cylinder with base radius aπ and height b is π3a2b. Thus the fraction

of the volume of the cylinder taken up by the solid is 2/π2 .


2 2b.πa

Solution to 5.4 The infinitesimal element of arc length, ds, satisfies the equation, 

(ds)2 = (dx)2 + (dy)2 = (1 + (y�)2)(dx)2 . 

In this case, 
1 x2 + 1 

y� = , 1 + (y�)2 = 
2 

. 
x x
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Therefore, the infinitesimal element of arc length equals, 
√

x2 + 1 
ds = 1 + (y�)2dx = dx. 

x 

So the arc length of the curve is, 

x=e 
√

x2 + 1 
s = ds = dx. 

x=1 x 

To solve this integral, use an inverse substitution. The goal is that x2 + 1 equals a square. This 
occurs for, 

x = tan(θ), dx = sec 2(θ)dθ. 

Inverse substitution gives, √
x2 + 1 sec3(θ)

dx = dθ. 
x tan(θ) 

To simplify this, write it in terms of sin(θ) and cos(θ) as, 

1 1 1 
dθ = sin(θ)dθ. 

sin(θ) cos2(θ) sin2(θ) cos2(θ) 
sin(θ)dθ = 

(1 − cos2(θ)) cos2(θ) 

This simplifies by making the direct substitution, 

u = cos(θ), du = − sin(θ)dθ. 

Drawing a right triangle gives, 

1 
u(x) = cos(tan−1(x)) = . 

2
√

1 + x

Thus the new limits of integration are, 

1 1 
u(1) = , u(e) = . 

2
√

2 
√

1 + e

Substitution gives, � 1/
√

1+e2 
1 

du. 
1/
√

2 (u2 − 1)u2 

The partial fraction decomposition of the integrand has the form, 

1 1 A B C D 
= = + + + . 

(u2 − 1)u2 (u − 1)(u + 1)u2 u − 1 u + 1 u2 u 

Heaviside’s cover­up method determines the first 3 coefficients, 

1 1 
A = 

((1) + 1)(1)2 
=

2 
, 
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1 
B = = 

−1 
,

((−1) − 1)(−1)2 2 

1 
C = 

((0) − 1)((0) + 1) 
= −1. 

2For the last coefficient, observe that 1/(u2(u − 1)) is an even function. Therefore the coefficient 
D must be 0. So the partial fraction decomposition is, 

1 1 1 1 1 1 
(u2 − 1)u2 

= 
2 u − 1 

− 
2 u + 1 

− 
u2 

. 

So the integral is, 

u − 1

u + 1


1/
√

1+e1/
√

1+e2 2 

1 1 1 1 1 1 1 
du = ln + 

1/
√

2 2 u − 1 
− 

2 u + 1 
−
 . 

2 2 1/
√

2u u 

Therefore the total arclength is, 

s = 
√

e2 −
√

1 
2 ln 

� 
(
√

2−1)(
√

1+e2

(
√ √

1+e2−1) 

� 
.1 + 2 + +1) 

2+1)(

Solution to 5.5 By the Solution to 5.4, 
√

x2 + 1 
ds = dx. 

x 

The infinitesimal surface area is,


dA = 2π(radius)(slant height) = 2πxds = 2π
√

x2 + 1dx.


Therefore the total area is,

x=e 

A = dA = 2π 
√

x2 + 1dx. 
x=1 

To compute this, it is best to make an inverse hyperbolic substitution. Since the goal is that x2 + 1 
is a square, it is best to use x = sinh(t), so that x2 + 1 = cosh2(t). The substitution is, 

x = sinh(t), dx = cosh(t)dt. 

Then the new integral is, 
√

x2 + 1dx = cosh2(t)dt. 

To simplify this, use the half­angle formula for hyperbolic functions, 

cosh2(t) = 
1
(cosh(2t) + 1). 

2 

21 



� � � 

� 

� �
 �


�
 � � � � 

� � 

� � 

18.01 Calculus Jason Starr 
Final Exam at 9:00am sharp  Fall 2005 
Tuesday, December 20, 2005 

Substituting gives,

1 1 1 

cosh(2t) + 1dt = sinh(2t) + t + C. 
2 2 2 

Using the double­angle formula, 

sinh(2t) = 2 sinh(t) cosh(t), 

the antiderivative is, 

cosh2(t)dt = 
1 

(sinh(t) cosh(t) + t) + C. 
2 

Back­substituting gives, 

√ √1 
x2 + 1 + sinh−1x2 + 1dx = (x) + C. x

2 

Therefore the total area is, 

e √ √ e 
. 

1 

2 + 1 + sinh−1(x)2 + 1dx = π2π
 x x x
1 

Evaluating gives, 

π(e
√

e2 e + 
√

e2) −
√

2 −
√

Area = + 1 + ln( 1 + ln(1 + 2)). 

Solution to 6.1 See Solution to 4.3. 

Solution to 6.2 See Solution to 5.4. 

Solution to 6.3 See Solution to 5.5. 

Solution to 6.4 First make the inverse substitution, 

x = sin(θ), dx = cos(θ)dθ. 

The new integral is, 

θ cos(θ)(cos(θ)dθ) = θ cos 2(θ)dθ. 

To simplify this, use the half­angle formula, 

12cos (θ) = (1 + cos(2θ)). 
2 

Substituting gives, 
1 1 
2 

θdθ + 
2 

θ cos(2θ)dθ. 

22 
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Of course the first antiderivative is simply, � 
1 

θdθ = 
1 
θ2 + C. 

2 4 

For the second antiderivative, use integration by parts, 

u = θ dv = cos(2θ)dθ, 
du = dθ v = sin(2θ)/2. 

Thus, 

udv = uv − vdu, 

1 1 1 
θ cos(2θ)dθ = θ sin(2θ) − sin(2θ)dθ. 

2 4 4 

The last integral is straightforward, giving, 

1 1 1 
θ cos(2θ)dθ = θ sin(2θ) + cos(2θ) + C. 

2 4 8 

In total, the integral is, 

1 1 1 
θ cos 2(θ)dθ = θ2 + θ sin(θ) cos(θ) + (1 − 2 sin2(θ)) + C. 

4 2 8 

Back­substituting, the original integral is, � 
sin−1(x)

√
1 − x2dx = (1/ −1(x)]2 /2)x

√
1 − x2 sin−1(x / − 2x2 C.4)[sin + (1 ) + (1 8)(1 ) + 

Solution to 6.5 First make the inverse substitution, 

x = sin(θ), dx = cos(θ)dθ. 

The new integral is, 

θ(cos(θ)dθ) = θ cos(θ)dθ. 

This can be computed using integration by parts. 

u = θ dv = cos(θ)dθ, 
du = dθ v = sin(θ). 

Thus, 

udv = uv − vdu, 

23 
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θ cos(θ)dθ = θ sin(θ) − sin(θ)dθ = θ sin(θ) + cos(θ) + C. 

Back­substituting gives, 

sin−1(x)dx = x sin−1(x
√

1 − x2 + C.) + 

Solution to 6.6 This is very similar to the last case. The answer is, 

cos−1(x)dx = x cos−1(x) −
√

1 − x2 + C. 

Solution to 6.7 Make the inverse substitution, 

x = tan(θ), dx = sec 2(θ)dθ. 

The new integral equals, 

θ(sec2(θ)dθ) = θ sec 2(θ)dθ. 

Next use integration by parts, 
u = θ dv = sec2(θ)dθ, 

du = dθ v = tan(θ) 

Therefore, 

udv = uv − vdu, 

θ sec 2(θ)dθ = θ tan(θ) − tan(θ)dθ. 

For the second integral, rewrite it as, 

1 
tan(θ)dθ = 

cos(θ)
(− sin(θ)dθ)).− 

Making the substitution, 
u = cos(θ), du = − sin(θ)dθ, 

the integral becomes, 
1 
du = ln(|u|) + C = ln( cos(θ) ) + C. 

u 
| |

Therefore the total integral is, 

θ sec 2(θ)dθ = θ tan(θ) + ln( cos(θ)|) + C. |
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Using right triangles, 
1 

cos(θ) = cos(tan−1(x)) = .√
1 + x2 

Back­substituting for x gives, 

tan−1(x)dx = x −1(x) − ln(
√

x2 C.tan 1 + ) + 

Solution to 7.1 The limit is simply, 

x + 1 (0) + 1 
lim = = 

x 0+ x2 + 1 (0)2 + 1 →
1. 

Solution to 7.2 Here it is best to first compute the linearization of the second factor, 

x1 + 2 3 4 5 6 71 + x 
= (1 + x)(1 − x 2 + x 4 − x 6 + . . . ) = + x + x − x − x + . . . − x − x 

1 + x2 

Using the linearization, 
2 3 4 

u 
u u u

ln(1 + u) = + . . . , − 
2

+
3 
− 

4 
gives the linearization, 

1 + x 
x 

3 2 8 3ln = x x + . . . . 
1 + x2 

− 
2 

− 
3 

Therefore, the limit is, � � � �� � 

lim ln(x)x 1 − 
3 8 

x 2 + . . . = lim ln(x)x 
3 8

+ . . . = lim 
ln(x) 

. 
x→0+ 2 

x− 
3 x 0+ 

1 − 
2
0 − 

3
02 

x 0+ 1/x→ →

Applying L’Hospital’s rule, 

ln(x) (1/x)
lim = lim 

−(1/x2)
= − lim x = 0. 

x 0+ 1/x x 0+ x 0+ → → →

Therefore the limit is, � � 
1 + x 

lim ln(x) ln = 
x 0+ 1 + x2 

0. 
→

Solution to 7.3 It is impossible. Write f(x) = xm(am + am+1x + am+2x
2 + . . . ), with am =� 0. 

Write g(x) = xn(bn + bn+1x+ bn+2x
2 + . . . ), with bn = 0. By hypothesis, both � m and n are positive 

integers. The limit to be computed is, 

f(x)g(x) = eg(x) ln(f (x)). 
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Therefore the real limit needed is, 

m mlim g(x) ln(f(x)) = bn lim x n ln(x (am + . . . )) = bn lim x n ln(x ) + bn lim x n ln(am + . . . ). 
x 0+ x 0+ x 0+ x 0+ → → → →

Simplifying the second limit gives, 
bn(0)n ln(am) = 0. 

This leaves only the first limit, 

ln(x)
mbn lim x n ln(x) = mbn lim . 

x 0+ x 0+ x−n → →

Applying L’Hospital’s rule, 

ln(x) x−1 

lim = lim = 
−1 

lim x n = 0. 
0+x 0+ x−n x 0+ −nx−n−1 n x→ → →

Thus, altogether, 
lim g(x) ln(f(x)) = 0. 

x 0+ →

Therefore, 
0lim f(x)g(x) = e = 

x 0+ →
1. 

Solution to 7.4 By definition, 

1/x2 
)x2 (1/x2)·x 1f(x)g(x) = (e = e

2 
= e , 

for x = 0. Since this is a constant function, 

lim f(x)g(x) = lim e = 
x 0+ x 0+ 

e. 
→ →

Solution to 7.5 Write the limit as, 

ln(1 − cos(x)) − ln(sin2(x)) = ln 
1 − cos(x) 

. 
sin2(x) 

Using the Taylor series expansion, 

4 2 41 − cos(x) = 1 − (1 − x 2/2 + x /24 + . . . ) = x /2 − x /24 + . . . , 

and, 
3 2 4(sin(x))2 = (x− x /6 + . . . )2 = x − x /3 + . . . , 

the Taylor series expansion of the ratio is, 

21 − cos(x) x /2 − x4/24 + . . . 1 1 2 = = + x + . . . . 
(sin(x))2 x2 − x4/3 + . . . 2 8 

26 



� 

� � 

18.01 Calculus Jason Starr 
Final Exam at 9:00am sharp Fall 2005 
Tuesday, December 20, 2005 

Therefore, � � 
1 

lim ln 
1 − cos(x) 

= lim ln( + . . . ) = ln(1/2). 
x 0+ (sin(x))2 x→0+ 2→

So the limit is, 
lim ln(1 − cos(x)) − ln((sin(x))2) = 

x 0+ →
− ln(2). 

Solution to 8.1 Using integration by parts, 

− ln(x)dx = −x ln(x) + x + C. 

Therefore the improper integral is, � 1 
1lim − ln(x)dx = lim (−x ln(x) + x = lim 1 − h + h ln(h).h

h 0+ 
h h 0+ 

| 
h→0+ → →

As computed above, using L’Hospital’s rule, 

lim h ln(h) = 0. 
h 0+ →

Therefore the limit is 1 − 0 + 0 = 1. So the improper integral converges to, � 1 

− ln(x)dx = 1. 
0+ 

Solution to 8.2 By comparison to 1/x2, the improper integral converges. To evaluate it, make 
the inverse trigonometric substitution, 

x = tan(θ), dx = sec 2(θ)dθ. 

The new integral is, 

1 2 1 1 
sec (θ)dθ = dθ = 

cos2(θ) − 1
(− sin(θ)dθ). 

sec(θ) tan(θ) sin(θ) 

Now make the substitution, 
u = cos(θ), du = − sin(θ)dθ. 

Using right triangles, 
1 

u(x) = cos(tan−1(x)) = . 
2

√
1 + x

So the new limits of integration are, 

1 
u(1) = √

2 
, lim u(R) = 0+ . 

R→∞ 
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So the integral is,

0+ 

1 
� 1/

√
2 1 

du = du. 
2 

1/
√

2 u − 1 1 − u2 

2) has the form, 

0+ 

The partial fractions decomposition of 1/(1 − u

1 −1 A B 
= = + . 

1 − u2 (u + 1)(u − 1) u − 1 u + 1 

Using the Heaviside cover­up method, 

1 
A = 

−1
= ,

(1) + 1 
− 

2 

and, 
1−1 

B = = . 
(−1) − 1 2 

Thus the integral is, 

u + 1

u − 1


1/
√

2 1 1 1 1 1
 1/
√

2 

du = ln 
u + 1 

− 
2 2 

. 
2 u − 10+ 0+ 

Evaluating gives, 
∞ 1 

dx = 
2 

1 x
√

1 + x
(1/

√
/(
√

2 −2) ln(( 2 + 1) 1)). 

Solution to 9.1 The Taylor series expansion is,


ln(1 + x) = 

The simplest way to see this is to observe, 

�∞ 
n=1 

(−1)n−1 

n xn . 

x 1 x 1 
ln(1 + x) = dt = dt. 

1 + t 0 1 − (−t)0 

Using the Taylor series expansion, 
∞

= 
k=0 

1 − u k u , 

with u = (−t) gives, 
∞

ln(1 + x) = (−1)k tk dt. 
0 k=0 

Integrating term­by­term, 

x 

∞ ∞

ln(1 + x) = (−1)k tk dt = (−1)k 
x tk+1 

. 
k + 1 

k=0 0 k=0 
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Finally, substituting n = k + 1 gives the result. 

Solution to 9.2 The Taylor series expansion is, 

x a
�∞ 

n=1 
(−1)n−1 

n(1+a)n (x − a)n .ln(1 + ) = ln(1 + ) + 

The easiest way to see this is to write, 

ln(1 + x) = ln(1 + a + (x − a)) = ln((1 + a)(1 + (x − a)/(1 + a))). 

Because ln(AB) = ln(A) + ln(B), this gives, 

ln(1 + x) = ln(1 + a) + ln 1 + 
x − a

. 
1 + a 

Using the expansion, 
∞� (−1)n−1 

ln(1 + u) = u n , 
n 

n=1


x−a
with u = gives the Taylor series expansion. 
1+a 

Solution to 9.3 The Taylor series expansion is, 

sin(x
�∞ 

m=0 
(−1)m a) 

(2m
(x − a)2m+1 + 

�∞ 
m=0 

(−1)m a) 
(2m)! (x − a)2m .) = cos(

+1)! 
sin(

The easiest way to see this is to use the angle­addition formulas, 

sin(x) = sin(a + (x − a)) = cos(a) sin(x − a) + sin(a) cos(x − a), 

together with the Taylor series expansions, 

sin(u) = 
∞

(−1)m 

u 2m+1 ,
(2m + 1)! 

m=0 

∞

cos(u) = 
� (−1)m 

u 2m ,
(2m)!

m=0 

with the substitution u = x − a.


Solution to 9.4 The Taylor series expansion is,


cos(x
�∞ 

m=0 
(−1)m+1 a) 

(2m
(x − a)2m+1 + 

�∞ 
m=0 

(−1)m a) 
(2m)! (x − a)2m .) = sin(

+1)! 
cos(

This follows similarly to Solution to 9.3. 
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Solution to 9.5 The Taylor series expansion is, 

tan−1(x) = 
�∞ 

m=0 
(−1)m 

2m+1 x
2m+1 . 

The easiest way to see this is to write, � � ∞ ∞ � x 1 x � � 
tan−1(x) = dt = (−1)k t2k dt = (−1)k t2k dt. 

1 + t2 00 k=0 k=0 

Solution to 9.6 The Taylor series expansion is, 

f (x
�∞ 

n=0 
(−1)n 

(2n 2(2n)! x
2n+1 .) = 

+1)

This is similar to Solution to 9.5. 
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