Pure Adaptive Search In Global Optimization Z.Zabinsky & R.Smith

> Michael Yee Kwong-Meng Teo

This presentation is based on: Zabinsky, Zelda B., and Robert L. Smith. *Pure Adaptive Search in Global Optimization. Mathematical Programming* 55, 1992, pp. 323-338.

Outline 1

SLIDE 1

- Extension to Discrete Optimization Pure Adaptive Search for Finite Global Optimization Z.Zabinsky et al., Math. Programming 69 (1995)
- Summary of other results leading from PAS
- Further comments

2 Pure Adaptive Search

2.1 Discrete Case

SLIDE 2

Consider:

$$\begin{array}{ll}
min_x & f(x) \\
s.t. & x \in S
\end{array}$$

where $f(x) \in R$ and S is a finite set

- Strong PAS: domain with strictly improving cost: $S_k = \{x : x \in S, f(x) < a\}$ $f(x_k)$
- Weak PAS: domain with equal or improving cost: $S_k = \{x : x \in S, f(x) \leq x\}$ $f(x_k)$

SLIDE 3

- $y_* = y_1 < y_2 < \cdots < y_K = y^*$ are all possible distinct objective values attained
- $\pi_j = P(f(x) = y_j)$, x is random sample from S
- $p_j = \sum_{i=1}^j \pi_i$

Given $x_m, f(x_m) = y_k$, assume:

SLIDE 4

$$P(f(x_{m+1}) = y_j) = \begin{cases} \pi_j/p_{k-1}, & j < k; \\ 0, & \text{o.w.} \end{cases}$$

• Weak PAS:
$$P(f(x_{m+1}) = y_j) = \begin{cases} \pi_j/p_k, & j \leq k; \\ 0, & \text{o.w.} \end{cases}$$

SLIDE 5

Theorem: The expected number of iterations to solve the finite optimization problem

(i) $1 + \sum_{j=2}^{K} \pi_j/p_j$ for strong PAS and (ii) $1 + \sum_{j=2}^{K} \pi_j/p_{j-1}$ for weak PAS

(ii)
$$1 + \sum_{j=2}^{K} \pi_j / p_{j-1}$$
 for weak PAS

<u>Proof</u>: Model stochastic process $\{W_m = f(x_m) | m = 0, 1, \ldots\}$ as a Markov chain with states y_1, \ldots, y_K , and π_i, p_i define the transition probabilities. Given initial probability distribution of $W_0 = \pi$, derive expected number of transitions to converge to absorption state y_1 .

SLIDE 6

Corollary: The expected number of strong PAS iterations to solve the finite optimization problem is bounded above by $1 + log(\frac{1}{\pi_1})$

$$0 < x < 1 \Rightarrow x < -log(1-x)$$

Therefore, $\pi_j/p_j < -log(1-\pi_j/p_j) = log(p_j/p_{j-1})$
 $\forall j = 2....K$

SLIDE 7

Corollary: The expected number of iterations for finite global optimization, given a uniform distribution on the objective function values, is

(i)
$$\sum_{j=1}^{K} \frac{1}{j}$$
, bounded above by $1 + logK$ for strong PAS and (ii) $1 + \sum_{j=1}^{K-1} \frac{1}{j}$, bounded above by $2 + log(K-1)$ for weak PAS

Comparison to continuous case:

Consider $S = \{\text{vertices of n-dim lattice } \{1, \dots, k\}^n\}$, each with unique objective func-

Expected number of iterations is bounded by 2 + log(K) = 2 + nlog(k) since $K = k^n$. Linear in n.

Summary of PAS results 3

SLIDE 8

- Polynomial time implementation of PAS for LP Linear Optimization in Random Polynomial Time A.Gademann, PhD Thesis, (1993)
- That there exists a polynomial time implementation for the PAS algorithm for most convex programming problems Implementing PAS for Global Optimization using Markov Chain Sampling D.Reaume, H.Romeijn & R.Smith, Journal of Global Optimization 20, (2001)

Further Comments 4

SLIDE 9

Iteration k:

Step 1 : Start with x_k

Step 2 : Obtain sample of $x_{k+1} \sim U(S_k)$

Step 3: If stop criterion met, stop, else start k+1

where

$$S_k = \{x : x \in S \text{ and } f(x) < x_k\}$$

5 Further Comments

5.1 Generalization

SLIDE 10

Iteration k:

 $Step \ 1 : Start \ with \ x_k$

Step 2 : Obtain x'_{k+1} s.t $E[x'_{k+1}] \le E[x_{k+1}]$

Step 3: Let $x_{k+1} := x'_{k+1}$

Step 4: If stop criterion met, stop, else start k+1

 $x_k \sim U(S_k), \ S_k = \{x : x \in S \text{ and } f(x) < x_k\}$

6 Further Comments

6.1 wrt Interior Point Algo.

SLIDE 11

Iteration k:

Step 1 : Start with x_k

Step 2: Obtain x'_{k+1} s.t $E[x'_{k+1}] \le E[x_{k+1}]$

Step 3: Let $x_{k+1} := x'_{k+1}$

Step 4: If stop criterion met, stop, else start k+1

 $x_k \sim U(S_k), \ S_k = \{x : x \in S \text{ and } f(x) < x_k\}$

Possible approach to explain empirical observations of number of iterations required by Interior Point Method ?

7 Further Comments

SLIDE 12

Iteration k:

 $Step \ 1 : Start with \ x_k$

Step 2: Obtain sample of $x_{k+1} \sim U(S_k)$

Step 3: If stop criterion met, stop, else start k+1

If we use information from x_k to find x_{k+1} , will we be limited to finding local optimum only?

- upper bound of minimum cost
- feasible direction and starting point
- \bullet moments at x_k

8 Final Comment!

SLIDE 13

Iteration k:

 $Step\ 1:$ Start with x_k

Step 2 : Obtain sample of $x_{k+1} \sim U(S_k)$

Step 3: If stop criterion met, stop, else start k+1

If we can find x_{k+1} without local information from x_k , is it equivalent to finding a feasible point, if possible, of arbitrary objective function value?

Consider finding
$$x_{k+1} \sim U(S_k')$$
 where $S_k' = \{x : x \in S, \ f(x) > x_k - \epsilon, \ f(x) < x_k + \epsilon\}$