Las Vegas Algorithms for Linear (and Integer) Programming
when the Dimension is Small

Kenneth L. Clarkson
presented by Susan Martonosi

September 29, 2003

This presentation is based on: Clarkson, Kenneth L. Las Vegas Algorithms for Linear and Integer Programming When the Dimension
is Small. Journal of the ACM 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE
Symposium on Foundations of Computer Science, 1988.

‘ Outline I

Applications of the algorithm
Previous work

Assumptions and notation
Algorithm 1: “Recurrent Algorithm”
Algorithm 2: “Iterative Algorithm”

Algorithm 3: “Mixed Algorithm”
Contribution of this paper to the field

‘ Applications of the Algorithms I

Algorithms give a bound that is “good” in n (number of constraints), but “bad” in d
(dimension). So we require the problem to have a small dimension.

e Chebyshev approximation: fitting a function by a rational function where both
the numerator and denominator have relatively small degree. The dimension is the
sum of the degrees of the numerator and denominator.

e Linear separability: separating two sets of points in d-dimensional space by a
hyperplane

e Smallest enclosing circle problem: find a circle of smallest radius that encloses
points in d dimensional space

‘ Previous work I

d
e Megiddo: Deterministic algorithm for LP in O(2* n)
2
e Clarkson; Dyer: O(3% n)
e Dyer and Frieze: Randomized algo. with expected time no better than O (d**n)

e This paper’s “mixed” algo.: Expected time

O(d*n) + (log n)O(d)¥*°M L O(d*\/nlogn) as n — oo

‘ Assumptions I

e Minimize x1 subject to Ax < b
The polyhedron F (A, b) is non-empty and bounded and 0 € F (A, b)

e The minimum we seek occurs at a unique point, which is a vertex of F(A, b)

— If a problem is bounded and has multiple optimal solutions with optimal value
x7, choose the one with the minimum Euclidean norm

min{||z||2|z € F(A,b),x1 = a7}
e Each vertex of F(A,b) is defined by d or fewer constraints

‘ Notation I

Let:

H denote the set of constraints defined by A and b
O(S) be the optimal value of the objective function for the LP defined on S C H

“Each vertex of F(A,Db) is defined by d or fewer constraints” implies that
dB(H) C H of size d or less such that O(B(H)) = O(H). We call this subset
B(H) the basis of H. All other constraints in H\B(H) are redundant.

a constraint h € H be called extreme if O(H\h) < O(H) (these are the
constraints in B(H)).

‘ Algorithm 1: Recursive I

e Try to eliminate redundant constraints

e Once our problem has a small number of constraints (n < 9d2), then use Simplex
to solve it.

e Build up a smaller set of constraints that eventually include all of the extreme
constraints and a small number of redundant constraints
— Choose 7 = d+/n unchosen constraints of H\.S at random
— Recursively solve the problem on the subset of constraints, R U S
— Determine which remaining constraints (V') are violated by this optimal solution
— Add V to S if it’s not too big (|V| < 24/n).
— Otherwise, if V' is too big, then pick r new constraints
We stop once V' is empty: we've found a set S U R such that no other constraints
in H are violated by its optimal solution. This optimal solution x is thus optimal
for the original problem.

‘ Recursive Algorithm I

Input: A set of constraints H. OQutput: The optimum B(H)

1. S — (; Cy — 9d°
2. If n < Cy return Simplex(H)

2.1 else repeat:
choose R C H\S at random, with |R| = r = dy/n
x «—Recursive(R U S)
V «— {h € H| vertex defined by = violates h}
if |V| <2ynthen S «— SUV
until V= ()

2.2 return x

‘ Recursive Algorithm: Proof Roadmap I

Questions:

e How do we know that S doesn’t get too large before it has all extreme constraints?

e How do we know we will find a set of violated constraints V' that’s not too big (i.e.
the loop terminates quickly)?

Roadmap:
Lemma 1. If the set V is nonempty, then it contains a constraint of B(H).
Lemma 2. Let S C H andlet R C H\S be a random subset of size v, with |H\ S| =

m. Let V. C H be the set of constraints violated by O(RU S). Then the expected size
of V' is no more than d(”;ﬂ%w.

And we’ll use this to show the following Lemma:

Lemma 3. The probability that any given execution of the loop body is "successful”
(V| < 2+4/n for this recursive version of the algorithm) is at least 1/2, and so on
average, two executions or less are required to obtain a successful one

This will leave us with a running time

T(n,d) < 2dT(3d/n,d) + O(d*n) for n > 9d>.

‘ Recursive Algorithm: Proof of Lemma 1 I

Proof. Lemma 1: When V is nonempty, it contains a constraint of B(H).

Suppose on the contrary that V' # () contains no constraints of B(H).

L
Let a point z <X y if (x4, |[|z||2) < (y1, ||y||2) (« is better than y).

Let ™ (T") be the optimal solution over a set of constraints T". Then z*(RU.S) satisfies
all the constraints of B(H) (it is feasible), and thus " (R U S) > =" (B(H)).

However, since RU S C H, we know that " (RUS) R =" (H) = " (B(H)). Thus,
(R U S) has the same obj. fcn value and norm as ™ (B(H)). By the uniqueness of
this point, z*(RU S) = 2" (B(H)) = 2*(H), and V = (). Contradiction!

So, every time V' is added to S, at least one extreme constraint of H is added (so we’ll
do this at most d times).]

10

‘ Recursive Algorithm: Proof of Lemma 2 I

d(m—r+1) -

Proof. Lemma 2: The expected size of V' is no more than ———

First assume problem nondegenerate.

Let Cyp = {«"(T'U S)|T C H\S}, subset of optima.

Let Cp = {"(T'U S)|T C R}

The call Recursive(R U S) returns an element *(R U S):

e an clement of Cy

e unique element of Cg satisfying every constraint in R.

11

‘ Recursive Algorithm: Proof of Lemma 2 I

Choose x € Cy and let v, = number of constraints in H violated by x.
B[V = BIS yec,, vol(@ = 2" (RU)] = X ce, va P

where

Iz = 2" (RUS)) = {1 ifx =x*(RUS)

0 otherwise

and P, = P(x = x*(RUJS))

How to find P,7?

12

‘ Recursive Algorithm: Proof of Lemma 2 I

Let N = number of subsets of H\S of size r s.t. " (subset) = 2*(R U S).
Then N = (") P, and P, = %

To find N, note that ™ (subset) € Cx and ™ (subset) = " (R U S) only if

e x"(subset) € Cr as well

e x"(subset) satisfies all constraints of R

Therefore, N = No. of subsets of H\.S of size r s.t. " (subset) € Cr and " (subset)
satisfies all constraints of R.

13

‘ Recursive Algorithm: Proof of Lemma 2 I

For some such subset of H\S of size r and such that ™ (subset) = z*(RU S), let T
be the minimal set of constraints such that ™ (subset) = =™ (T U S).

o x"(subset) € Cr implies T C R
e nondegeneracy implies T is unique and |T'| < d
Let i, = |T|.

In order to have x*(T'"U S) = 2" (R U S) (and thus z*(subset) = " (R U S)), when
constructing our subset we must choose:

e the 72, constraints of T' C R
e r — i, constraints from H\S\T\V

14

—vr—ig m—r+1/m—vgx—ig

Therefore, N = (m_vx._iiv) and Px — (r(:nz)x S r—d (,r;;)_im_l

T—1lx

(m—vm—ix

BIIVI] < #25 Yvecy, vor gy — < A%

(where the summand is F[No. of x € Cg violating exactly one constraint in R] < d)

For the degenerate case, we can perturb the vector b by adding (e, €%, ..., €") and
show that the bound on |V'| holds for this perturbed problem, and that the perturbed
problem has at least as many violated constraints as the original degenerate problem.

[]

15

‘ Recursive Algorithm: Proof of Lemma 3 I

Proof. Lemma 3: P(successful execution) > 1/2; E[Executions til 1st success] < 2.

Here, P(unsuccessful execution) = P(|V| > 24/n)

2B[|V|] < 22 = 22V (since r = dy/n) < 2¢/n

So, P(unsuccessful execution)= P(|V| > 2y/n) < P(|V| > 2E[|V]|]) < 1/2, by
the Markov Inequality.

P(successful execution) > 1/2, and the expected number of loops until our first
successful execution is less than 2. []

16

‘ Recursive Algorithm: Running Time I

As long as n > 9d2,

e Have at most d + 1 augmentations to S (succesful iterations), with expected 2 tries
until success

e With each success, S grows by at most 24/n, since |V | < 24/n
e After each success, we run the Recursive algorithm on a problem of size |S U R| <
2dv/n + d/n = 3d\/n

e After each recursive call, we check for violated constraints, which takes O(nd) each
of at most d + 1 times

T(n,d) < 2(d+ 1)T(3dv/n,d) + O(d*n), for n > 9d°

17

‘ Algorithm 2: Iterative I

e Doesn’t call itself, calls Simplex directly each time

e Associates weight wy to each constraint which determines the probability with
which it is selected

e Each time a constraint is violated, its weight is doubled

e Don’t add V to aset S; rather reselect R (of size 9d?) over and over until it includes
the set B(H)

18

‘ Algorithm 2: Iterative I

Input: A set of constraints H. OQutput: The optimum B(H)

1. Vh € H, wy, — 1; Cy = 9d>
2. If n < Cy, return Simplex(H)

2.1 else repeat:
choose R C H at random, with |R| = r = Cy
x «—Simplex(R)
V «— {h € H| vertex defined by = violates h}
if w(V) < 2% then for h € V', wy «— 2wy,
until V' = ()

2.2 return x

19

‘ Iterative Algorithm: Amnalysis I

e Lemma 1: “If the set V is nonempty, then it contains a constraint of B(H)” still
holds (proof as above with S = ().

e Lemma 2: “Let S C H and let R C H\S be a random subset of size r, with
|H\S| = m. Let V. C H be the set of constraints violated by O(R U S). Then
the expected size of V' is no more than %” still holds with the following
changes. Consider each weight-doubling as the creation of multinodes. So “size” of

a set is actually its weight. So we have S = (), and thus |H\S| = m = w(H).

S d(w(H)—9d°+1 _ w(H
This gives us Ejw (V)] < ((9d)2—d < —95—1)

e Lemma 3: If we define a “successful iteration” to be w (V') < 2%, then Lemma 3

holds, and the probability that any given execution of the loop body is "successful”
is at least 1/2, and so on average, two executions or less are required to obtain a

successful one.

20

‘ Iterative Algorithm: Running Time I

The Tterative Algorithm runs in O(d*n log n)+(dlogn)O(d)¥/?*+°W) expected time,
as n — oo, where the constant factors do not depend on d.

First start by showing expected number of loop iterations = O(d logn)

e By Lemma 3.1, at least one extreme constraint h € B(H) is doubled during a
successful iteration

o Let d = |B(H)|. After kd successful executions w(B(H)) = D nesm) 2
where nj, is the number of times h entered V' and thus) heB(H) Th > kd'

k k
® D heB(H) Wh 2 2 heH) 2 = d'2

e When members of V' are doubled, increase in w(H) = w(V') < 525, so after kd'
successful iterations, we have

2 \kd 2kd
w(H) < n(l+ 5775)" < nedd-1

21

e V sure to be empty when w(B(H)) > w(H) (i.e. P(Choose B(H)) > 1). This

gives us:

/
k > %, or kd' = O(dlogn) successful iterations = O(d log n) iterations.

9d—1

In2—

Within a loop:

e Can select a sample R in O(n) time [Vitter '84]
e Determining violated constraints, V', is O(dn)

e Simplex algorithm takes d°!) time per vertex, times () vertices [?]. Using

2Cy
[d/2]
Stirling’s approximation, this gives us O (d)%?T°W for Simplex

Total running time:

O(dlogn) * [O(dn) + O(4)***°W] = O(d*nlog n) + (dlog n)O(d)"*+°W

22

‘ Algorithm 3: Mixed I

e Follow the Recursive Algorithm, but rather than calling itself, call the Iterative
Algorithm instead

e Runtime of Recursive: T'(n, d) < 2(d + 1)T(3d+/n, d) + O(d*n), for n > 9d?

e In place of T(3dy/(n), substitute in runtime of Iterative algorithm on 3d+/n
constraints

e Runtime of Mixed Algorithm: O(d?n)+ (d?log n)O(d)¥**°M 1+ 0 (d*\/nlogn)

23

‘ Contributions of this paper to the field I

e Leading term in dependence on n is O(d*n), an improvement over O(d**n)
e Algorithm can also be applied to integer programming (Jan’s talk)

e Algorithm was later applied as overlying algorithm to “incremental” algorithms
(Jan’s talk) to give a sub-exponential bound for linear programming (rather than
using Simplex once n < 9d?, use an incremental algorithm)

24

