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Lecture Notes on Advanced Corporate Financial Risk Management 
John E. Parsons and Antonio S. Mello 

Chapter 9: Pricing Risk 

Corporate managers price risk all the time when they discount a cash flow to its present 

value using a risk-adjusted discount rate. Future cash flows are discounted not only to account for 

the time value of money, but also to account for risk. Starting from the risk-free discount rate, 

extra risk is accounted for by adding a risk premium to arrive at a risk-adjusted discount rate. The 

discounted cash flow methodology using a risk-adjusted discount rate is the workhorse of 

corporate finance. And for many problems it is a perfectly adequate tool. But it has its limits. 

Some projects and securities have complicated risk dynamics for which the traditional risk-

adjusted discount rate methodology is not flexible enough to do the trick with the ease and power 

we demand. Modern business and modern financial management is able to slice-up and repackage 

risk to create novel contingent cash flow patterns for which the usual application of the risk-

adjusted discount rate methodology is error prone. 

As it is usually implemented, the risk-adjusted discount rate methodology rests on two 

key assumptions that often do not apply. First, the risky cash flows being discounted are perfectly 

proportional to the underlying risk variable. One way to think about this is that the risky cash 

flows are symmetrically distributed, with an upside and a downside in equal proportion. This 

assumption is violated, for example, in the case of a call option, where the downside is truncated. 

Second, the risk in the cash flows grows linearly through time. This assumption is violated, for 

example, when much of the uncertainty in a project is resolved up front in early stages, although 

the results, whether good or bad, are payed out over a long period of time. This assumption is also 

violated whenever a key risk factor is not a random walk, but reverts to a mean or has other 

features that create a changing risk distribution at various horizons. 

Many introductory corporate finance textbooks mention these exceptions to the usual 

discounting rules and construct a couple of simple examples to demonstrate how the usual 

application of the methodology produces a mistake. But for reasons of space and focus, they do 

not provide an adequate treatment of the solution. Many corporate managers, in the course of 

their careers, stumble upon actual projects or problems where the traditional risk-adjusted 

discount methodology seems inappropriate for these very reasons, whether or not they can 
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articulate it this way. It is the task of this chapter to introduce and develop an alternative, robust 

risk pricing methodology capable of handling the wide array of complicated and dynamic patterns 

of risk that corporate managers often face. Ironically, this alternative methodology is widely 

known as the risk-neutral pricing methodology. Despite the unfortunate moniker, this alternative 

methodollogy has gained prominence among investment bankers, commodity traders and risk 

managers because of its power and adaptability. So corporate managers can expect to see a good 

bit more of it in the coming years. Corporate managers who wish to develop a facility to expertly 

price and manage risk need to be familiar with this second valuation methodology.  

This chapter is your introduction. Before presenting the risk-neutral methodology proper, 

we first make a brief digression to remind the student that the risk-adjusted discount rate 

methodology has never been the only methodology available. We do this with an example 

sketched out in the next section. 

9.1 Two Alternative Methods for Discounting Cash Flows 

The Hejira oil company is estimating the present value of the next five years of oil 

revenue. The top panel of Table 9.1 shows the forecasted production, forecasted spot oil price, the 

risk-free discount rate, and the oil price risk premium for these five years.  

Two different methods can be employed to calculate the present value: 

• the risk-adjusted discount rate method, and  

• the certainty-equivalent method. 

The top panel of Table 9.1 also shows the calculation of the present value using the risk-

adjusted discount rate method. This is the traditional and familiar method for calculating a present 

value. In this method, the two tasks of (i) accounting for the time value of money and (ii) 

accounting for the price of risk are accomplished in a single step by applying a single risk-

adjusted discount rate to the expected cash flow. This single risk-adjusted discount rate reflects 

both the time value of money and the price of risk. The risk-adjusted discount rate is the sum of 

the risk-free rate and a risk premium appropriate to a stream of revenue tied to the price of oil: 

ra = rf+λ. (9.1) 

We call this risk premium, λ, the market price of risk for cash flows tied to the oil price, or the oil 

factor risk premium. 
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The bottom panel of Table 9.1 shows the calculation of the present value using the 

certainty equivalent method. This is a less familiar, but no less correct method. In this method, the 

accounting for the price of risk and for the time value of money are performed in two separate 

steps. First, the expected cash flow is adjusted to account for the price of risk, λ. Second, the 

certainty-equivalent cash flow is then discounted to account for the time value of money. Because 

the cash flow being discounted has already been adjusted to account for risk, this step uses the 

risk-free discount rate. 

The present values of each year’s cash flow are identical under the two methods. Figure 

9.1 captures the point that these are two different routes to the exact same end. In the numerical 

example shown in Table 9.1 it is obvious that the result must be the same. The risk-adjusted 

discount rate is just equal to the sum of the risk-free rate and the risk premium, so using the risk-

adjusted discount methodology is just literally putting together the two separate steps of the 

certainty-equivalent method. The result has to be the same whichever method is used. The two 

methods accomplish the same thing, using a slightly different sequence of steps. Figure 9.1 

captures the relationship between these two methodologies. 

If the two methods are trivially the same, as this numerical example suggests, then what 

is the point of making a distinction between them? Separating the risk-premium from the risk-free 

rate allows us to handle the evolution of risk through time separately from the discounting of 

time. This is what turns out to be critical. We have already seen that the risk of various factors 

may vary over time, and that the risk on an asset may vary as the factor grows or falls. It is the 

dynamic and contingent nature of risk that forces us to resort to the second methodology. When 

factor risk falls through time, we will need to adjust our discount for risk downward. But the 

discount for time remains as before. Having separated the risk-premium from the risk-free rate, 

we can adjust the one without adjusting the other. When the project risk varies as the factor 

grows, we need to adjust our discount for risk accordingly. But the discount for time remains as 

before. 

It is this greater flexibility in the face of dynamically changing risk structures that gives 

the risk-neutral methodology its advantage. The risk-adjusted discount rate method remains by far 

the most familiar method to corporate managers and to investment bankers involved in the 

purchase and sale of corporate assets and the evaluation of major capital investments. However, 

the risk-neutral methodology has become very important to specialists involved in valuing and 

trading derivatives and in evaluating risk management strategies. In addition to the flexibility this 
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method offers, understanding the risk-neutral method is important for reading the information 

coded into many market prices. 

9.2 Risk Neutral Pricing – an Introduction 

In Chapter 6 we learned that the uncertain evolution of a variable could be modeled 

several different ways—as a discrete stochastic process, as a continuous stochastic process, using 

binomial or other trees, etc. In this section, we start our introduction to the price of risk using the 

binomial model. Later, based on an analysis developed on branches of the binomial tree, we will 

explain how this ties back to an analysis using the other representations, such as the discrete or 

the continuous stochastic process. 

State Prices 

Figure 9.2 shows a single branching of our underlying risk factor, S. Also shown in 

Figure 9.2 is an associated project with cash flows contingent on the evolution of S. The variable 

CFU is the cash flow earned if the underlying risk factor moves up to SU. The variable CFD is the 

cash flow earned if the underlying risk factor moves down to SD. The variable VP is the market 

value of the project with a claim to these two contingent cash flows, and no other claim. Let us 

assume the following information: 

CFU = $13.04 

CFD = $8.40 

VP = $10.00 

For the moment, we also assume 

πU = 50% 

πD = 50%, 

although later we will revisit this. Finally, we assume that: 

rf  = 4%. 

Given the market price of the project, we can back out an appropriate risk-adjusted 

discount rate using the classic discounted cash flow formula: 

VP = E[CF ] e−ra = (CFU ×πU + CFD ×π D ) e −(rf +λP ) . (9.2) 
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Inputting the relevant values gives us: 

ra = 7%, 

which also implies: 

λP = 3%. 

We use the subscript P to denote that this is the risk premium appropriate for the project shown in 

Figure 9.2. 

Figure 9.3 shows two derivatives of the project. One of the derivatives earns the cash 

flow CFU if the underlying risk factor moves up to SU, but earns nothing if the underlying risk 

factor moves down to SD. The other derivative earns the cash flow CFD if the underlying risk 

factor moves down to SD, but earns nothing if the underlying risk factor moves up to SD. Also 

shown in Figure 9.3 is the payoff structure for a riskless bond earning $1 regardless of whether 

the underlying risk factor moves up to SU or down to SD. Valuing the bond is easy, assuming that 

we know the risk-free rate of interest, rf. Can we value the two derivatives? 

It is tempting to value the derivatives using the risk-adjusted discount rate of the project, 

but, as we will see shortly, this would be wrong: 

E[CF ] e−ra = (CFU ×πU ) e−ra ≠ VU, 

and, 

E[CF ] e−ra = (CFD ×π D ) e−ra ≠ VD. 

The risk-premium that should be applied to the derivative VU is larger than the project risk-

premium, so that the correct value is less than what one would get applying the project risk-

premium. The risk-premium that should be applied to the derivative VD is smaller than the project 

risk-premium, so that the correct value is greater than what one would get applying the project 

risk-premium. How do we know this? 

When we analyzed the market price of the original project, we backed out a risk-

premium, λP, that we applied to the expected cash flow of the project. In fact, the market price of 

the original project gives us more information than simply the risk premium to apply to the 

expected cash flow. It actually gives us two risk adjustment factors, one to be applied to the up 

cash flow, CFU, and one to be applied to the down cash flow, CFD. Applying the project risk-

premium to both cash flows makes these two risk adjustment factors equal. But it makes no sense 
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that the two risk adjustment factors should be equal. Under most sensible models of risk and 

value, cash earned in the down state should capture a premium, while cash in the up state is what 

should be discounted. Cash in the down state is like insurance, and it is prized. The project risk 

premium, λP, is an average of the discount applied to the up state and the premium paid for the 

down state cash flow. It works when we are receiving the complete package. But when we are 

valuing just one cash flow or the other, we need to apply the right risk adjustment factor for that 

cash flow, not the average. Here’s how to extract that information from the value of the project. 

We use the terminology “forward state prices” to describe the two variables ϕU and ϕD.1 

We define the forward state prices as the solution to the following two equations: 

B = ($1×πU ×φU + $1×π D ×φD ) e −rf (9.3) 

VP = (CFU ×πU ×φU + CFD ×π D ×φD ) e −rf . (9.4) 

Solving these two equations gives us: 

⎛V erf −CFD 
⎞ 1

ϕU  = 
⎝
⎜
⎜ 

CFU − CFD ⎠
⎟
⎟ 
πU 

= 0.866 (9.5) 

1−πU ϕUϕD  =  = 1.134. (9.6)
1−πU 

Having derived these forward state prices, we can now go back to value the two 

derivative claims, VU and VD: 

VU = (CFU ×πU ×φU ) e −rf = $5.42 

VD = (CFU ×πU ×φU + CFD ×π D ×φD ) e −rf  = $4.58. 

Now we can go back and confirm what we had said earlier about the risk-premium that 

should be applied to the derivative VU being larger than the project risk-premium, and the risk-

premium that should be applied to the derivative VD being smaller than the project risk-premium. 

The risk premiums implied by our valuation are: 

1 Some students may be familiar with the term “state price”, which is a fundamental concept in the economics of 
uncertainty originally developed by Kenneth Arrow and Gerard Debreu. An Arrow-Debreu state price is the present 
value of $1 in a future state, which is a discounted value. Our forward state price is the undiscounted value. The state 
price and the forward state price differ only by the riskless rate of interest. 
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λU solves VU = (CFU ×πU ) e−λU e −rf , 	(9.7) 

which gives us: 

r⎛ (VU e f ) ⎞ ⎛ $5.42 e4% ⎞
λU = − ln	⎜⎜CF π

⎟
⎟ = − ln⎜⎜ $13.04 1 ⎟⎟ = 14.4%, 

⎝ U U ⎠ ⎝ 2 ⎠ 

and, 

λD solves VD = (CFD ×π D ) e−λD e −rf , 	(9.8) 

which gives us: 

rf	 4%⎛ (V e	 ) ⎞ ⎛ $4.58e ⎞
λD = − ln⎜⎜ CF

D 

π ⎟
⎟ = − ln⎜⎜ $8.40 1 ⎟⎟ = -12.6%. 

⎝ D D ⎠ ⎝ 2 ⎠ 

The risk premium λU is, as expected, significantly higher than the project risk premium of 3%. 

The risk premium λD is negative! This fits with our earlier discussion in which we pointed out 

that receiving cash flows in the down state is a type of insurance policy for which a person is 

willing to pay a premium instead of charging a discount. Although the expected cash flow is 

$4.20, the value of the claim to the cash flow is $4.58.  

Paying a premium for insurance against the bad states is a natural feature of all asset 

pricing models. It is only a surprise to students who are used to estimating risk premia only for 

typical projects, as opposed to the wide range of risk premia one finds on various derivative 

projects including derivatives that pay-off primarily in down states. This is a good example of 

where the traditional risk-adjusted discount rate methodology invites error in the face of specially 

packaged cash flow patters, while the risk-neutral methodology gets it right as a matter of course. 

Indeed, it is the advantage of using state prices that one can readily and easily value 

packages of cash flows with any structure that is derivative of the underlying state variable. This 

is the key to this methodology’s growing acceptance. Once we have backed out the two forward 

state prices from the market value of a bond and of a project, valuing many other projects with 

different cash flow patterns is simple.  

For example, suppose we borrow $5 to invest in the project. We will call this the levered 

project and denote it’s value as VLP. The net cash flow on the upside is CFLU=$7.84, which is the 
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original cash flow less the debt repayment at the risk-free rate of interest. The net cash flow on 

the downside is CFLD=$3.20. The value of the levered project is calculated as: 

VLP = (CFLU ×πU ×φU + CFLD ×π D ×φD ) e−ra  = $5.00. 

The implicit risk premium on the levered project is: 

λLP solves VLP = (CFLU ×πU + CFLD ×π D ) e−λLP e−ra , 

which gives us: 

rf 4%⎛ (VLU e ) ⎞ ⎛ $5.00 e ⎞
λLP = − ln 

⎝
⎜
⎜ 

CFLU πU + CFLD π D ⎠
⎟
⎟ = − ln 

⎝
⎜⎜ $7.84 12 + $3.20 12 ⎠

⎟⎟ = 5.8%. 

The Risk Neutral Distribution 

At the top of the previous section, we made an explicit assumption about the probability 

that the underlying factor, S, would move up or down. That assumption was unnecessary. In the 

series of steps proceeding from the given values of a bond and a project to the derived values of 

the derivatives, the expressions for the forward state prices are always accompanied by the 

expression for the probability. Because we assumed a given probability, we could solve for the 

forward state price. Had we assumed a different pair of probabilities, we would have calculated a 

different pair of forward state prices. But we would NOT have calculated different values for the 

two derivative assets! No matter what derivative asset we consider, the calculated value is 

invariant to changes in the assumed probability. 

Let’s confirm that by changing the probabilities and recalculating the results. The first 

column of Table 9.2 shows the earlier calculations. At the top are the inputs: the cash flows if the 

factor goes up or down, the market price of the project, the probabilities of the factor going up or 

down, and the risk-free interest rate. At the bottom of the column are three sets of outputs. The 

first outputs are the two forward state prices. We also record the product of the probability and 

the forward state price. The second outputs are the values for the derivative assets. The third 

outputs are the risk-premium implied for the project by its market value and the risk-premia 

implied by the calculated market values of the derivative assets.  

The second column of Table 9.2 show what happens when we change the assumed 

probabilities. We keep the cash flows in each state the same as before, and keep the market value 

of the original project the same. We then recalculate the forward state prices, the values of the 
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derivative assets and the implied risk premia for the two derivatives. Notice that the calculated 

values for the derivative assets do NOT change! 

Take note that the calculated forward state prices do change. So do the implied risk 

premia for the various derivative assets, including the original project. What matters for valuation 

is the product of the probability and the forward state price. Looking across our two columns one 

can see that this product is the same. If we change the assumed probability, we change the 

calculated forward state price, but just so much as to keep the product constant. That is why our 

original assumption about the probabilities was an unnecessary one. 

This is an important concept to grasp. What is going on here is that we started from a 

given market value for the project. The market value is already a product of (i) the probability of 

high or low cash flows, and (ii) the risk-premium applied. If we change the assumed probability, 

but keep the market value constant, then the risk-premium being applied must change. 

The product of the probabilities and the forward state prices are known as the risk-neutral 

probabilities which we denote by π*
U and π*D. In our numerical example, the risk-neutral 

probabilities are: 

π*
U = πU × ϕU = 43.3% (9.9) 

π*D = πD × ϕD = 56.7%. (9.10) 

The rationale behind the terminology is as follows. Suppose the forward state prices were the 

same for both the up and the down states, ϕU=ϕD=1. This is what they would be if the risk-

premium were zero, reflecting the fact that investors were risk-neutral, at least with respect to the 

risk factor S. Probabilities calculated this way, under this counterfactual assumption, are called 

risk-neutral probabilities. 

We work with the risk neutral probabilities the same way we work with the true 

probabilities. We refer to the risk-neutral probability distribution and can speak of the risk-neutral 

expected value of the underlying risk factor, which we denote E*[S1]. The risk-neutral expected 

value isn’t really an expected value. It is a discounted value. Whenever someone refers to the 

risk-neutral expectation, what they are really referring to is a properly discounted value. We 

distinguish the risk-neutral expected value from the expected value calculated using the true 

probabilities, which we denote E[S1]. 
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We can illustrate the difference between the risk-neutral expected value and the true 

expected value by referring back to the numerical example. So far in our numerical example we 

never specified a value for S, nor for SU, nor for SD. Suppose now that we specify 

S = 2.667 

SU = 4.347 

and, 

SD = 4.347 

This implies that: 

E[S1] = (πU × SU +π D × SD ) = 3.573, 

and, 

* * *E*[S1] = (πU × SU +π D × SD 
* )= 3.469. 

Note that S≠E[S1] and S≠E*[S1]. Just as there is no general automatic relationship between 

the current underlying factor price, S, and its expectation at a future date, nor is there such an 

automatic relationship with its risk-neutral expectation at a future date.  

A relationship between the current underlying factor price and its expectation at a future 

date does arise for specific types of factors. In particular, the current price of a stock must equal 

the risk neutral expectation of the future stock price, inclusive of all dividends. This can be 

generalized to any financial asset, where the concept of dividends must be generalized 

accordingly to incorporate all forms of realized return. It can also be generalized to commodity 

prices where the concept of convenience yield must be developed to play a role as one form of 

realized return and costs of storage must be netted out from the realized return. While these are 

terribly important special cases, they remain special cases. Students who first see the risk neutral 

distribution developed for stock prices may err when they attempt to understand the risk neutral 

distribution for other types of factors unless they grasp what is special about stocks. 

The Forward Price as a Certainty-Equivalent Price 

Forward prices play an important role in the practical implementation of the risk-neutral 

method and so it is worth examining forward prices in a little more detail. In the coming analysis, 

we assume that our underlying risk factor, S, is a price. It may be a price for a commodity, such as 
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oil, or it may be the price of an asset, such as a share of stock or a bond. Denote by Ft the forward 

price quoted today for delivery of S one-period from now. A forward contract is a linear gamble 

on the price of the factor S at date t+1. If it turns out that the price St+1 equals F, then the realized 

profit on the forward contract is zero. For every $1 that the price S t+1 is above F, the realized 

profit is greater by $1, and for every $1 that the price St+1 is below F, the realized profit is less by 

$1. By definition, the forward price is the certainty-equivalent for this linear gamble: 

Ft = CEQt [St+1 ]. 

We can translate this into the risk-adjusted discounting framework by writing: 

−λFt = CEQt [St+1 ]= E[St+1 ]e , (9.11) 

where λ is the one-period risk-premium on a payoff linear in S. In a binomial tree we can expand 

this further as: 

−λ −λFt = CEQt [St+1 ]= E[St+1 ]e = (πU St+1,U +π D St+1,D )e . (9.12) 

In the risk-neutral valuation framework we can write this as: 

* * *Ft = CEQt [St+1 ]= Et [St+1 ]= (πU St+1,U +π D St+1,D ). (9.13) 

From equation 9.12 we see that if we know the true probabilities and the risk-premium, 

then we can calculate the forward price. If we know the forward price, we cannot back out the 

risk-premium without making an assumption on the true probabilities, and we cannot back out the 

true probabilities without making an assumption on the risk-premium. Equation 9.12 puts a 

restriction on the combination of the true probabilities and the risk-premium. Rewriting the 

equation as 9.13 we see that if we avoid taking a stand on the specific combination of the true 

probabilities and risk-premium. If we know the forward price we can back out the risk-neutral 

probabilities without making any additional assumptions. 

9.3 Implementing Risk-Neutral Valuation 

Solving for the Risk Neutral Probability in Binomial Trees 

In Chapter 6 we showed how a binomial tree could be constructed to model the risk of a 

factor S. Here we show how to add pricing for risk on top of that model.  
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Viewed period-by-period, the general mechanics apply to any binomial tree, whether it is 

used to model a random walk or a mean reverting process or any other risk structure. The 

resulting valuations of assets with payoffs in distant states will vary according to the assumed 

factor risk structure since, as we saw in Chapter 6, the risk at distant horizons varies under the 

different models. We begin by showing the period-by-period mechanics, and then later we 

discuss the implication over longer horizons. 

Random Walk Example 

Recall from Chapter 6 the binomial tree shown in Figure 6.7. The example began with a 

factor price of S0=$10 so that ln(S0)=2.303. We assumed that the factor evolved as a random walk 

with a drift parameter μ=7% and a volatility σ=22%. We constructed the next period outcomes to 

be equally distributed around the expected value E[ln(S1)]=ln(S0)+(μ –½σ2)=2.348, so that 

ln(S1U)= E[ln(S1)]+σ=2.568 and ln(S1D)= E[ln(S1)]–σ=2.128, giving S1U=$13.04 and S1D=$8.40. 

By specifying that the two outcomes be centered around the expected value, we have effectively 

set πU=πD=½. 

On top of this structure we now want to add the risk pricing. We can do that either by (i) 

specifying the one-period forward price on S, or (ii) specifying λ, the one-period risk-premium on 

a linear gamble on S. If we do (i), it implies (ii), and if we do (ii) it implies (i). In this calculation 

we specify λ=5% and back out Ft as follows: 

−λ −λFt = E[St+1 ]e = (πU St+1,U +π D St+1,D )e = $10.20. (9.14) 

Having defined the forward price, we can back out the risk-neutral probabilities using the 

equation: 

* *(πU SU +π D SD )= Ft = $10.20 (9.15) 

which can be rewritten and solved for πU 
* 

πU 
* =

(πU SU +π D SD )e−λ −SD = 
CEQ[S ~

1]−SD = 39% . (9.16)(SU −SD ) (SU −SD ) 

We assume that the risk pricing structure of the tree is constant throughout, meaning that 

the one-period risk premium is fixed at λ=5%. This means that the risk-neutral probability will be 

constant throughout the tree at π* 
U=39%. 
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Using this risk-neutral probability instead of the original probability essentially defines a 

new binomial model as shown in Figure 9.4. All of the nodes in this tree are the same as the 

nodes of the original tree shown in Figure 6.7: S0=$10, S1U=$13.04 and S1D=$8.40. However, with 

the altered probabilities, we have changed the expected price at each node: 

E*[ln(S1)]=2.299<2.348= E[ln(S1)]. We say that the expected price under the risk neutral 

probabilities is less than the expected price under the true probabilities. The difference represents 

the discounting for risk implicit in the risk neutral probabilities. 

Having constructed a new binomial tree with the correct risk-neutral probability at every 

branching, we are now capable of valuing any asset with cash flows contingent on the underlying 

risk factor. 

Before moving forward to do the valuations, let’s repeat the exercise of finding the risk-

neutral distribution, but this time on one step of a binomial tree constructed to describe a mean 

reverting process. This will make clear that the mechanics of solving for the risk-neutral 

distribution are the same regardless of the process being modeled. 

Mean Reversion Example 

We take the example from Chapter 6, Part B on Mean Reverting Processes. The example 

began at the same starting point as the previous example, with a factor price S0=$10 so that 

ln(S0)=2.303. We assumed that the mean log price to which the process reverts is ln( S )=2.079 so 

that S =$8. The rate of mean reversion is κ=0.75 and the volatility is σ=22%. In our default 

methodology for constructing binomial trees, we constructed the next period outcomes to be 

equally distributed around the expected value E[ln(S1)]=ln(S0)+e-κ(ln(S0)– S )=2.185, so that 

ln(S1U)= E[ln(S1)]+σ=2.405 and ln(S1D)= E[ln(S1)]–σ=1.965, giving S1U=$11.08 and S1D=$7.13. 

This methodology necessarily sets πU=πD=½ for the mean reverting tree, too. 

On top of this structure we now add the risk pricing by specifying λ=5% and backing out 

Ft: 

−λ −λFt = E[St+1 ]e = (πU St+1,U +π D St+1,D )e = $8.69. 

The forward price in the mean reverting process is less than the forward price in the random walk. 

This is because we started at an initial price, S0=$10.00 that was above the price to which we 

assumed the price reverted, S =$8.00. Therefore the mean reverting process adds a negative drift 
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within this period. Had we started at an initial price below the mean level, there would have been 

a positive drift.  

Having defined the forward price, we can back out the risk-neutral probabilities using the 

equation: 

* *(πU SU +π D SD )= Ft = $8.69 

which can be rewritten and solved for πU 
* 

SD +πU 
* (SU −SD )=(πU SU +π D SD )e−λ 

* (πU SU +π D SD )e−λ −SD CEQ[S ~ ]−SπU = = 1 D =39% .(SU −SD ) (SU −SD ) 

Although the forward price in the mean reverting binomial step differs from the forward price in 

the random walk step, the risk-neutral probabilities are the same. 

If we assume that the structure of the tree is essentially constant throughout, then this is 

the risk-neutral probability at each branching. 

Using this risk-neutral probability instead of the original probability essentially defines a 

new binomial model as shown in Figure 9.5. All of the nodes in this tree are the same as the 

nodes of the original tree shown in Figure 6.X: S0=$10, S1U=$11.08 and S1D=$7.13. However, 

with the altered probabilities, we have changed the expected price at each node: 

E*[ln(S1)]=2.139<2.185= E[ln(S1)]. 

Valuation in Binomial Trees Using The Risk Neutral Distribution 

Now that we know how to derive the risk-neutral probability for a binomial tree, we are 

ready to value any series of cash flows through time that are contingent on the underlying risk 

factors, S. This is where we first see the advantage that the risk-neutral method has over the risk-

adjusted method. Once we have defined the structure of the tree and derived the risk-neutral 

probability, which we need only do once, the algorithm for valuing a contingent cash flow is the 

same for all cash flows. There is no need to devise the algorithm for the cash flow. 

Let Ct(S) be a cash flow received at time t and contingent on the realization of the 

underlying risk factor, S. In the traditional risk-adjusted discount rate method, the present value of 
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C is given by calculating the expected value of a cash flow and applying a risk-adjusted discount 

rate: 

PV0 [C̃ 
t ]= E0 [C̃ 

t ]e−ra t , (9.17) 

~
where Ct  is the risky contingent cash flow at time, t, determined by the function Ct(S). The 

expectation uses the true distribution. The problem is that the correct risk-adjusted discount rate 

depends upon the contingent structure of the cash flows, as we have already seen. There is no 

universal algorithm that determines the correct risk-adjusted rate.  

In the risk-neutral methodology we mimic the traditional valuation formula, but with 

minor differences. We take the expected value of the cash flow, but we use the risk neutral 

probability distribution. This expected value will be lower than had we used the true distribution. 

Then we apply the risk-free discount rate: 

PV0 [C̃ 
t ]= E0

* [C̃ 
t ]e−rf t . (9.18) 

All of the discounting for risk occurs through the reduction in the expected value produced by the 

use of the risk neutral distribution. The risk-neutral distribution, remember, is really a discounted 

valuation. 

Example 1. Symmetric Risk, Single-Period  

A simple case is a cash flow earned at t=1 and proportional to the underlying risk factor: 

CU = qSU and CD = qSD, where q is the proportionality constant. The present value is 

PV0 [C ~
1 ]= E0

* [C ~
1 ]e −rf = q(πU 

* SU +π D 
* SD )e −rf . 

Assuming the same values for the inputs as used in our earlier example of the random 

walk, we have S1U=$13.04 and S1D=$8.40, πU=50%, and πU 
*=39%. We also assume a risk-free 

rate, rf=4%. Then the present value is 

PV0 [C ~
1 ]=q (39%(13.04)+61%(8.40))0.961=q 9.80 . 

Note that this could just as easily have been calculated using the risk adjusted discount 

rate, ra=rf+λ=4%+5%=9%: 

a aPV0 [C ~
1 ]=E0 [C ~

1 ]e−r =q (πU SU +π D SD )e−r . 
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=q (50%(13.04)+50%(8.40))0.914 = q 9.80 . 

In this first example, the risk-adjusted method and the risk neutral method give the same 

answer. Indeed, all this simple one-period case really does is repeat the definition of the risk 

neutral probability. But in the following examples we shall see that the risk-neutral methodology 

proves both easy to use and offers telling insights about the risk embedded in various cash flow 

patterns. 

Example 2. Skewed Risk, Single-Period  

Consider a payoff like a call option on S: CU = X and CD = 0. We can think of X=q(SU-K), 

where q is the number of options and K is an exercise price. Obviously, by adjusting q and K we 

can arrive at any value of X. But there is no need to think of the payoff X as coming from a call 

option. This is just a risky payoff with a distribution that is skewed relative to the underlying risk 

factor, S. 

Using the risk neutral valuation methodology, we have, 

PV0 C̃ 
1 = * [C̃ 

1]e −rf = π * X e−rf ,[ ] E0 U 

Assuming the numbers from our random walk example, so that πU 
*=39% and rf=4%, this reduces 

to, 

PV [C ~ ]=39%(X )0.961=0.373 X .0 1 

In this case, we cannot replicate the result using the standard risk-adjusted discount rate, 

where ra=rf+λ=4%+5%=9%: 

PV0 [C̃ 
1]≠ E0 [C̃ 

1]e−ra = πU X e−ra 

=50% (X ) 0.914 = 0.454 X > 0.373 X . 

We could, of course, find some other risk-adjusted discount rate which would give the correct 

answer. After all, we can just solve the one equation for the one unknown variable, telling us that 

the risk-adjusted rate that produces the correct value is 29.4%. But that assumes the correct 

answer to the valuation problem, instead of producing it! 

Note that the implicit risk-adjusted discount rate on the skewed payoff is higher than the 

rate used for the underlying risk factor and for any linear payoff structure—29.4% as compared to 
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9%. This is because the cash flow in skewed payoff structure is “riskier” than the underlying risk 

factor. We saw this in Chapter 6 when we showed that the risk of a call option was always greater 

than the risk of the underlying stock, with the amount of extra risk depending upon how in or out-

of-the-money is the option.2 

Example 3. Two-Period, Compounded Risk  

We now consider a case like Example #1 above where the cash flow earned is 

proportional to the underlying risk factor, but we assume that the cash flow is earned only in the 

second period, t=2. The figure below shows the payoffs: CUU=qSUU, CUD=CDU=qSUD, and 

CDD=qSDD. Assuming the same values for the inputs as used in our earlier example of the random 

walk, and extending it to the second period, we have SUU=$17.02, SUD=SDU=$10.96, SDD=$7.06. 

Of course, πU=50%, and πU 
*=39%, and rf=4%. The present value is 

PV0 C̃ 
2 = * C̃ 

2 e−2 rf = q π * π * π * +π * π * π * e−2 rf[ ] E0 [ ] [ U ( U SUU + D SUD ) D ( U SDU + D SDD )]
 = q 9.61. 

Once again we have a result that could just as easily have been calculated using the 

traditional risk-adjusted discount rate method with ra =rf+λ=4%+5%=9% as follows: 

PV0 C̃ 
2 = C̃ 

2 e−2 ra = q π π π +π π π e−2 ra[ ] E0 [ ] [ U ( U SUU + D SUD ) D ( U SDU + D SDD )]
 = q 9.60. 

So in this particular case, for this symmetric distribution with risk that grows linearly 

with time, the risk neutral valuation is equivalent to discounting by the compounded risk-adjusted 

discount rate. 

Example 4. Two-Period, Non-compounded Risk 

We now consider another example in which the cash flow earned at t=2 is proportional to 

the underlying risk factor: CUU=qSUU, CUD=qSUD, CDU=qSDU, and CDD=qSDD. However, in this case 

2 For the special case of payoff structures that are pure European options on the underlying stock there is a 
simple formula relating the Beta of the option to the Beta of the stock, depending upon how in the money is 
the option and how long to maturity. This can, of course, then be tied back to the required rate of return on 
the option as a function of the required rate of return on the stock. See Cox, John and Mark Rubenstein, 
Option Markets, Englewood Cliffs: Prentice Hall, section 5-5. 
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the underlying risk factor, S, is mean reverting. Therefore, we have SUU=$11.62, SUD=$7.49, 

SDU=$9.44, SDD=$6.08. Recall that our standard methodology for constructing a binomial tree for 

a mean reverting process does not yield a recombining tree, so the second period has four distinct 

nodes. As before, πU=50%, and πU 
*=39%, and rf=4%. Using the risk neutral method, the present 

value is 

[ ] E0 ( ( ePV0 C̃ 
2 = * [ ]C̃ 

2 e −2 rf = q [πU 
* πU 

* SUU +π
* 
D SUD )+π * 

D πU 
* SDU +π

* 
D SDD )] −2 rf

 = q 7.46. 

What happens if we try to apply the risk-adjusted discount rate, compounding for the two 

year horizon: 

˜ ˜ −2 ra −2 ra[ ] C2 q π ) )]PV0 C2 ≠ E0 [ ]e = [ U (πU SUU +πD SUD +πD (πU SDU +πD SDD e

 = q 7.23 < q 7.46. 

In this case, compounding the discount rate produces too low of a value. Because of 

mean reversion, the total risk in the second period cash flows is not equal to twice the risk in the 

first period cash flows. 

Examples #1 and #3 illustrate that where the cash flow pattern fits the strict assumptions 

behind the traditional risk-adjusted discount rate methodology, the risk-neutral method arrives at 

the same result. Examples #2 and #4 illustrate cases that do not fit the traditional risk-adjusted 

discount rate method. Nevertheless, the risk-neutral method can be applied without amendment. It 

is this robustness that makes the risk-neutral method such a powerful and valuable tool. 
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Figure 9.1 

Two Methods for Discounting 


Risk-adjusted discount rate methodRisk-adjusted discount rate method

Discount for risk and timeDiscount for risk and time

FutureFuture PresentPresent
cashcash valuevalue
flofl wow

DiscountDiscount DiscountDiscount
for riskfor risk for timefor time

Certainty-equivalent or risk-neutral methodCertainty-equivalent or risk-neutral method
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Figure 9.2 

Project Cash Flows 


t=0 t=1 

high cash flow, CFU= $13.04 

Project value, VP= 10.00 

low cash flow, CFD= $8.40 

πU=50% 

πD=50% 
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Deriv. value, VU= 

t=0 

? 

Figure 9.3 
Derivative Cash Flows 

t=1 

high cash flow, CFU= 

low cash flow = 

$13.04 

$0 

Deriv. value, VD= ? 

high cash flow = 

low cash flow, CFD = 

$0 

$8.40 

Bond value, B= ? 

high cash flow = 

low cash flow = 

$1 

$1 

πU=50% 

πD=50% 

πU=50% 

πD=50% 

πU=50% 

πD=50% 
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Figure 9.4 
Revised Binomial Tree: Risk-Neutral Probabilities for the Random Walk 

t=0 t=1 

high return, U= 31.6% 
high log price= 2.618 

 high price, SU= 13.71 

initial price, S0= 10.00 
initial log price= 2.303 

low return, D= -12.4% 
low log price= 2.178 
low price, SD= 8.83 

π* 
U=39%

π* 
D=61% 
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Figure 9.5 
Revised Binomial Tree: Risk-Neutral Probabilities for Mean Reversion 

t=0 t=1 

high log price= 2.405 
 high price, SU= 11.08 

initial price, S0= 10.00 
initial log price= 2.303 
mean log price= 2.079 
exp(mean log p)= 8.00 

low log price= 1.965 
low price, SD= 7.13 

π* 
U=39%

π* 
D=61% 
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Table 9.1 

The Hejira Oil Corp: Two Alternative Methods for Valuing Production 


Method #1: Risk Adjusted Discount Rate Method -- simultaneously adjust for risk and time 
Year 1 2 3 4 5 
Forecasted Production (000 bbls) 10,000 9,000 8,000 7,000 6,000 
Forecasted Spot Price ($/bbl) -- current price $38 35.00 33.50 32.75 32.38 32.19 
Forecasted Spot Revenue ($ 000) 350,000 301,500 262,000 226,625 193,125 
Risk-adjusted Discount Rate, ra 10.0% 10.0% 10.0% 10.0% 10.0% 

Risk-adjusted Discount Factor 0.9048 0.8187 0.7408 0.6703 0.6065 
PV ($ 000) 316,693 246,847 194,094 151,911 117,136 
Total PV Spot Sales ($ 000) 1,026,682 

Method #2: Certainty Equivalent or Risk-Neutral Method -- separately adjust for risk then for time 
Forecasted Spot Revenue ($ 000) 350,000 301,500 262,000 226,625 193,125 
Certainty Equivalence Risk Premium, λ 6.0% 6.0% 6.0% 6.0% 6.0% 
Certainty Equivalence Factor 94.2% 88.7% 83.5% 78.7% 74.1% 
Certainty Equivalent Revenue 329,618 267,407 218,841 178,270 143,071 
Riskless Discount Rate, rf 4.0% 4.0% 4.0% 4.0% 4.0% 

Riskless Discount Factor 0.9608 0.9231 0.8869 0.8521 0.8187 
PV ($ 000) 316,693 246,847 194,094 151,911 117,136 
Total PV Spot Sales ($ 000) 1,026,682 
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Table 9.2 
Derivative Valuation for an Alternative Probability Assumption 

Original Revised 
Inputs 

CFU $13.04


CFD $8.40


VP $10.00


πU 50% 60%


πD 50% 40%


rf 4.0%


Outputs 
ϕU 0.866 0.721 
ϕD 1.134 1.418 
π∗ 

U=πUϕU 0.433 0.433 
π∗ 

D=πDϕD 0.567 0.567 
VU $5.42 $5.42 
VD $4.58 $4.58 
VLP $5.00 $5.00 
λP 3.0% 7.2% 
λU 14.4% 32.7% 
λD -12.6% -34.9% 
λLP 5.8% 13.9% 
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