Pure Adaptive Search in Global Optimization by

Z. B. Zabinsky and R. L. Smith

Presented by Michael Yee

November 3, 2003

This presentation is based on: Zabinsky, Zelda B., and Robert L. Smith. *Pure Adaptive Search in Global Optimization. Mathematical Programming* 55, 1992, pp. 323-338.

Global Optimization Problem

• Problem (P):

$$\min_{x \in S} f(x)$$

where $x \in \mathbb{R}^n$, S is convex, compact subset of \mathbb{R}^n , and f continuous over S

- f satisfies Lipschitz condition, i.e., $|f(x) f(y)| \le k_f ||x y||, \ \forall x, y \in S$
- $x_* = \arg\min_{x \in S} f(x)$
- $\bullet \ y_* = f(x_*) = \min_{x \in S} f(x)$
- $y^* = \max_{x \in S} f(x)$

Outline

- Pure Random Search versus Pure Adaptive Search
- Relationship to Solis and Wetz (1981)
- Distribution of improvement in objective function value
- Performance bounds

Pure Adaptive Search [1]

Pure Random Search (PRS)

• Generate sequence of independent, uniformly distributed points

$$X_1, X_2, \ldots,$$

in the feasible region S. Denote their associated objective function values by

$$Y_1 = f(X_1), Y_2 = f(X_2), \dots$$

• When stopping criterion met, best point generated so far is taken as approximation to true optimal solution

Pure Adaptive Search (PAS)

Step 0. Set k = 0, and $S_0 = S$

Step 1. Generate X_{k+1} uniformly distributed in S_k , and set $W_{k+1} = f(X_{k+1})$

Step 2. If stopping criterion met, STOP. Otherwise, set

$$S_{k+1} = \{x : x \in S \text{ and } f(x) < W_{k+1}\},\$$

Increment k, Goto Step 1.

Pure Adaptive Search [4]

Importance of Strict Improvement

- What if consecutive points were allowed to have equal objective function values?
- Let S be a unit hypersphere, with f(x)=1 on S except for a depression on a hypersphere of radius ϵ , S_{ϵ} , where f(x) drops to value 0 at the center of the ϵ -ball S_{ϵ}
- Then, $P(\text{random point is in } S_{\epsilon}) = \text{volume}(S_{\epsilon})/\text{volume}(S) = \epsilon^n$
- Thus, PAS could have expected number of iterations that is exponential in dimension (if strict improvement were not enforced)

Solis and Wetz

- Give sufficient conditions for convergence of random global search methods
- Experimental support for linear relation between function evaluations and dimension
- PAS satisfies H1 since objective function values are increasing
- PAS satisfies H2 since the optimal solution is always in the restricted feasible region

Pure Adaptive Search [5]

Some Notation

- Let $p(y) = P(Y_k < y)$, for $k = 1, 2, \dots$ and $y_* < y < y^*$
- For PRS,

$$p(y) = v(S(y))/v(S),$$

where $S(y) = \{x : x \in S \text{ and } f(x) \leq y\}$ and $v(\cdot)$ is Lebesgue measure

Note that for PAS,

$$P(W_{k+1} \le y | W_k = z) = v(S(y))/v(S(z)) = p(y)/p(z),$$

for $k = 1, 2, \ldots$ and $y_* \le y \le z \le y^*$

Connection Between PAS and PRS

Definition. Epoch i is said to be a record of the sequence $\{Y_k, k = 0, 1, 2, \ldots\}$ if $Y_i < \min(Y_0, Y_1, \dots, Y_{i-1})$. The corresponding value Y_i is called a *record value*.

Lemma 1. For the global optimization problem (P), the stochastic process $\{W_k, k = 0, 1, 2, \ldots\} \sim \{Y_{R(k)}, k = 0, 1, 2, \ldots\}$, where R(k) is the kth record of the sequence $\{Y_k, k = 0, 1, 2, \ldots\}$. In particular,

$$P(W_k \le y) = P(Y_{R(k)} \le y), \text{ for } k = 0, 1, 2, ..., \text{ and } y_* \le y \le y^*$$

Pure Adaptive Search [8]

Next, we use induction to show that the unconditional distributions are equal. By definition, R(0) = 0 and $Y_0 = W_0 = y^*$, thus $Y_{R(0)} = W_0$.

For the base case k=1.

$$P(Y_{R(1)} \le y) = P(Y_{R(1)} \le y | Y_0 = y^*)$$

$$= P(W_1 \le y | W_0 = y^*)$$

$$= P(W_1 \le y), \quad \text{for all } y_* \le y \le y^*$$

Thus, $Y_{R(1)} \sim W_1$.

Proof of Lemma 1

Proof. First, we show that the conditional distributions are equal.

$$\begin{split} P(Y_{R(k+1)} \leq y | Y_{R(k)} = x) &= P(Y_{R(k)+1} \leq y | Y_{R(k)} = x) \\ &+ P(Y_{R(k)+2} \leq y, Y_{R(k)+1} \geq x | Y_{R(k)} = x) + \cdots \\ &= P(Y_{R(k)+1} \leq y) \\ &+ P(Y_{R(k)+2} \leq y) P(Y_{R(k)+1} \geq x) + \cdots \\ &= P(Y_1 \leq y) \sum_{i=0}^{\infty} P(Y_1 \geq x)^i \\ &= \frac{P(Y_1 \leq y)}{1 - P(Y_1 \geq x)} \\ &= v(S(y)) / v(S(x)) \\ &= P(W_{k+1} \leq y | W_k = x). \end{split}$$

Pure Adaptive Search [9]

For k > 1, suppose that $Y_{R(i)} \sim W_i$ for i = 1, 2, ..., k. Then,

$$\begin{split} P(Y_{R(k+1)} \leq y) &= E[P(Y_{R(k+1)} \leq y | Y_{R(k)})] \\ &= \int_0^x P(Y_{R(k+1)} \leq y | Y_{R(k)} = x) \ \mathrm{d}F_{Y_{R(k)}}(x) \\ &= \int_0^x P(W_{k+1} \leq y | W_k = x) \ \mathrm{d}F_{W_k}(x) \\ &= E[P(W_{k+1} \leq y | W_k)] \\ &= P(W_k \leq y), \quad \text{for all } y_* \leq y \leq y^* \end{split}$$

Thus, $Y_{R(k+1)} \sim W_{k+1}$.

Finally, since the two sequences are equal in conditional and marginal distribution, they are equal in joint distribution.

Linear versus Exponential

Theorem 1. Let k and R(k) be respectively the number of PAS and PRS iterations needed to attain an objective function value of y or better, for $y_* \le y \le y^*$. Then

$$R(k) = e^{k+o(k)}$$
, with probability 1,

where $\lim_{k\to\infty} o(k)/k = 0$, with probability 1.

Proof. Use general fact about records that $\lim_{k\to\infty}\frac{\ln R(k)}{k}=1$, with probability 1...

Pure Adaptive Search [12]

Relative Improvement Process

Lemma 2. Let Z_1, Z_2, \ldots denote a sequence of iid nonnegative continuous random variables with density f and cdf F. Let M(z) denote the number of record values (in the max sense) of $\{Z_i, i=1,2,\ldots\}$ less than or equal to z.

Then $\{M(z), z \geq 0\}$ is a nonhomogeneous Poisson process with intensity function $\lambda(z) = f(z)/(1 - F(z))$ and mean value function $m(z) = \int_0^z \lambda(z) \ ds$.

Theorem 2. Let N(z) be the number of PAS iterations achieving a relative improvement at most z for $z \ge 0$. Then $\{N(z), z \ge 0\}$ is a nonhomogeneous Poisson process with mean value function

$$m(z) = \ln(1/p((y^* + zy_*)/(1+z))), \text{ for } 0 \le z < \infty.$$

Relative Improvement

Definition. Let $Z_k = (y^* - Y_k)/(Y_k - y_*)$ be the *relative improvement* obtained by the kth iteration of PRS.

Then, the cumulative distribution function F of Z_k is given by

$$F(z) = P(Z_k \le z)$$

$$= P(Y_k \ge (y^* + zy_*)/(1+z))$$

$$= \begin{cases} 0 & \text{if } z < 0, \\ 1 - p((y^* + zy_*)/(1+z)) & \text{if } 0 \le z < \infty. \end{cases}$$

Note also that the random variables Z_k are iid and nonnegative.

Pure Adaptive Search [13]

Distribution of Objective Function Values

Theorem 3. $P(W_k \le y) = \sum_{i=0}^{k-1} \frac{p(y)(\ln(1/p(y)))^i}{i!}$

Proof. The events $\{W_k < y\}$ and $\{N((y^* - y)/(y - y_*)) < k\}$ are equivalent, so

$$P(W_k \le y) = P(W_k < y) = P(N((y^* - y)/(y - y_*)) < k),$$

and by previous theorem N(z) is a Poisson random variable with mean

$$m(z) = \ln(1/p((y^* + zy_*)/(1+z)))$$

etc. \square

Performance Bounds

Let $N^{st}(y)$ be the number of iterations require by PAS to achieve a value of y or better. Then

$$N^*(y) = N((y^* - y)/(y - y_*)) + 1$$

Corollary 1. The cumulative distribution of $N^*(y)$ is given by

$$P(N^*(y) \le k) = \sum_{i=0}^{k-1} \frac{p(y)(\ln(1/p(y)))^i}{i!},$$

with

$$E[N^*(y)] = 1 + \ln(1/p(y)), \quad Var(N^*(y)) = \ln(1/p(y))$$

Pure Adaptive Search [16]

Conclusions

- Complexity of PRS is exponentially worse than that of PAS
- General performance bounds using theory from stochastic processes
- \bullet Specific performance bounds for Lipschitz functions : linear in dimension!
- But is this too good to be true?!

Bounds for Lipschitz Functions

Lemma 3. For global optimization problem (P) over a convex feasible region S in n dimensions with diameter $d_S = \max\{\|w-v\|, w, v \in S\}$ and Lipschitz constant k_f ,

$$p(y) \ge ((y - y_*)/k_f d_S)^n$$
, for $y_* \le y \le y^*$.

Theorem 4. For any global optimization problem (P) over a convex feasible region in n dimensions with diameter at most d and Lipschitz constant at most k,

$$E[N^*(y)] \le 1 + [\ln(kd/(y - y_*))]n$$

and

$$Var(N^*(y)) \le [\ln(kd/(y - y_*))]n$$

for $y_* \leq y \leq y^*$.

Pure Adaptive Search [17]