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Applications of the Algorithms


Algorithms give a bound that is “good” in n (number of constraints), but “bad” in d 
(dimension). So we require the problem to have a small dimension. 

•	 Chebyshev approximation: fitting a function by a rational function where both 
the numerator and denominator have relatively small degree. The dimension is the 
sum of the degrees of the numerator and denominator. 

•	 Linear separability: separating two sets of points in d-dimensional space by a 
hyperplane 

•	 Smallest enclosing circle problem: find a circle of smallest radius that encloses 
points in d dimensional space 
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Previous work


• Megiddo: Deterministic algorithm for LP in O(22dn) 

• Clarkson; Dyer: O(3d2 
n) 

• Dyer and Frieze: Randomized algo. with expected time no better than O(d3dn) 

• This paper’s “mixed” algo.: Expected time √ 
O(d2 n) + (log  n)O(d)d/2+O(1) + O(d4 n log n) as n → ∞  
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Assumptions


• Minimize x1 subject to Ax ≤ b 

• The polyhedron F(A, b) is non-empty and bounded and 0 ∈ F(A, b) 

• The minimum we seek occurs at a unique point, which is a vertex of F(A, b) 
– If a problem is bounded and has multiple optimal solutions with optimal value 

∗ x1, choose the one with the minimum Euclidean norm 
∗ min{‖x‖2|x ∈ F(A, b), x1 = x1} 

• Each vertex of F(A, b) is defined by d or fewer constraints 
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Notation


Let: 

•	 H denote the set of constraints defined by A and b 

• O(S) be the optimal value of the objective function for the LP defined on S ⊆ H 

•	 “Each vertex of F (A, b) is defined by d or fewer constraints” implies that  
∃B(H) ⊂ H of size d or less such that O(B(H)) = O(H). We call this subset 
B(H) the basis of H. All other constraints in H\B(H) are redundant. 

•	 a constraint h ∈ H be called extreme if O(H\h) < O(H) (these are the 
constraints in B(H)). 

5 



Algorithm 1: Recursive


•	 Try to eliminate redundant constraints 
•	 Once our problem has a small number of constraints (n ≤ 9d2), then use Simplex 

to solve it. 
•	 Build up a smaller set of constraints that eventually include all of the extreme 

constraints and a small number of redundant constraints √ 
–	 Choose r = d n unchosen constraints of H\S at random 
–	 Recursively solve the problem on the subset of constraints, R ∪ S 
–	 Determine which remaining constraints (V ) are violated by this optimal solution √ 
–	 Add V to S if it’s not too big (|V | ≤ 2 n). 
– Otherwise, if V is too big, then pick r new constraints 
We stop once V is empty: we’ve found a set S ∪R such that no other constraints 
in H are violated by its optimal solution. This optimal solution x is thus optimal 
for the original problem. 

6 



Recursive Algorithm


Input: A set of constraints H. Output: The optimum B(H) 

1. S ← ∅; Cd ← 9d2 

2. If n ≤ Cd return Simplex(H) 
2.1 else repeat: √

choose R ⊂ H\S at random, with |R| = r = d n

x ←Recursive(R ∪ S)

V ← {h ∈ H| vertex defined by x violates h}
√
if |V | ≤ 2 n then S ← S ∪ V

until V = ∅


2.2 return x 
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Recursive Algorithm: Proof Roadmap


Questions: 

•	 How do we know that S doesn’t get too large before it has all extreme constraints? 

•	 How do we know we will find a set of violated constraints V that’s not too big (i.e. 
the loop terminates quickly)? 

Roadmap: 
Lemma 1. If the set V is nonempty, then it contains a constraint of B(H).

Lemma 2. Let S ⊆ H and let R ⊆ H\S be a random subset of size r, with  |H\S| =

m. Let  V ⊂ H be the set of constraints violated by O(R ∪ S). Then the expected size

of V is no more than d(m−r+1) .
r−d 

And we’ll use this to show the following Lemma: 
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Lemma 3. The probability that any given execution of the loop body is ”successful” √
(|V | ≤ 2 n for this recursive version of the algorithm) is at least 1/2, and so on 
average, two executions or less are required to obtain a successful one 

This will leave us with a running time 

√ 
T (n, d) ≤ 2dT (3d n, d) +  O(d2 n) for n >  9d2 . 
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Recursive Algorithm: Proof of Lemma 1


Proof. Lemma 1: When V is nonempty, it contains a constraint of B(H). 

Suppose on the contrary that V �= ∅ contains no constraints of B(H). 

L 
Let a point x � y if (x1, ‖x‖2) ≤ (y1, ‖y‖2) (x is better than y). 

∗Let x ∗ (T ) be the optimal solution over a set of constraints T . Then  x (R ∪S) satisfies 
∗all the constraints of B(H) (it is feasible), and thus x ∗ (R ∪ S) � x (B(H)). 

∗ ∗However, since R ∪ S ⊂ H, we know that x ∗ (R ∪ S) � x (H) =  x (B(H)). Thus,  
∗ x (R ∪ S) has the same obj. fcn value and norm as x ∗ (B(H)). By the uniqueness of 

∗ ∗this point, x ∗ (R ∪ S) =  x (B(H)) = x (H), and  V = ∅. Contradiction! 
So, every time V is added to S, at least one extreme constraint of H is added (so we’ll 
do this at most d times). 
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Recursive Algorithm: Proof of Lemma 2


Proof. Lemma 2: The expected size of V is no more than d(m−r+1) . r−d 

First assume problem nondegenerate.


Let CH = {x ∗ (T ∪ S)|T ⊆ H\S}, subset of optima.


Let CR = {x ∗ (T ∪ S)|T ⊆ R}


The call Recursive(R ∪ S) returns an element x ∗ (R ∪ S):


• an element of CH 

• unique element of CR satisfying every constraint in R. 
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Recursive Algorithm: Proof of Lemma 2


Choose x ∈ CH and let vx = number of constraints in H violated by x. � ∗ � 
E[|V |] =  E[ x∈CH 

vxI(x = x (R ∪ S))] = vxPxx∈CH 

where 

∗ 1 if x = x ∗ (R ∪ S)
I(x = x (R ∪ S)) = 

0 otherwise 

and Px = P (x = x ∗ (R ∪ S)) 

How to find  Px? 
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Recursive Algorithm: Proof of Lemma 2


∗Let N = number of subsets of H\S of size r s.t. x ∗ (subset) = x (R ∪ S). 

m NThen N = Px and Px = m . r ( r )

∗To find N , note that  x ∗ (subset) ∈ CH and x (subset) = x ∗ (R ∪ S) only if 

∗ • x (subset) ∈ CR as well 
∗ • x (subset) satisfies all constraints of R 

∗Therefore, N = No. of subsets of H\S of size r s.t. x ∗ (subset) ∈ CR and x (subset) 
satisfies all constraints of R. 
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Recursive Algorithm: Proof of Lemma 2


∗For some such subset of H\S of size r and such that x ∗ (subset) = x (R ∪ S), let  T 
∗be the minimal set of constraints such that x ∗ (subset) = x (T ∪ S). 

∗ • x (subset) ∈ CR implies T ⊆ R 

• nondegeneracy implies T is unique and |T | ≤ d 

Let ix = |T |. 
∗ ∗In order to have x ∗ (T ∪ S) = x (R ∪ S) (and thus x ∗ (subset) = x (R ∪ S)), when 

constructing our subset we must choose: 

• the ix constraints of T ⊆ R 

• r − ix constraints from H\S\T \V 
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r−ix ) m−r+1(m−vx−ix(m−vx−ix 

Therefore, N = m−vx−ix and Px = (m ≤ r−d r−ix−1 ) 
(mr−ix r ) r ) 

(m−vx−ix � r−ix−1 ) ≤ dm−r+1E[|V |] ≤ m−r+1 
x∈CH 

vx (mr−d
r ) r−d 

(where the summand is E[No. of x ∈ CR violating exactly one constraint in R] ≤ d) 

For the degenerate case, we can perturb the vector b by adding (ε, ε2, ..., εn) and 
show that the bound on |V | holds for this perturbed problem, and that the perturbed 
problem has at least as many violated constraints as the original degenerate problem. 
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Recursive Algorithm: Proof of Lemma 3


Proof. Lemma 3: P(successful execution) ≥ 1/2; E[Executions til 1st success] ≤ 2. 

√
Here, P(unsuccessful execution) = P (|V | > 2 n) 

√ √ 
2E[|V |] ≤ 2dm−r+1 = 2n−d n+1 (since r = d 

√ 
n) ≤ 2 n√ 

r−d n−1 

√
So, P(unsuccessful execution)= P (|V | > 2 n) ≤ P (|V | > 2E[|V |]) ≤ 1/2, by  
the Markov Inequality. 

P(successful execution) ≥ 1/2, and the expected number of loops until our first 
successful execution is less than 2. 
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Recursive Algorithm: Running Time


As long as n >  9d2 , 

•	 Have at most d+1  augmentations to S (succesful iterations), with expected 2 tries 
until success √	 √ •	 With each success, S grows by at most 2 n, since  |V | ≤ 2 n 

•	 After each success, we run the Recursive algorithm on a problem of size |S ∪R| ≤√ √ √ 
2d n + d n = 3d n 

•	 After each recursive call, we check for violated constraints, which takes O(nd) each 
of at most d + 1  times 

√ 
T (n, d) ≤ 2(d + 1)T (3d n, d) +  O(d2 n), for n >  9d2 
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Algorithm 2: Iterative


•	 Doesn’t call itself, calls Simplex directly each time 

•	 Associates weight wh to each constraint which determines the probability with 
which it is selected 

•	 Each time a constraint is violated, its weight is doubled 

•	 Don’t add V to a set  S; rather reselect R (of size 9d2) over and over until it includes 
the set B(H) 
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Algorithm 2: Iterative


Input: A set of constraints H. Output: The optimum B(H) 

1. ∀h ∈ H, wh ← 1; Cd = 9d2 

2. If n ≤ Cd, return Simplex(H) 
2.1 else repeat:


choose R ⊂ H at random, with |R| = r = Cd


x ←Simplex(R)

V ← {h ∈ H| vertex defined by x violates h}


w(H)if w(V ) ≤ 29d−1 then for h ∈ V , wh ← 2wh 

until V = ∅ 

2.2 return x 
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Iterative Algorithm: Analysis


•	 Lemma 1: “If the set V is nonempty, then it contains a constraint of B(H)” still 
holds (proof as above with S = ∅). 

•	 Lemma 2: “Let S ⊆ H and let R ⊆ H\S be a random subset of size r, with 
|H\S| = m. Let  V ⊂ H be the set of constraints violated by O(R ∪ S). Then  
the expected size of V is no more than d(m−r+1) ” still holds with the following r−d 
changes. Consider each weight-doubling as the creation of multinodes. So “size” of 
a set is actually its weight. So we have S = ∅, and thus |H\S| = m = w(H). 

+1	 ≤ w(H)This gives us E[w(V )] ≤ d(w(H)−9d2

9d−19d2−d 

•	 Lemma 3: If we define a “successful iteration” to be w(V ) ≤ 2w(H) , then Lemma 3 9d−1 
holds, and the probability that any given execution of the loop body is ”successful” 
is at least 1/2, and so on average, two executions or less are required to obtain a 
successful one. 
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Iterative Algorithm: Running Time


The Iterative Algorithm runs in O(d2 n log n)+(d log n)O(d)d/2+O(1) expected time, 
as n → ∞, where the constant factors do not depend on d. 

First start by showing expected number of loop iterations = O(d log n) 

•	 By Lemma 3.1, at least one extreme constraint h ∈ B(H) is doubled during a 
successful iteration 

•	 Let d′ = |B(H)|. After  kd′ successful executions w(B(H)) = 2nh ,h∈B(H) 

where nh is  the number of times  h entered V and thus h∈B(H) nh	 ≥ kd′ 

•	 h∈B(H) wh ≥ h∈B(H) 2
k = d′2k


2
•	 When members of V are doubled, increase in w(H) =  w(V ) ≤ 9d−1 , so after kd′ 

successful iterations, we have 
′ 2kd

9d
2 
−1)

kd 9d−1w(H) ≤ n(1 + ≤ ne 
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•	 V sure to be empty when w(B(H)) > w(H) (i.e. P (Choose B(H)) > 1). This  
gives us:


k >  ln(n/d′) , or  kd′ = O(d log n) successful iterations = O(d log n) iterations.

ln 2− 2d 

9d−1 

Within a loop: 

•	 Can select a sample R in O(n) time [Vitter ’84] 
•	 Determining violated constraints, V , is  O(dn) 

2Cd•	 Simplex algorithm takes dO(1) time per vertex, times �d/2� 
vertices [?]. Using 

Stirling’s approximation, this gives us O(d)d/2+O(1) for Simplex 

Total running time: 

O(d log n) ∗ [O(dn) +  O(d)d/2+O(1)] =  O(d2 n log n) + (d log n)O(d)d/2+O(1) 
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Algorithm 3: Mixed


•	 Follow the Recursive Algorithm, but rather than calling itself, call the Iterative 
Algorithm instead √ •	 Runtime of Recursive: T (n, d) ≤ 2(d + 1)T (3d n, d) +  O(d2 n), for n >  9d2 �	 √ •	 In place of T (3d (n), substitute in runtime of Iterative algorithm on 3d n 
constraints √ •	 Runtime of Mixed Algorithm: O(d2 n)+(d2 log n)O(d)d/2+O(1)+O(d4 n log n) 
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Contributions of this paper to the field


•	 Leading term in dependence on n is O(d2 n), an improvement over O(d3dn) 

•	 Algorithm can also be applied to integer programming (Jan’s talk) 
•	 Algorithm was later applied as overlying algorithm to “incremental” algorithms 

(Jan’s talk) to give a sub-exponential bound for linear programming (rather than 
using Simplex once n ≤ 9d2, use an incremental algorithm) 
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