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Outline

Part I: Integer Linear Programming (ILP)
• Previous work
• Algorithm for solving Integer Linear Programs [Clarkson 1995] 

based on the mixed algorithm for LP (Susan)
– Concept
– Running Time Analysis

Part II: Incremental Linear Programming
• Concept
• SeideLP [Seidel 1991]
• BasisLP [Sharir and Welzl 1992]
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Part I: Integer Linear Programming
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Previous Work

• [Lenstra 1983] showed how to solve an ILP in polynomial time 
when the numbers of variables is fixed.  

• Subsequent improvements (e.g. by [Frank and Tardos 1987]) 
show that the fasted deterministic algorithm requires           
operations on           -bit numbers.

• Running time of new ILP algorithm:
This is substantially faster than Lenstra’s for 
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ILP Problem

• Find the optimum of:

where                                      and     
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Notation and Preliminaries

• Let:
– denote the set of constraints defined by      and          
– denote the optimal solution of the ILP defined on

(not the corresponding LP relaxation).
• Assume:

– Bounded solution by adding to      a new set of        constraints     :

where                                            and where we use a result by 
[Schrijver 1986]: if an ILP has finite solution, then every coordinate 
of that optimum has size no more than       where      is the facet 
complexity of                                                 

– Unique solution by choosing the lexicographically largest point 
achieving the optimum value.
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ILP Algorithm: Concept

• First it is established that an optimum is determined by a small
set ([Bell 1977] and [Scarf 1977]):
Lemma: There is a set               with                        and with        

• ILP algorithms are variations on the LP algorithms, with sample 
sizes using       rather than     and using Lenstra’s algorithm in 
the base case.

• Here, we convert the mixed algorithm for LPs to a mixed 
algorithm for ILPs, establishing the right sample sizes and 
criteria for successful iterations in both the recursive and 
iterative part of the mixed algorithm.
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ILP Algorithm: Details

• Lemma 2, related to the LP recursive algorithm, needs to be 
redone due to the fact that       is not unique.

• Reminder: why do we need lemma 2?
We want to make sure the set of violated constraints     does not 
become too big.

• Lemma 2 (ILP version): Let               and let                     be a 
random subset of size                  with                     Let              
be the set of constraints violated by                    Then with 
probability

• Other necessary lemma’s remain valid or can be adapted easily, 
yielding the following essential parameters for the ILP mixed 
algorithm:
– Recursive part:                            use Lenstra’s algorithm for  

and require                          for a successful iteration.
– Iterative part:                                       with a corresponding       bound 

of
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ILP Algorithm: Proof of Lemma 2 (ILP version)

• Proof.  Lemma 2 (ILP version):  With probability 

• Assume     is empty.  For     not empty: similar proof.
Let                          and let         denote the 
number of constraints in       violated by                
We know that                                  for some          with

We want to find             such that the probability that      is 
less then              This probability is bounded above by:

which is no more than: 
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ILP Algorithm: Proof of Lemma 2 (cont’d)

which is again no more than:

and using elementary bounds, this quantity is less than
for    
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ILP Algorithm: Running Time

• We have the following theorem:
The ILP algorithm requires expected   

row operations on            -bit vectors, and

expected operations on               -bit numbers, as               where 
the constant factors do not depend on     or
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Part II: Incremental Linear Programming
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Incremental LP

• Randomized incremental algorithms for LP
• Concept:

– add     constraints in random order,
– after adding each constraint, determine the optimum of the 

constraints added so far.
• Two algorithms will be discussed:

– SeideLP
– BasisLP
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Algorithm SeideLP

Input: A set of constraints 
Output: The optimum of the LP defined by

0. if output 
1. Pick a random constraint 

Recursively find
2.1. if does not violate     output               to be 
the optimum 
2.2. else project all the constraints of               onto      and 
recursively solve this new linear programming problem; 
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SeideLP: Running Time

• Let              denote an upper bound on the expected running 
time for a problem with     constraints in     dimensions.

• Then: 

– First term: cost of recursively solving the LP defined by the 
constraints

– Second term: checking whether     violates 
– Third term (with probability        ): cost of projecting + recursively 

solving smaller LP.
• Theorem: There is a constant     such that the recurrence 

satisfies the solution
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SeideLP: Further Discussion

• In Step 2.2. we completely 
discard any information obtained 
from the solution of the LP

• From the above figure, it follows we must consider all 
constraints in 

• But: Can we use                   to “jump-start” the recursive call in 
step 2.2.?  

• RESULT:  Algorithm BasisLP
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Algorithm BasisLP

Input:
Output: A basis      for   

0. If               output
1. Pick a random constraint

BasisLP(                  );
2.1. if does not violate      output
2.2. else output BasisLP(     Basis(               ));

Basis returns a basis for a set of          or fewer constraints.
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BasisLP: Why does it work?

• Each invocation of Basis occurs when the violation test in 2.1. 
fails (i.e.     does violate     ).

• What is the probability that we fail a violation test?
– Let
– Remember: 
– Pr( violates the optimum of               )
– This probability decreases further if      contains some of the 

constraints of 
– This was indeed the motivation for modifying SeideLP to BasisLP.
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BasisLP: Running Time

• Notation:
– Given                     , we call     

enforcing in             if

– Let            denote     minus the number of constraints that are 
enforcing in                        is called the hidden dimension of

• Lemma 1: If     is enforcing in            then (i)                and (ii)     
is extreme in all       such that

• So, the probability that a violation occurs 
can be bounded by 

• We establish that the          decreases by at least 1 at each 
recursive call in step 2.2.  It turns out         is likely to decrease 
much faster.

• Theorem: The expected running time of BasisLP is
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BasisLP: Analysis Details 

• Proof of Lemma 1.  If is enforcing in            then
– (i)  

We have                                      which can not be true if       were a 
subset of 

– (ii)     is extreme in all       such that
Assume the contrary: 

a 
contradiction.
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BasisLP: Analysis Details (Cont’d)
• Lemma 2: Let                             and let                    be an

extreme constraint in      Let     be a basis of                
Then:
(i) Any constraint      that is enforcing in            is also enforcing in 
(ii)     is enforcing in  
(iii)

Proof:
– (i) 

then:
– (ii)  Since     is extreme in
– (iii) Follows readily.  

• So, the numerator of                             decreases by at least 1 at 
each execution. 
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BasisLP: Analysis Details (Cont’d)

• Show that this decrease is likely to be faster.
• Given                      and a random                 we bound the 

probability that     violates                        If it does, check the 
probability distribution of the resulting hidden dimension.

• Lemma 3: Let                       be the extreme constraints of      
that are not in       numbered so that 

Then, for all     and for                      is enforcing in
Basis                                   (proof: immediate from lemma 2.)

• In other words: when             then all of                    will be 
enforcing and the arguments of the recursive call will have 
hidden dimension  

• Observation: since any       is equally likely to be       is uniformly 
distributed on the integers in             and the resulting hidden 
dimension is uniformly distributed on the integers in 
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BasisLP: Analysis Details (Cont’d)

• Let              denote the maximum expected number of violation
tests for a call to BasisLP with arguments              where          
and  

• We get:

• This yields: 
and consequently the expected running time of BasisLP is

Augmenting the analysis with Clarkson’s sampling technique 
improves the running time of the mixed algorithm to
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