Blockchain &

Money

Class 6

September 25, 2018

Class 6 Overview

- Review of Course Projects
- Smart Contracts
- Blockchain Design with Smart Contracts
- DApps and Token Sales
- Legal Issues of Smart Contracts
- Conclusions

Requirements

• Class Participation

30%

- Two Individual Write-ups (15% x 2) 30%
 - Critical Business Reasoning about Class Topic
 - Due prior to Class: 1st by 10th Class; 2nd by 23rd Class
- Group Research Paper
 - Serious effort on Use Case
 - Organize Groups (3 or 4) by 8th Class (10/2)
 - Choose area for Use Cases by 12th Class (10/18)
 - Topics outside of Finance with pre-approval

40%

Class 6 (9/25): Study Questions

- What are smart contracts? How do they compare to traditional contracts? What are tokens?
- What are smart contract platforms such as Ethereum? What generally distinguishes them from Bitcoin?
- What are decentralized applications (DApps)? What has been the usage and why haven't any DApps yet received wide consumer adoption?

Class 6 (9/25): Readings

Required

- *'Smart Contracts: 12 Use Cases for Business & Beyond'* Chamber of Digital Commerce
- 'State of the Dapps: 5 Observations from Usage Data' McCann
- *'Ethereum Competitors: Guide to the Alternative Smart Contract Platforms'* Blockonomi

Optional

- 'Smart Contracts: Building Blocks for Digital Markets' Szabo
- 'A Next-Generation Smart Contract and Decentralized Application Platform' Ethereum
- 'Blockchain Technology as a Regulatory Technology' De Filippi & Hassan

Smart Contracts

- "A set of promises,
- specified in digital form,
- including protocols
- within which the parties perform on these promises." Nick Szabo, 1996

However

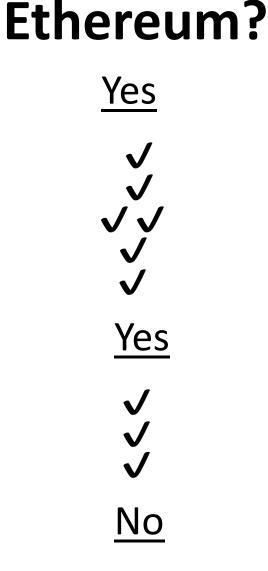
- Smart Contracts may not be 'Smart'
- Smart Contracts may not be 'Contracts'

Bitcoin – Technical Features

Cryptography & Timestamped Logs

- Cryptographic Hash Functions
- Timestamped Append-only Logs (Blocks)
- Block Headers & Merkle Trees
- Asymmetric Cryptography & Digital Signatures
- Addresses

Decentralized Network Consensus


- Proof of Work
- Native Currency
- Network

• Transaction Script & UTXO

- Transaction Inputs & Outputs
- Unspent Transaction Output (UTXO) set

7

Script language

State Transitions Account Based 7 languages

Bitcoin vs Ethereum Design

- Founder: Satoshi Nakamoto
- Genesis: January 2009
- Code: Non Turing (Script)
- Ledger: UTXO Transaction
- Merkle Trees: Transactions
- Block Time: 10 minutes
- Consensus: Proof of Work
- Hash Function: SHA 256

Vatalik Buterin July 2015 Turing Complete (Solidity, Serpent, LLL or Mutan) State - Account Based Transactions, State, Storage, Receipts (w/nonces) 14 seconds Proof of Work Ethash

Bitcoin vs Ethereum Design

- Currency: Bitcoin
- Mining: ASIC
- Hashrate: 54 Exahash/S
- Pre-sale: None
- Rewards: 12.5 BTC/block
- Monetary Policy: 1/2s every 210,000 blocks (4 yrs)
- Fees: Voluntary

- ICO & prerelease of 72 m ETH
- 3 ETH/block

Fixed, but changes by updates (was 5/block; proposal to 2)

Needed & market based

Smart Contract Platforms

- Ethereum (2015) \$22 b current market value
- EOS (2018) \$5 b completed \$4.2 b year long ICO in July
- NEO (2016) \$1.1 b China; delegated BFT; supports wider range of code
- Ethereum Classic (2016) \$1.1 b Created from the 'DAO' hard fork
- LISK (2016) \$360 m code in Java; uses side chains
- Stratis (2017) \$150 m

Smart Contract Potential Use Cases

Digital Chamber of Commerce (12/16)

- Digital Identity
- Securities
- Derivatives
- Mortgages
- Supply Chain
- Clinical Trials

Records

Trade Finance

Financial Data

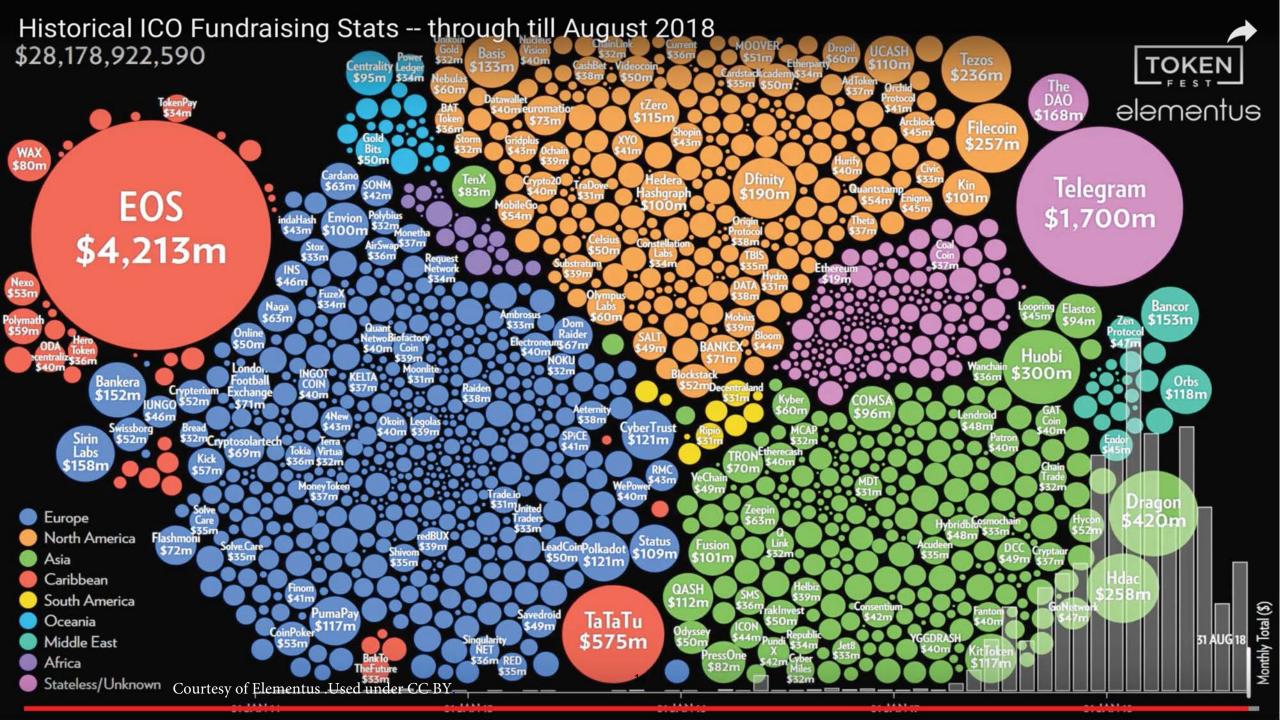
Land Title

Auto Insurance

Cancer Research

Decentralized Applications (dApps)

Source: State of the Dapps (9/18)


- Applications run on a Decentralized Blockchain Network
- Generally have a Native Token & Run as a Smart Contract on top of a Platform

III Rankings by Popular Categories View all >							
Games >	Users (24hr)	Gambling >	Users (24hr)	Exchanges >	Users (24hr)	Finance >	Users (24hr)
CryptoKitties	410	333 ETH	1,588	IDEX	1,428	OmiseGO	373
<u>Etheremon</u>	313	Fomo3D	1,251	ForkDelta	825	Simple Token	44
Blockchain Cuties	254	Powh 3D	591	Bancor	315	minereum	24
My Crypto Heroes	185	I Infiniti Money	274	6 Etheremon	313	WINGS DAO	19
UNCHAINED Gods Unchained	150	FREECELL	205	Localethereum	185	A <u>Accelerator</u>	19

© State of the DApps. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Initial Coin Offerings – Crowdfunding for Investment & Consumption

- Proceeds used to build networks
- Tokens usually issued prior to being functional
- Development, while open source, is largely centralized
- Promoters allocate themselves 'premined' tokens
- Tokens are fungible & transferable
- Scarcity is fostered with preset 'Monetary policy'
- Purchasers anticipate profits through appreciation

Legal Issues – Smart Contracts

Guest Lecturer – Larry Lessig

- Harvard Professor of Law and Leadership
- Founder of Stanford Law's Center for Internet and Society
- Clerked for Justice Antonin Scalia and for Appeals Court Judge Richard Posner
- Numerous Awards, including Free Software Foundation's Freedom Award, Fastcase 50 Award and named one of Scientific American's Top 50 Visionaries
- Author of 8 books, including:
 - 'Code and Other Laws of Cyberspace'
 - **Code/architecture** physical or technical constraints
 - Market economic forces
 - Law explicit mandates by government
 - Norms social conventions

Class 7 (9/27): Study Questions

- How critical are the technical and commercial challenges scalability, efficiency, privacy, security, interoperability – of current blockchain technology?
- What are the possible tradeoffs of decentralization, scalability and security? What are tradeoffs of consensus software updates, governance and so-called 'hard forks'?
- What might current work Layer 2 applications, zero-knowledge proofs, alternative consensus algorithms – do to address current commercial challenges?

Class 7 (9/27): Readings

Required

- 'Geneva Report' Chapter 2 (pages 9 16); Casey, Crane, Gensler, Johnson, and Narula
- *'On the Scalability of Blockchains'* The Control
- 'Transaction Speeds: How do Cryptocurrencies Speeds Stack up to Visa or PayPal?,' How Much.net
- 'Layer 2 / the Lightening Network' Digital Currency Initiative
- 'Top 8 Privacy Coins' Invest in Blockchain

Optional

- *'On Sharding Blockchains'* Ethereum Wiki
- *'zkLedger: Privacy-Preserving Auditing for Distributed Ledgers'* Narula, Vasquez & Virza

Conclusions

- Nakamoto's P2P Money
 Buterin's Ethereum P2P Computing
- Smart Contracts & DApps Provide:
 - Decentralized Computing &
 - Self Executing Commitments
- Token Sales for Proposed DApps have Spawned new form of Crowdfunding – Initial Coin Offerings (ICOs)
- Amongst 1000's of Proposals & Offerings, Few DApps have yet Gained Wide Consumer Adoption
- Smart Contracts and DApps, though, have real Potential to bring Change

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

15.S12 Blockchain and Money Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.