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Global Optimization Problem

Pure Random Search (PRS)

Problem (P): e Generate sequence of independent, uniformly distributed points
migf(a:)
xE

where x € R", S is convex, compact subset of R, and f continuous over S X1, Xoy .

f satisfies Lipschitz condition, i.e., |f(z) — f(y)| < kf|lz —yl|, Yx,y € S in the feasible region S. Denote their associated objective function values by

Ty = argmingeg f(x) Yi = f(X1),Y2 = f(X2),...

Y = f(2x) = minges f(z)
e When stopping criterion met, best point generated so far is taken as

y* = MaXgecs f(x)

approximation to true optimal solution
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Pure Adaptive Search (PAS)

Step 0. Set k=0, and Sy = S
Step 1. Generate Xj41 uniformly distributed in Sk, and set W11 = f(Xk41)

Step 2. If stopping criterion met, STOP. Otherwise, set
Skr1={z:z € S and f(z) < Wiy1},

Increment k, Goto Step 1.
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Solis and Wetz

Give sufficient conditions for convergence of random global search methods

Experimental support for linear relation between function evaluations and
dimension

PAS satisfies H1 since objective function values are increasing

PAS satisfies H2 since the optimal solution is always in the restricted feasible
region
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Importance of Strict Improvement

What if consecutive points were allowed to have equal objective function
values?

Let S be a unit hypersphere, with f(z) =1 on S except for a depression on a
hypersphere of radius €, S, where f(x) drops to value 0 at the center of the
e-ball S,

Then, P(random point is in S.) = volume(S,)/volume(S) = €"

Thus, PAS could have expected number of iterations that is exponential in
dimension (if strict improvement were not enforced)
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Some Notation

Let p(y) = P(Yy <), for k=1,2,...and y. <y <y~

For PRS,
p(y) = v(S(y))/v(S),

where S(y) ={z:z € S and f(z) <y} and v(-) is Lebesgue measure
Note that for PAS,
P(Wii1 <y[Wi = 2) = 0(5(y))/v(5(2)) = p(y)/p(2),

fork=1,2,...and y, <y < z < y*
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Connection Between PAS and PRS

Definition. Epoch i is said to be a record of the sequence {Yj, k =0,1,2,...} if
Y; < min(Yp, Y1,...,Y;—1). The corresponding value Y is called a record value.

Lemma 1. For the global optimization problem (P), the stochastic process

{Wi,k=0,1,2,...} ~{Ygru),k=0,1,2,...}, where R(k) is the kth record of
the sequence {Yy, k =0,1,2,...}. In particular,

P(Wkgy):P(YR(k)gy)v fOI’kZO,l,Q,, andy*ﬁyﬁy*
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Proof of Lemma 1

Proof. First, we show that the conditional distributions are equal.

P(Yr(et1) S YYrk) = ) = P(Yr(k)+1 < Y[YRm) = )

+P(Yr(y+2 < U, YR(e)+1 = YRy = ) + - -

=P(Yr(k)+1 <)

+P(Yry+2 < Y)P(Yr(ky41 > ) + - -

=P(Y1 <y) Yy P(V1 > )

_ _PM<y)
T 1-P(Y12>2)

=v(5(y))/v(S())
=P(Wy1 < y|Wy, = 2).
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Next, we use induction to show that the unconditional distributions are equal.
By definition, R(0) = 0 and Yy = Wy = y*, thus Y = Wo.

For the base case k =1,

P(Yra) <y)=P(Yra) <ylYo=y")
PWy <y[Wo =y*)
=PW;<y), forally,<y<y*

Thus, YR(l) ~ Wl.
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For k > 1, suppose that Yg(;) ~ W; fori = 1,2,... k. Then,

P(Yrk+1) <) = E[P(Yr(k+1) < Y[YRW))]

= Jo P(Yr(k11) < y[Vrp) = ) APy, (z)

= Jo PWiy1 < y|Wi = ) dFw, (2)
= E[P(Wit1 < y|Wy)]
=P(Wyp<y), foraly,<y<y*

Thus, Yrkt1) ~ Wit

Finally, since the two sequences are equal in conditional and marginal

distribution, they are equal in joint distribution. O
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Linear versus Exponential

Theorem 1. Let k and R(k) be respectively the number of PAS and PRS
iterations needed to attain an objective function value of y or better, for
Y« <y < y*. Then

R(k) = *+°") " with probability 1,

where limy,_. o o(k)/k = 0, with probability 1.

Proof. Use general fact about records that limg_. In i(k) =1, with probability

1... O
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Relative Improvement

Definition. Let Z, = (y* — Y%)/(Yx — y«) be the relative improvement obtained
by the kth iteration of PRS.

Then, the cumulative distribution function F' of Zj is given by
F(z)=P(Z; < 2)

=P(Yy = (y* + 2y.) /(1 + 2))

_Jo if 2 <0,
VL= p((yF + 2y)/ /(14 2) i 0< 2z < oo

Note also that the random variables Z;, are iid and nonnegative.
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Relative Improvement Process

Lemma 2. Let Z1,Z>,... denote a sequence of iid nonnegative continuous
random variables with density f and cdf F. Let M (z) denote the number of
record values (in the max sense) of {Z;,i =1,2,...} less than or equal to z.

Then {M(z),z > 0} is a nonhomogeneous Poisson process with intensity
function A(z) = f(2)/(1 — F(z)) and mean value function m(z) = foz A(z) ds.

Theorem 2. Let N(z) be the number of PAS iterations achieving a relative
improvement at most z for z > 0. Then {N(z),z > 0} is a nonhomogeneous
Poisson process with mean value function

m(z) = In(1/p((y* + 2y.) /(1 + 2))), for0 < z < 0.
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Distribution of Objective Function Values

Theorem 3. P(W), <y) =" M

1=0 il

Proof. The events {Wy < y} and {N((y* —y)/(y —y«)) < k} are equivalent, so
PWy<y)=PWir<y) =Py —y)/(y =) <k),
and by previous theorem N(z) is a Poisson random variable with mean

m(z) =In(1/p((y" + zy.)/ (1 + 2))),
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Performance Bounds

Let N*(y) be the number of iterations require by PAS to achieve a value of y or
better. Then

N*(y) =Ny —y)/(y =) +1

Corollary 1. The cumulative distribution of N*(y) is given by

Bounds for Lipschitz Functions

Lemma 3. For global optimization problem (P) over a convex feasible region S
in n dimensions with diameter ds = max{||jw — v||, w,v € S} and Lipschitz
constant ky,

p(y) > ((y — y«)/kypds)", fory., <y <y"

Theorem 4. For any global optimization problem (P) over a convex feasible

kE—1 i jon i dimensions with diameter at most d and Lipschitz constant at most
§ p(y)(n(1/p(y region in n p
=0 EIN*(y)] <1+ [In(kd/(y — y.))]n
it " Var(N*(y)) < In(kd/(y — 3.))]
. . ar n — 1y ))n
E[N*(y)] =1+ In(1/p(y)), Var(N*(y)) =In(1/p(y)) A= vy
fory, <y < y*.
Pure Adaptive Search [16] Pure Adaptive Search [17]
Conclusions
e Complexity of PRS is exponentially worse than that of PAS

General performance bounds using theory from stochastic processes

Specific performance bounds for Lipschitz functions : linear in dimension!

But is this too good to be true?!
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