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‘ Recap of Past Sessions I

o LP

— Kalai (1992, 1997)
* use randomized pivot rules

— Motwani and Raghavan (1995), Clarkson (1998, 1995)
x solve on a random subset of constraints, recursively

— Dunagan and Vempala (2003): LP Feasibility (Ax > 0, 0 # 0)
x (Generate random vectors and test for feasibility
« If not, try moving in deterministic (w.r.t. random vector already selected)

direction to achieve feasibility

e NLP
— Storn and Price (1997): Unconstrained NLP
x Heuristic
* Select random subsets of solution population vectors
x Perform addition, subtraction, component swapping and test for obj func
improvement




‘ Motivation I

What about provably convergent algorithms for constrained NLPs?

e Random search techniques first proposed in the 1950s
e pre-1981 proofs of convergence were highly specific and involved

e Solis and Wets, 1981: Can we give more general sufficient conditions for convergence,
unifying the past results in the literature?

e Solis and Wets paper interesting more from a unifying theoretical standpoint

e Computational results of the paper relatively unimpressive




‘ Outline I

e Part I: Solis and Wets paper
— Motivation for using random search
— Appropriate goals of random search algorithms
— Conceptual Algorithm encompassing several concrete examples
— Sufficient conditions for global search convergence, and theorem
— Local search methods and sufficient conditions for convergence, and theorem
— Defining stopping criteria
— Some computational results
e Part II: Intro to Sampling Methods

— Traditional Methods
— Hit-and-run algorithm




‘ Why Use Random Search Techniques? I

Let f: R" —- R, S C R".

P) min ()
s.t. x €S

Function characteristics difficult to compute (e.g. gradients, etc.)
Function is “bumpy”
Need global minimum, but there are lots of local minima

Limited computer memory




‘ What is an Appropriate Goal? I

e Problems
— Global min may not exist
— Finding min may require exhaustive examination (e.g. min occurs at point at
which f singularly discontinuous)
e Response
Definition 1. « is the Essential Infimum of f on S iff

a = inf{t|v(xe S| f(x)<t)>O0},
where v denotes n-dimensional volume or Lebesque measure. Optimality region

for P is given by

Re,M

{{xES|f(x)<oz—|—e}, a finite
{xeS|fx)<-M}, a=-—oo,

for a gwen “big” M > 0O




‘ What is Random Search? I

Conceptual Algorithm:

1. Initialize: Find x” € S. Set k := 0
2. Generate £ € R" (random) from distribution g,
3. Set x"t! = D(x", £¥). Choose ppy1. Set k := k + 1. Go to step 1.

pr(A) = P (Xk €A ’ XO,Xl, - ,Xk_l)

This captures both

e Local search = supp(ux) is bounded and v (S N supp(pr)) < v(S)

e Global search = supp(u) is such that v(.S N supp(uxr)) = v(.S)




‘ Sufficient Conditions for Convergence I

(H1) D s.t. {f(xk)}zozo nonincreasing

f(D(x,8)) < f(x)
eSS = [f(DE¢§) < min{f(x), (&)}

(H2) Zero probability of repeatedly missing any positive-volume subset of S.
0
VAC Sst.v(A) >0, J[@—-pe(A) = 0
k=0

i.e. sampling strategy given by ujr cannot consistently ignore a part of S with
positive volume (Global search methods satisfy (H2))




‘ Example Satisfying (H1) and (H2), I I

Due to Gaviano [2].

D", ey = (1= ap)x" + A" where
= rg min — xlC k — Xk k
o= arg min [F((1=0x AN | (1= x" ¢ € 5]

for unif on n-dim sphere with center x* and r > 2diam(S).

Why?

e (H1) satisfied since { £ (x5 }ZOZO nonincreasing by construction

e (H2) satisfied because sphere contains S




‘ Example Satisfying (H1) and (H2), II I

Due to Baba et al. [1].

k kK
X, O0.W.

{5’2 eF € S and f(£F) < F(xM)

pe o~ NGE"TD)

Why?

o (H1) satisfied since { f(x") }20:0 nonincreasing by construction

e (H2) satisfied because S contained in support of N (x*,T)




‘ Global Search Convergence Theorem I

Theorem 1. Suppose f measurable, S C R"™ measurable, (H1), (H2), and {Xk}ZOZO
generated by the algorithm. Then

lim P(x" € Rey) = 1

k— oo

Proof. By (H1), x* € Ry = x' & Ry, V0 < k

k—1

P (xk € S\Re,M> < H (1-— /M(Re,M))
£=0

P (xk < RG,M) =1-P (xk € S\RE,M) > 1- kl:[l (1 — pe(Re )
(=0

k—1
1> lim P (xk c RG,M) > 1— lim [[ (1 - me(Rear) = 1,
£=0

~ k—oo k— oo

where last equality follows from (H2). []
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‘ Local Search Methods I

e Easy to find examples for which the algorithm will get trapped at local minimum

e Drastic sufficient conditions ensure convergence to optimality region, but are very
difficult to verify

For instance

(H3) vx’ € S
Lo={x€e S| f(x) < f(x")} is compact and
3y > 0 and n € (0, 1] (possibly depending on x°) s.t., Vk and Vx € Ly,

M ([D(Xa §) € RG,M] U [diSt(D(Xa £), Re,M) < dist(x, RG,M) - '7]) > n.

If f and S are “nice,” local search methods demonstrate better convergence behavior.
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‘ Example Satisfying (H3), I I

o int(S) # ()
o Va e R, SN {x| f(x) < a} convex and compact

Happens whenever f quasi-convex and either S compact or f has bounded level
sets

o & * chosen via uniform distribution on hypersphere with center x* and radius Pk

e o is a function of x°, x', . .. cx"Land &Y. .., €%t such that p = infy pr > 0
°
ko ok
; S
D(xF eby = {fk §
X", O.W.

Proof. Ly compact convex since level sets are.
R pr has nonempty interior since S does.

.. can draw ball contained in interior of R as.
v(region I)
v(hypersphere with radius p

Now take v = § and n = 7 >0
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v(region II)

v(hypersphere with radius py)

Example Satisfying (H3)

v(region I)

> v(hypersphere with radius p) =~ n-
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‘ Local Search Convergence Theorem, I I

Theorem 2. Suppose f is a measurable function, S C R"™ is a measurable, and (H1)
and (H3) are satisfied. Let {Xk}ZO:O be a sequence generated by the algorithm. Then,

lim P (x" € Rey) = 1.

k— oo

Proof. Let x° be the initial iterate used by the algorithm. By (H1), all future iterates
in Lo O Re . Lo is compact. Therefore Ip € Z s.t. vp > diam(Lo).

P (Xg—l_p € Re,Ma Xe & RE,M)
P (x£ & Re,M)

P <X£+p € Re,M | Xe & Re,M) =

> P (X£+p € Re,Ma Xe ¢ Re,M)

> P (x" ¢ R, dist(x", Rear) < v(p — (k= 0),
k=4,...,£4 p)

> nP by repeated Bayes rule and (H3)
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‘ Local Search Convergence Theorem, 11 I

Claim: P (x"” & Rey) < (1 —nP)*, Vk € {1,2,...}
By induction

(k=1) P(x*€Rcpy) > P (Xp € Re v x" ¢ Re,M) > P

(Genl k) P (x’fp ¢ RE,M> - p (x’“p & Re | xFHP ¢ RG’M) P (x(’“—”p o RE,M>
< [1=P (™ eRom | xRy (1 =)
< (@-7")@a-q" )k_1

-.P(x"fp”eRe,M) ZP(XkPERE,M> > 1-(1-9)F, e=0,1,...,p-1
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‘ Stopping Criteria I

So far, we gave a conceptual method for generating {xk}zozo such that f(xk) —
essential inf plus buffer

In practice, need stopping criterion
Easy to give stopping criterion if have LB on p; (R ) (unrealistic)
How to do this without knowing a priori essential inf or R¢ ps7

Has been shown that even if S compact and convex and f € C?, each step of alg
leaves unsampled square region of nonzero measure, over which f can be redefined
so that global min is in unsampled region

“search for a good stopping criterion seems doomed to fail”
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‘ Rates of Convergence I

e Measured by distributional characteristics of number of iters or function evals
required to reach essential inf (e.g. mean)

e Solis and Wets tested 3 versions of the conceptual alg (1 local search, 2 global
search) on various problems (constrained and unconstrained)
e They report results only for

. /
min X X
xERM

with stopping criterion ||x*|| < 1073

e Found that mean number of function evals required o n.
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‘ Conclusion and Summary of Part I I

e Why use random search techniques?

How to handle pathological cases? (essential infimum, optimality region)
Conceptual Algorithm unifies past examples in the literature

Global and local search methods

Sufficient conditions for convergence and theorems

Issue of stopping criteria

Computational results
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‘ Part II: Traditional Sampling Methods I

e Transformation method
— easier to generate Y than X, but well-behaved transformation between the two
e Acceptance-rejection method

— Generate a RV and subject it to a test (based on a second RV) in order to
determine acceptance

e Markov-regression

— Generate random vector component-wise, using marginal distributions w.r.t.
components generated already

Impractical because complexity increases rapidly with dimension.
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‘ Part II: Approximate Sampling Methods I

e Perform better computationally (efficient)

e generates a sequence of points, whose limiting distribution is equal to target
distribution

Hit-and-Run: Generate random point in S, a bounded open subset of R?, according to
some target distribution 7.

1. Initialize: select starting point x° € S. n := 0.

2. Randomly generate direction 6" in R, according to distribution v
(corresponds to randomly generating a point on a unit sphere).

3. Randomly select step size from A, € {\ | x" + A0,, € S} according to distribution
L(x",0m)

4. Set x" T :=x" 4+ \,0". n:=n+ 1. Repeat.

e.g. generate point according to uniform distribution on S: use all uniform distributions
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‘ Further Reading I
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