Blockchain &

Money

Class 9

October 4, 2018

Class 9 Overview

- Readings and Study Questions
- Blockchain Technical and Commercial Challenges
- Permissioned Blockchain Systems
- Blockchain Systems vs. Traditional Databases
- Conclusions

Class 9 (10/4): Study Questions

- What is permissioned or private distributed ledger technology? How does it differ from permissionless or open blockchain applications?
- What are the key blockchain inspired features of Corda and Hyperledger Fabric? What is Digital Asset Holdings?
- What are the business tradeoffs of utilizing a permissioned vs. a permissionless application? What are the tradeoffs for consumers?

Class 9 (10/4): Readings

- *'Enterprises building Blockchain Confront Early Tech Limitations'* CoinDesk
- 'Technical difference between Ethereum, Hyperledger fabric and R3 Corda' Nandi
- 'What is Corda?' Newton
- 'A Blockchain Platform for the Enterprise, Introduction' Hyperledger Fabric
- 'What is Digital Asset? / Distributed Ledgers for Financial Institutions' Coin Central

What is a blockchain?

consensus protocol

Permissioned

Permissionless

5

Blockchain – Technical Features

Cryptography & Timestamped Logs

- Cryptographic Hash Functions
- Timestamped Append-only Logs (Blocks)
- Block Headers & Merkle Trees
- Asymmetric Cryptography & Digital Signatures
- Addresses

<u>Decentralized Network Consensus</u>

- Proof of Work
- Native Currency
- Network

Transaction Code & Ledgers

- Transaction Inputs & Outputs or State Transitions
- Unspent Transaction Output (UTXO) set or Account Based
- Script, Solidity or Other Programing languages

Challenges with Blockchain Technology

7

- Performance, Scalability, & Efficiency
- Privacy & Security
- Interoperability
- Governance & Collective Action
- Commercial Use Cases
- Public Policy & Legal Frameworks

7

Vitalik Buterin Trilemma

Security

Public Policy Framework

Guarding Against Illicit Activity

• Financial Stability

• Protecting the Investing Public

Framework for Comparing Costs & Trade-offs (Coase)

Financial Sector Currently Favors

permissioned blockchains vs. permissionless blockchains

- Known set of participants
- No proof-of-work or mining
- No need for a native currency ${\color{black}\bullet}$
- Distributed database technology

- Unknown participants
- Security based on incentives
- Native currency
- **Crypto-economics**

Blockchain – Technical Features

Cryptography & Timestamped Logs

- Cryptographic Hash Functions
- Timestamped Append-only Logs (Blocks)
- Block Headers & Merkle Trees
- Asymmetric Cryptography & Digital Signatures
- Addresses

• Decentralized Network Consensus

- Proof of Work
- Native Currency
- Network

• Transaction Script & UTXO

- Transaction Inputs & Outputs or State Transitions
- Unspent Transaction Output (UTXO) or Account Base
- Script, Solidarity or Other Programing Code

Permissioned Private Blockchains Key Design Features

- Membership Limited to Authorized Nodes
- Transactions can also be Limited to Authorized Known Participants
- Data & Ledgers can be Partitioned to Keep amongst Subgroups of Nodes
- Consensus built on Permissioned, Private Protocols Globally or Modular between Transacting Parties.
 - Practical Byzantine Fault Tolerance
 - Delegated Notary Nodes
 - Diverse Protocols from Protocols for Multi Party Consensus to Crash Fault Tolerant for 1 Party
- Uses Cryptography and Registration Authorities to Mask User Data
- Facilitates Smart Contracts using Chaincode or other Programming Language
- No Native Currency Possible, though, with Smart Contracts
- Code Generally Open Source

Hyperledger Fabric and Corda vs. Ethereum

Characteristics	Ethereum	Hyperledger Fabric	R3 Corda
Programming Language	Solidity	Go, Java	Kotlin
Governance	Distributed among all participants	Linux foundation and organisation in the Chain	R3 and organisations involved.
Smart Contract	Not legally bounded	Not legally bounded	Legally bounded
Consensus Algorithm	PoW. Casper implementation PoS.	PBFT	Notary nodes can run several consensus algorithm
Scalability	Existing scalability issue	Not prevalent	Not prevalent
Privacy	Existing privacy issue	Not prevalent	Not prevalent
Currency	Ether	None Can be made using chaincode	None

© micobo GmbH. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Permissioned Private Blockchains vs. Traditional Databases

- Append-only Timestamped Logs vs. Create, Read, Update, and Delete ('CRUD')
- Cryptographic Data Commitment Schemes for Data
- Distributed Ledgers & Application Platforms
- Provides Finality of Settlement
- Can provide Real Time Ledger Updates
- Lowers Reconciliation Costs (and Need for) Distributed Data Bases

Framework for Comparing Costs & Trade-offs

Blockchains and Traditional Databases

Access Control Protocol

Multiple Permissioned

Client Server

Public Blockchain

Public Write Capability

Peer to Peer Transactions

No Central Intermediaries

Token Economics

Bitcoin

Ethereum

Private Blockchain

Private Write Capability

Finality of Data in Append Only Log

Public Verifiability

Traditional Databases

Trusted Party Hosts Data

Trusted Party can 'CRUD'

Client Server Architecture

ICOs

other cryptocurrencies

permissioned blockchains

databases

decentralized

Class 10 (10/11): Study Questions

- What are the tradeoffs of centralized institutions and markets in the financial sector?
- Which challenges of the financial sector periodic crises, concentrated risks, economic rents, legacy systems, processing risks, financial inclusion – might present opportunities for blockchain applications?
- How does blockchain technology fit within other trends particularly with regard to technology facing the financial sector in 2018?

Class 10 (10/11): Readings

- 'Top financial services issues of 2018' PwC Financial Services Institute
- 'Sheila Bair on What Hasn't Changed since the Great Recession' New York Magazine
- 'The Rise of Market Concentration and Rent Seeking in Financial Sector' Zhang

Optional

• 'Ten Years after the Crash, We are Living in a World it Brutally Remade' New York Magazine

Conclusions

• Public Blockchain provides P2P Networking, but with Costs

- Decentralization Costs and Trade-offs of Permissionless
 Blockchain need be Compared to Centralized and Permissioned Systems
- For Scalability, Efficiency, & Privacy Challenges though Promising work exists on Possible Solutions Financial Sector Currently Favors Permissioned Systems
- Blockchains Private and Public can Provide Real Time Final Settlement Features and Lessen Reconciliation Costs compared with Traditional Databases
- Permissioned Systems may Currently Provide better Performance and Privacy than Public Blockchains but Innovation may Well Narrow the Gap

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

15.S12 Blockchain and Money Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.