l. Integer programming part of Clarkson-paper

ll. Incremental Linear Programming, Section 9.10.1 in
Randomized Algorithms-book

presented by Jan De Mot
September 29, 2003

This presentation is based on: Clarkson, Kenneth L. Las Vegas Algorithms for Linear and Integer Programming When the Dimension

is Small. Journal of the ACM 42(2), March 1995, pp. 488-499. Preliminary version in Proceedings of the 29th Annual IEEE
Symposium on Foundations of Computer Science, 1988.

and Chapter 9 of: Motwani, Rajeev, and Prabhakar Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University
Press, 1995.

1/23

Outline

Part I: Integer Linear Programming (ILP)
 Previous work

« Algorithm for solving Integer Linear Programs [Clarkson 1995]
based on the mixed algorithm for LP (Susan)

— Concept
— Running Time Analysis
Part lI: Incremental Linear Programming
« Concept
o SeidelLP [Seidel 1991]
 BasisLP [Sharir and Welzl 1992]

2/23

Part | Integer Linear Programming

3/23

Previous Work

[Lenstra 1983] showed how to solve an ILP in polynomial time
when the numbers of variables is fixed.

Subsequent improvements (e.g. by [Frank and Tardos 1987])
show that the fasted deterministic algorithm requires d°(¥ng
operations on d°M¢ -bit numbers.

Running time of new ILP algorithm: O(2¢ + 8%/ninnInn)
This is substantially faster than Lenstra’s for n > d.

4/23

ILP Problem

* Find the optimum of:
max{cx|Ax < b; x integral},

where A € Q" be Q" and ce Q.

5/23

Notation and Preliminaries

e Let:
— H denote the set of constraints defined by A and b,
— x*(S) denote the optimal solution of the ILP defined on S C H
(not the corresponding LP relaxation).
e Assume:
— Bounded solution by adding to [H a new set of 2d constraints [:
2| < 28441, for 1 <i<d,
where K,; = 2d?¢ + [log>(n + 1)], and where we use a result by
[Schrijver 1986]: if an ILP has finite solution, then every coordinate
of that optimum has size no more thanK; where @ is the facet
complexity of F(A,b).
— Unique solution by choosing the lexicographically largest point
achieving the optimum value.

6/23

ILP Algorithm: Concept

First it is established that an optimum is determined by a small
set ([Bell 1977] and [Scarf 1977]):

Lemma: Thereisaset H* C H with |H*| <2%—1 and with
x"(H) =x"(H")
ILP algorithms are variations on the LP algorithms, with sample

sizes using 2¢ rather than d and using Lenstra’s algorithm in
the base case.

Here, we convert the mixed algorithm for LPs to a mixed
algorithm for ILPs, establishing the right sample sizes and
criteria for successful iterations in both the recursive and
iterative part of the mixed algorithm.

7123

ILP Algorithm: Detalls

Lemma 2, related to the LP recursive algorithm, needs to be
redone due to the fact that H * is not unique.

Reminder: why do we need lemma 2?7

We want to make sure the set of violated constraints V' does not
become too big.

Lemma 2 (ILP version): Let S c H,andlet RC H\S bea
random subset of size » > 29+, with |[H\ S|=n. LetV CS
be the set of constraints violated by x*(RUS). Then with
probability 1/2, |V| <29+ In(Inr)/r.
Other necessary lemma’s remain valid or can be adapted easily,
yielding the following essential parameters for the ILP mixed
algorithm:

— Recursive part: r = 24\/2nInn, use Lenstra’s algorithm for

n < 224154 and require |V| < v2nInn for a successful iteration.

— lterative part: 7 = 22474(2d + 4), with a corresponding |V| bound
of n(In2)/24+3,

8/23

ILP Algorithm: Proof of Lemma 2 (ILP version)

Proof. Lemma 2 (ILP version). With probability 1/2,
V| < 29+ 1n(nr)/r.

Assume S is empty. For S not empty: similar proof. 7

Let m = 2% — 1, and let vR denote the

number of constraints in H violated by z*(R).

We know that *(R) = x*(T"), forsome T'C R with |T'| < m.

We want to find k& < n such that the probability that vg > £ is
less then 1/2. This probability is bounded above by:

> > Pr(z*(T) = 2*(R)),

0<i<m TCH,|T|=ivp>k

which is no more than:

o ()
D

9/23

ILP Algorithm: Proof of Lemma 2 (cont’d)

which is again no more than:

(n—m—k)
(m+1)(;b> (722) ,
and using elementary bounds, this quantity is less than 1/2
for k > 2d+1n(|n r)/r.

10/23

ILP Algorithm: Running Time

 We have the following theorem:
The ILP algorithm requires expected
0(2% 4+ 8%/ninninn)
row operations on O(d>¢) -bit vectors, and
dPDginn

expected operations on 0(d°Mg)-bit numbers, as n — oo where
the constant factors do not depend on d or ¢-

11/23

Part Il Incremental Linear Programming

12/23

Incremental LP

 Randomized incremental algorithms for LP
e Concept:

— addm constraints in random order,

— after adding each constraint, determine the optimum of the
constraints added so far.

 Two algorithms will be discussed:
— SeidelLP
— BasisLP

13/23

Algorithm SeidelLP

Input: A set of constraints H .
Output: The optimum of the LP defined by H.

0.if |[H| = d, output B(H) = H.
1. Pick a random constraint h € H;
Recursively find B(H \ {h});

2.1.if B(H \ {h}) does not violate h, output B(H \ {h}) to be
the optimum B(H);

2.2. else project all the constraints of H \ {h}onto » and
recursively solve this new linear programming problem;

14/23

SeidelLP: Running Time

Let T'(n,d) denote an upper bound on the expected running
time for a problem with n constraints in d dimensions.

Then:
T(n,d) <T(n—1,d) +O(d) + £[O(dn) + T(n —1,d — 1)].
— First term: cost of recursively solving the LP defined by the

constraints H \ {h}
— Second term: checking whether h violates B(H \ {h})

— Third term (with probability d/n): cost of projecting + recursively
solving smaller LP.

Theorem: There is a constant b such that the recurrence
satisfies the solution T'(n, d) < bnd!.

15/23

SeideLP: Further Discussion
\

B(H\{(h})

In Step 2.2. we completely
discard any information obtained
from the solution of the LP H \ {h}.

B(H\{h})U{h}

From the above figure, it follows we must consider all
constraints in H.

But: Can we use B(H \ {h}) to “jump-start” the recursive call in
step 2.2.7
RESULT: Algorithm BasisLP

16/23

Algorithm BasisLP

Input: G, T. G
Output: A basis B for G.

0.1fG =T, outputT
1. Pick a random constraint h € G\ T';
T" =BasisLP(G \ {h},T);
2.1. if h does not violateT”, output 77;
2.2. else output BasisLP(G, Basis(7T" U {h}));

Basis returns a basis for a set of d + 1 or fewer constraints.

17/23

BasisLP: Why does it work?

 Each invocation of Basis occurs when the violation test in 2.1.
fails (i.e. h does violate T7).

 What is the probability that we fail a violation test?

Let |G| = <,
Remember: h € G\ T
Pr(h violates the optimum of G\ {h}) < d/(i — |T|)

This probability decreases further if 7' contains some of the
constraints of B(G)

This was indeed the motivation for modifying SeideLP to BasisLP.

18/23

BasisLP: Running Time

Notation:

— Given T C G C H,wecall h
enforcing in (G, T) if
O(G\ {h}) <O(T).

— Let Agp denote d minus the number of constraints that are
enforcing in (G, T). Ag ris called the hidden dimension of (G, T').

Lemma 1: If h is enforcing in (&, T) then (i) h € T', and (i) h

Is extreme inall G suchthat 7TC G C H.

So, the probability that a violation occurs

can be bounded by Ag /(i — |T7]).

We establish that the A r decreases by at least 1 at each
recursive call in step 2.2. It turns out A4 ris likely to decrease
much faster.

Theorem: The expected running time of BasisLP is O(d*2%n).

1 not enforcing for T = {1,2}

19/23

BasisLP: Analysis Detalils

 Proof of Lemma 1. If A is enforcing in (H,T) then
- heT.
We have O(H \ {h}) < O(T), which can not be true if 7" were a
subset of H \ {h}.

— (ii) h isextremeinall G suchthat T C G C H.
Assume the contrary: O(G \ {h}) = O(G).

O(T) <O(G) =0(G\{h}) SO(H\{h})<O(T), a
contradiction.

20/23

BasisLP: Analysis Details (Cont’d)

Lemma2: Let TCFCGCH, andlet h€ F\T be an
extreme constraint in F. Let .S be a basis of B(F \ {h}) U{h}.
Then:

(i) Any constraint g that is enforcing in (G, T') is also enforcing in (£.5);
(i) A Is enforcing in (£, S);
(ii)Aps < Agr— 1.

Proof:

— (i) O(T) < O(F\{r}) <O(5), O(G\{g}) < O(T),
then:O(F \ {g}) < O(G\ {g}) <O(T) < O(F\ {h}) < O(S).

— (i) Since h is extreme in F,O(F \ {h}) < O(S).

— (i) Follows readily.

So, the numerator of Ag /(i — |T']), decreases by at least 1 at
each execution.

21/23

BasisLP: Analysis Details (Cont’d)

Show that this decrease is likely to be faster.

Given T'C F C G, and arandom h € F\T we bound the
probability that h violates B(F \ {h}). If it does, check the
probability distribution of the resulting hidden dimension.

Lemma 3: Let 91,92, ---,9s be the extreme constraints of F
that are notin 7', numbered so that

O(F\{g1}) SOF \{g2}) < ...
Then, forall { andfor 1 <j <, g; Is enforcing in
(F,Basis(B(F \ {g;}) U{g:})). (proof: immediate from lemma 2.)

In other words: when h = g;, then all of {91.92,---. 9} will be
enforcing and the arguments of the recursive call will have
hidden dimension Ag 1 — 1.

Observation: since any ¢; is equally likely to beh, I is uniformly
distributed on the integers in [1,s], and the resulting hidden
dimension is uniformly distributed on the integers in [0, s — 1].

22/23

BasisLP: Analysis Details (Cont’d)

 Let T'(n,k) denote the maximum expected number of violation
tests for a call to BasisLP with arguments(G,T), where |G| =n
and AgT =k
 We get:
T(n, k) <T(n—1,k) + 1 4 He0te b=l

e Thisyields: T'(n,k) < 28(n — d),
and consequently the expected running time of BasisLP is
O(d*2%,).

Augmenting the analysis with Clarkson’s sampling technique

Improves the running time of the mixed algorithm to
O(d?n + bValogd|og n).

23/23

	I. Integer programming part of Clarkson-paperII. Incremental Linear Programming, Section 9.10.1 in Randomized Algo
	Outline
	Part I: Integer Linear Programming
	Previous Work
	ILP Problem
	Notation and Preliminaries
	ILP Algorithm: Concept
	ILP Algorithm: Details
	ILP Algorithm: Proof of Lemma 2 (ILP version)
	ILP Algorithm: Proof of Lemma 2 (cont’d)
	ILP Algorithm: Running Time
	Part II: Incremental Linear Programming
	Incremental LP
	Algorithm SeideLP
	SeideLP: Running Time
	SeideLP: Further Discussion
	Algorithm BasisLP
	BasisLP: Why does it work?
	BasisLP: Running Time
	BasisLP: Analysis Details
	BasisLP: Analysis Details (Cont’d)
	BasisLP: Analysis Details (Cont’d)
	BasisLP: Analysis Details (Cont’d)

