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1 Outline

e Extension to Discrete Optimization
Pure Adaptive Search for Finite Global Optimization
Z.Zabinsky et al., Math. Programming 69 (1995)
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e Summary of other results leading from PAS

e Further comments

2 Pure Adaptive Search
2.1 Discrete Case

Consider:
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st. zef
where f(z) € R and S is a finite set
e Strong PAS: domain with strictly improving cost: S = {z : ¢ € S, f(z) <

flze)}

o Weak PAS: domain with equal or improving cost: S = {w : z € S, f(x) <

flaw)}
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Define:

o y. =1y <Yz <---<yg =y" are all possible distinct objective values attained
byze S
e 7; = P(f(x) =y;), = is random sample from S
. =30 m
Given Tm, f(Tm) = Yk, assume: SLIDE 4
e Strong PAS:

P(f(zm+1) = ;) = { gj/pk—1,
e Weak PAS:
P(f(xmt1) =y;) = { g,]/pk

Theorem: The expected number of iterations to solve the finite optimization problem
is:

iy 1+ Zf:z 7;/p; for strong PAS and

(ii) 1+ Y27, m;/pi—1 for weak PAS

J<k;
O.W.

J <k

Oo.wW.
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Proof: Model stochastic process {Wm = f(zm)|lm =0,1,...} as a Markov chain with
states y1,-..,yk. and m;, p; define the transition probabilities. Given initial proba-

bility distribution of Wy = =, derive expected number of transitions to converge to
absorption state y;. SLIDE 6



Corollary: The expected number of strong PAS iterations to solve the finite optimiza-
tion problem is bounded above by 1+ log(wl—l)

Proof:

0<z<l = z< —log(l—ux)

Therefore, 7; /p; < —log(1 —7;/p;) = log(p; /pj-1)

Vi=2,....K SLIDE 7
Corollary: The expected number of iterations for finite global optimization, given a

uniform distribution on the objective function values, is

(i) 3% % bounded above by 1+ logK for strong PAS and

3=1
(i) 1+ Y7 1, bounded above by 2+ log(K — 1) for weak PAS
Comparison to continuous case:
Consider S = {vertices of n-dim lattice {1,...,k}"}, each with unique objective func-
tions.

Expected number of iterations is bounded by 2+ log(K) = 2+ nlog(k) since K = k™.
Linear in n.

3 Summary of PAS results
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e Polynomial time implementation of PAS for LP

Linear Optimization in Random Polynomial Time
A .Gademann, PhD Thesis, (1993)

e That there exists a polynomial time implementation for the PAS algorithm for
most convex programming problemns
Implementing PAS for Global Optimization using Markov Chain Sampling
D.Reaume, H.Romeijn & R.Smith, Journal of Global Optimization 20, (2001)

4 Further Comments
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Iteration k:

Step 1 : Start with zj

Step 2 : Obtain sawple of zg+1 ~ U(Sk)

Step 3 : If stop criterion met, stop, else start k+ 1

where

Sp={r:z € Sand f(z) < zs}



5 Further Comments

5.1 Generalization
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Iteration k:
Step 1 : Start with zx
Step 2 : Obtain 3 .t Elzy 1] < Elrgi]
Step 3 : Let @py1 = Thq
Step 4 : If stop criterion met, stop, else start k41
2 ~U(Sk), Sk ={w:z € S and f(x) < zx}
6 Further Comments
6.1 wrt Interior Point Algo.
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Tteration k:
Step 1 : Start with
Step 2 : Obtain z; s.t Blzi 1] < E[ze41]
Step 3 : Let xxq1 := af
Step 4 : If stop criterion met, stop, else start k& + 1
z ~U(Sk), Sk ={x:z € S and f(z) <z}
Possible approach to explain empirical observations of number of iterations required
by Interior Point Method ?
7 Further Comments
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Iteration k:
Step 1 : Start with z
Step 2 : Obtain sample of zx11 ~ U(Sk)
Step 3 : If stop criterion met, stop, else start &+ 1
If we use information from zj to find zx+1, will we be limited to finding local op-
timum only 7
e upper bound of minimum cost
e feasible direction and starting point
e moments at
8 Final Comment !
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Iteration k:

Step 1 : Start with zg

Step 2 : Obtain sawple of zx11 ~ U(Sk)

Step 3 : If stop criterion met, stop, else start &+ 1



If we can find x4+, without local information from 2z, is it equivaleut to finding
a feasible point, if possible, of arbitrary objective function value 7

Consider finding @11 ~ U(S;) where
St=Az:2 eS8, flr)>ar—r¢ flz)<ar+e}



