
I. Integer programming part of Clarkson-paper

II. Incremental Linear Programming, Section 9.10.1 in
Randomized Algorithms-book

presented by Jan De Mot
September 29, 2003

1/23

This presentation is based on: Clarkson, Kenneth L. Las Vegas Algorithms for Linear and Integer Programming When the Dimension
is Small. Journal of the ACM 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE
Symposium on Foundations of Computer Science, 1988.

and Chapter 9 of: Motwani, Rajeev, and Prabhakar Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University
Press, 1995.

Outline

Part I: Integer Linear Programming (ILP)
• Previous work
• Algorithm for solving Integer Linear Programs [Clarkson 1995]

based on the mixed algorithm for LP (Susan)
– Concept
– Running Time Analysis

Part II: Incremental Linear Programming
• Concept
• SeideLP [Seidel 1991]
• BasisLP [Sharir and Welzl 1992]

2/23

Part I: Integer Linear Programming

3/23

Previous Work

• [Lenstra 1983] showed how to solve an ILP in polynomial time
when the numbers of variables is fixed.

• Subsequent improvements (e.g. by [Frank and Tardos 1987])
show that the fasted deterministic algorithm requires
operations on -bit numbers.

• Running time of new ILP algorithm:
This is substantially faster than Lenstra’s for

4/23

ILP Problem

• Find the optimum of:

where and

5/23

Notation and Preliminaries

• Let:
– denote the set of constraints defined by and
– denote the optimal solution of the ILP defined on

(not the corresponding LP relaxation).
• Assume:

– Bounded solution by adding to a new set of constraints :

where and where we use a result by
[Schrijver 1986]: if an ILP has finite solution, then every coordinate
of that optimum has size no more than where is the facet
complexity of

– Unique solution by choosing the lexicographically largest point
achieving the optimum value.

6/23

ILP Algorithm: Concept

• First it is established that an optimum is determined by a small
set ([Bell 1977] and [Scarf 1977]):
Lemma: There is a set with and with

• ILP algorithms are variations on the LP algorithms, with sample
sizes using rather than and using Lenstra’s algorithm in
the base case.

• Here, we convert the mixed algorithm for LPs to a mixed
algorithm for ILPs, establishing the right sample sizes and
criteria for successful iterations in both the recursive and
iterative part of the mixed algorithm.

7/23

ILP Algorithm: Details

• Lemma 2, related to the LP recursive algorithm, needs to be
redone due to the fact that is not unique.

• Reminder: why do we need lemma 2?
We want to make sure the set of violated constraints does not
become too big.

• Lemma 2 (ILP version): Let and let be a
random subset of size with Let
be the set of constraints violated by Then with
probability

• Other necessary lemma’s remain valid or can be adapted easily,
yielding the following essential parameters for the ILP mixed
algorithm:
– Recursive part: use Lenstra’s algorithm for

and require for a successful iteration.
– Iterative part: with a corresponding bound

of

8/23

ILP Algorithm: Proof of Lemma 2 (ILP version)

• Proof. Lemma 2 (ILP version): With probability

• Assume is empty. For not empty: similar proof.
Let and let denote the
number of constraints in violated by
We know that for some with

We want to find such that the probability that is
less then This probability is bounded above by:

which is no more than:

9/23

ILP Algorithm: Proof of Lemma 2 (cont’d)

which is again no more than:

and using elementary bounds, this quantity is less than
for

10/23

ILP Algorithm: Running Time

• We have the following theorem:
The ILP algorithm requires expected

row operations on -bit vectors, and

expected operations on -bit numbers, as where
the constant factors do not depend on or

11/23

Part II: Incremental Linear Programming

12/23

Incremental LP

• Randomized incremental algorithms for LP
• Concept:

– add constraints in random order,
– after adding each constraint, determine the optimum of the

constraints added so far.
• Two algorithms will be discussed:

– SeideLP
– BasisLP

13/23

Algorithm SeideLP

Input: A set of constraints
Output: The optimum of the LP defined by

0. if output
1. Pick a random constraint

Recursively find
2.1. if does not violate output to be
the optimum
2.2. else project all the constraints of onto and
recursively solve this new linear programming problem;

14/23

SeideLP: Running Time

• Let denote an upper bound on the expected running
time for a problem with constraints in dimensions.

• Then:

– First term: cost of recursively solving the LP defined by the
constraints

– Second term: checking whether violates
– Third term (with probability): cost of projecting + recursively

solving smaller LP.
• Theorem: There is a constant such that the recurrence

satisfies the solution

15/23

SeideLP: Further Discussion

• In Step 2.2. we completely
discard any information obtained
from the solution of the LP

• From the above figure, it follows we must consider all
constraints in

• But: Can we use to “jump-start” the recursive call in
step 2.2.?

• RESULT: Algorithm BasisLP

16/23

Algorithm BasisLP

Input:
Output: A basis for

0. If output
1. Pick a random constraint

BasisLP();
2.1. if does not violate output
2.2. else output BasisLP(Basis());

Basis returns a basis for a set of or fewer constraints.

17/23

BasisLP: Why does it work?

• Each invocation of Basis occurs when the violation test in 2.1.
fails (i.e. does violate).

• What is the probability that we fail a violation test?
– Let
– Remember:
– Pr(violates the optimum of)
– This probability decreases further if contains some of the

constraints of
– This was indeed the motivation for modifying SeideLP to BasisLP.

18/23

BasisLP: Running Time

• Notation:
– Given , we call

enforcing in if

– Let denote minus the number of constraints that are
enforcing in is called the hidden dimension of

• Lemma 1: If is enforcing in then (i) and (ii)
is extreme in all such that

• So, the probability that a violation occurs
can be bounded by

• We establish that the decreases by at least 1 at each
recursive call in step 2.2. It turns out is likely to decrease
much faster.

• Theorem: The expected running time of BasisLP is

19/23

BasisLP: Analysis Details

• Proof of Lemma 1. If is enforcing in then
– (i)

We have which can not be true if were a
subset of

– (ii) is extreme in all such that
Assume the contrary:

a
contradiction.

20/23

BasisLP: Analysis Details (Cont’d)
• Lemma 2: Let and let be an

extreme constraint in Let be a basis of
Then:
(i) Any constraint that is enforcing in is also enforcing in
(ii) is enforcing in
(iii)

Proof:
– (i)

then:
– (ii) Since is extreme in
– (iii) Follows readily.

• So, the numerator of decreases by at least 1 at
each execution.

21/23

BasisLP: Analysis Details (Cont’d)

• Show that this decrease is likely to be faster.
• Given and a random we bound the

probability that violates If it does, check the
probability distribution of the resulting hidden dimension.

• Lemma 3: Let be the extreme constraints of
that are not in numbered so that

Then, for all and for is enforcing in
Basis (proof: immediate from lemma 2.)

• In other words: when then all of will be
enforcing and the arguments of the recursive call will have
hidden dimension

• Observation: since any is equally likely to be is uniformly
distributed on the integers in and the resulting hidden
dimension is uniformly distributed on the integers in

22/23

BasisLP: Analysis Details (Cont’d)

• Let denote the maximum expected number of violation
tests for a call to BasisLP with arguments where
and

• We get:

• This yields:
and consequently the expected running time of BasisLP is

Augmenting the analysis with Clarkson’s sampling technique
improves the running time of the mixed algorithm to

23/23

	I. Integer programming part of Clarkson-paperII. Incremental Linear Programming, Section 9.10.1 in Randomized Algo
	Outline
	Part I: Integer Linear Programming
	Previous Work
	ILP Problem
	Notation and Preliminaries
	ILP Algorithm: Concept
	ILP Algorithm: Details
	ILP Algorithm: Proof of Lemma 2 (ILP version)
	ILP Algorithm: Proof of Lemma 2 (cont’d)
	ILP Algorithm: Running Time
	Part II: Incremental Linear Programming
	Incremental LP
	Algorithm SeideLP
	SeideLP: Running Time
	SeideLP: Further Discussion
	Algorithm BasisLP
	BasisLP: Why does it work?
	BasisLP: Running Time
	BasisLP: Analysis Details
	BasisLP: Analysis Details (Cont’d)
	BasisLP: Analysis Details (Cont’d)
	BasisLP: Analysis Details (Cont’d)

