Semidefinite Programming (SDP) and the Goemans-Williamson MAXCUT Paper

Robert M. Freund

September 8, 2003

Outline

- Alternate View of Linear Programming
- Facts about Symmetric and Semidefinite Matrices
- SDP
- SDP Duality
- Approximately Solving MAXCUT using SDP and Random Vectors
- Interior-Point Methods for SDP

Alternative Perspective

 $LP: \text{minimize } c \cdot x$

s.t.
$$a_i \cdot x = b_i, \ i = 1, \ldots, m$$

$$x \in \Re^n_+$$
.

" $c \cdot x$ " means the linear function " $\sum_{j=1}^n c_j x_j$ "

 $\Re^n_+ := \{x \in \Re^n \mid x \ge 0\}$ is the nonnegative orthant.

 \Re^n_+ is a convex cone.

 $m{K}$ is convex cone if $m{x}, m{w} \in m{K}$ and $m{lpha}, m{eta} \geq m{0} \ \ \Rightarrow \ \ m{lpha} m{x} + m{eta} m{w} \in m{K}$.

Alternative Perspective

LP: minimize $c \cdot x$

s.t.
$$a_i \cdot x = b_i, \ i = 1, \ldots, m$$

$$x \in \Re^n_+$$
.

"Minimize the linear function $c \cdot x$, subject to the condition that x must solve m given equations $a_i \cdot x = b_i, i = 1, \ldots, m$, and that x must lie in the convex cone $K = \Re^n_+$."

Alternative Perspective

LP Dual Problem...

$$LD: ext{maximize } \sum_{i=1}^m y_i b_i$$
 s.t. $\sum_{i=1}^m y_i a_i + s = c$ $s \in \Re^n_+.$

For feasible solutions x of LP and (y,s) of LD, the duality gap is simply

$$c \cdot x - \sum_{i=1}^m y_i b_i = \left(c - \sum_{i=1}^m y_i a_i
ight) \cdot x = s \cdot x \geq 0$$

Alternative Perspective

...LP Dual Problem

If LP and LD are feasible, then there exists x^* and (y^*, s^*) feasible for the primal and dual, respectively, for which

$$c\cdot x^*-\sum_{i=1}^m y_i^*b_i=s^*\cdot x^*=0$$

Facts about the Semidefinite Cone

If X is an $n \times n$ matrix, then X is a symmetric positive semidefinite (SPSD) matrix if $X = X^T$ and

$$oldsymbol{v^T}oldsymbol{X}oldsymbol{v} \geq oldsymbol{0} \;\; ext{for any} \;\; oldsymbol{v} \in \Re^n$$

If X is an n imes n matrix, then X is a symmetric positive definite (SPD) matrix if $X = X^T$ and

$$v^TXv>0$$
 for any $v\in\Re^n, v\neq 0$

Facts about the Semidefinite Cone

 S^n denotes the set of symmetric n imes n matrices

 S^n_+ denotes the set of (SPSD) $n \times n$ matrices.

 S^n_{++} denotes the set of (SPD) $n \times n$ matrices.

Facts about the Semidefinite Cone

Let $X,Y\in S^n$.

" $X \succeq 0$ " denotes that X is SPSD

" $oldsymbol{X}\succeq oldsymbol{Y}$ " denotes that $oldsymbol{X}-oldsymbol{Y}\succeq oldsymbol{0}$

" $X \succ 0$ " to denote that X is SPD, etc.

Remark: $S^n_+ = \{ X \in S^n \mid X \succeq 0 \}$ is a convex cone.

If M is a square $n \times n$ matrix, then λ is an eigenvalue of M with corresponding eigenvector q if

$$Mq=\lambda q$$
 and $q
eq 0$.

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ enumerate the eigenvalues of M.

The corresponding eigenvectors q^1, q^2, \ldots, q^n of M can be chosen so that they are orthonormal, namely

$$\left(q^{i}\right)^{T}\left(q^{j}\right)=0 \text{ for } i
eq j, \text{ and } \left(q^{i}\right)^{T}\left(q^{i}\right)=1$$

Define:

$$Q:=\left[q^1\ q^2\ \cdots\ q^n
ight]$$

Then Q is an *orthonormal* matrix:

$$oldsymbol{Q}^Toldsymbol{Q} = oldsymbol{I}, \;\; ext{equivalently} \;\; oldsymbol{Q}^T = oldsymbol{Q}^{-1}$$

 $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of M

 q^1,q^2,\dots,q^n are the corresponding orthonormal eigenvectors of M

$$Q := \left[q^1 \ q^2 \ \cdots \ q^n
ight] \ Q^T Q = I, ext{ equivalently } Q^T = Q^{-1}$$

Define D:

$$D := egin{pmatrix} \lambda_1 & 0 & & 0 \ 0 & \lambda_2 & & \ & \ddots & & \ 0 & & \lambda_n \end{pmatrix} \ .$$

Property: $M = QDQ^T$.

The decomposition of M into $M = QDQ^T$ is called its eigendecomposition.

Facts about Symmetric Matrices

- If $X \in S^n$, then $X = QDQ^T$ for some orthonormal matrix Q and some diagonal matrix D. The columns of Q form a set of n orthogonal eigenvectors of X, whose eigenvalues are the corresponding entries of the diagonal matrix D.
- $X \succeq 0$ if and only if $X = QDQ^T$ where the eigenvalues (i.e., the diagonal entries of D) are all nonnegative.
- X > 0 if and only if $X = QDQ^T$ where the eigenvalues (i.e., the diagonal entries of D) are all positive.

Facts about Symmetric Matrices

ullet If M is symmetric, then

$$\det(M) = \prod_{j=1}^n \lambda_j$$

Facts about Symmetric Matrices

Consider the matrix M defined as follows:

$$M = \left(egin{array}{cc} P & v \ v^T & d \end{array}
ight),$$

where $P\succ 0$, v is a vector, and d is a scalar. Then $M\succeq 0$ if and only if $d-v^TP^{-1}v\geq 0$.

- ullet For a given column vector a, the matrix $X:=aa^T$ is SPSD, i.e., $X=aa^T\succeq 0$.
- ullet If $M\succeq 0$, then there is a matrix N for which $M=N^TN$. To see this, simply take $N=D^{\frac{1}{2}}Q^T$.

SDP

Semidefinite Programming

Think about X

Let $X \in S^n$. Think of X as:

- a matrix
- ullet an array of n^2 components of the form (x_{11},\ldots,x_{nn})
- \bullet an object (a vector) in the space S^n .

All three different equivalent ways of looking at X will be useful.

SDP

Semidefinite Programming

Linear Function of X

Let $X \in S^n$. What will a linear function of X look like?

If C(X) is a linear function of X, then C(X) can be written as $C \bullet X$, where

$$C ullet X := \sum_{i=1}^n \sum_{j=1}^n C_{ij} X_{ij}.$$

There is no loss of generality in assuming that the matrix \boldsymbol{C} is also symmetric.

SDP

Semidefinite Programming

Definition of SDP

SDP: minimize $C \bullet X$

s.t.
$$A_i ullet X = b_i \ , i = 1, \ldots, m,$$

$$X\succeq 0$$
,

" $X\succeq 0$ " is the same as " $X\in S^n_+$ "

The data for SDP consists of the symmetric matrix C (which is the data for the objective function) and the m symmetric matrices A_1, \ldots, A_m , and the m-vector b, which form the m linear equations.

Semidefinite Programming

SDP

Example...

$$A_1 = egin{pmatrix} 1 & 0 & 1 \ 0 & 3 & 7 \ 1 & 7 & 5 \end{pmatrix}, \quad A_2 = egin{pmatrix} 0 & 2 & 8 \ 2 & 6 & 0 \ 8 & 0 & 4 \end{pmatrix}, \ b = egin{pmatrix} 11 \ 19 \end{pmatrix}, \ ext{and} \ C = egin{pmatrix} 1 & 2 & 3 \ 2 & 9 & 0 \ 3 & 0 & 7 \end{pmatrix},$$

The variable X will be the 3×3 symmetric matrix:

$$X = \left(egin{array}{cccc} x_{11} & x_{12} & x_{13} \ x_{21} & x_{22} & x_{23} \ x_{31} & x_{32} & x_{33} \end{array}
ight),$$

$$SDP: ext{minimize} \qquad x_{11}+4x_{12}+6x_{13}+9x_{22}+0x_{23}+7x_{33} \ ext{s.t.} \qquad x_{11}+0x_{12}+2x_{13}+3x_{22}+14x_{23}+5x_{33} \ = \ 11 \ 0x_{11}+4x_{12}+16x_{13}+6x_{22}+0x_{23}+4x_{33} \ = \ 19$$

$$X = egin{pmatrix} x_{11} & x_{12} & x_{13} \ x_{21} & x_{22} & x_{23} \ x_{31} & x_{32} & x_{33} \end{pmatrix} \succeq 0.$$

Semidefinite Programming

SDP

...Example

$$SDP: ext{minimize} \qquad x_{11}+4x_{12}+6x_{13}+9x_{22}+0x_{23}+7x_{33} \ ext{s.t.} \qquad x_{11}+0x_{12}+2x_{13}+3x_{22}+14x_{23}+5x_{33} = 11 \ 0x_{11}+4x_{12}+16x_{13}+6x_{22}+0x_{23}+4x_{33} = 19$$

$$X = egin{pmatrix} x_{11} & x_{12} & x_{13} \ x_{21} & x_{22} & x_{23} \ x_{31} & x_{32} & x_{33} \end{pmatrix} \succeq 0.$$

It may be helpful to think of " $X \succeq 0$ " as stating that each of the n eigenvalues of X must be nonnegative.

Semidefinite Programming

SDP

$$LP \subset SDP$$

$$LP$$
: minimize $c \cdot x$

s.t.
$$a_i \cdot x = b_i, \;\; i = 1, \ldots, m$$
 $x \in \Re^n_+.$

Define:

$$A_i=egin{pmatrix} a_{i1}&0&\dots&0\ 0&a_{i2}&\dots&0\ dots&dots&\ddots&dots\ 0&0&\dots&a_{in} \end{pmatrix},\;\;i=1,\dots,m,\;\; ext{and}\;\;C=egin{pmatrix} c_1&0&\dots&0\ 0&c_2&\dots&0\ dots&dots&\ddots&dots\ 0&0&\dots&c_n \end{pmatrix}.$$

SDP: minimize $C \bullet X$

s.t.
$$A_iullet X=b_i\ ,i=1,\ldots,m, \ X_{ij}=0,\ i=1,\ldots,n,\ j=i+1,\ldots,n, \ X=egin{pmatrix} x_1&0&\ldots&0\ 0&x_2&\ldots&0\ dots&dots&\ddots&dots\ 0&0&\ldots&x_n \end{pmatrix}\succeq 0,$$

SDP Duality

$$SDD: ext{maximize } \sum_{i=1}^m y_i b_i$$

s.t.
$$\sum_{i=1}^m y_i A_i + S = C$$

$$S\succeq 0$$
.

Notice

$$S = C - \sum_{i=1}^m y_i A_i \succeq 0$$

SDP Duality

and so equivalently:

$$SDD: ext{maximize } \sum\limits_{i=1}^m y_i b_i$$

s.t.
$$C - \sum\limits_{i=1}^m y_i A_i \succeq 0$$

Example

SDP Duality

$$A_1 = egin{pmatrix} 1 & 0 & 1 \ 0 & 3 & 7 \ 1 & 7 & 5 \end{pmatrix}, \quad A_2 = egin{pmatrix} 0 & 2 & 8 \ 2 & 6 & 0 \ 8 & 0 & 4 \end{pmatrix}, \, b = egin{pmatrix} 11 \ 19 \end{pmatrix}, \, ext{ and } \, C = egin{pmatrix} 1 & 2 & 3 \ 2 & 9 & 0 \ 3 & 0 & 7 \end{pmatrix}.$$

SDD: maximize $11y_1 + 19y_2$

s.t.
$$y_1 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix} + y_2 \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix} + S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix}$$
 $S \succeq 0$

Example

SDP Duality

SDD: maximize $11y_1 + 19y_2$

s.t.
$$y_1 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix} + y_2 \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix} + S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix}$$

$$S\succeq 0$$

is the same as:

SDD: maximize

$$11y_1 + 19y_2$$

s.t.

SDP Duality

Weak Duality

Weak Duality Theorem: Given a feasible solution X of SDP and a feasible solution (y,S) of SDD, the duality gap is

$$Cullet X-\sum_{i=1}^m y_ib_i=Sullet X\geq 0$$
 .

If

$$Cullet X-\sum_{i=1}^m y_ib_i=0\;,$$

then X and (y,S) are each optimal solutions to SDP and SDD, respectively, and furthermore, SX=0.

SDP Duality

Strong Duality

Strong Duality Theorem: Let z_P^* and z_D^* denote the optimal objective function values of SDP and SDD, respectively. Suppose that there exists a feasible solution \hat{X} of SDP such that $\hat{X} \succ 0$, and that there exists a feasible solution (\hat{y}, \hat{S}) of SDD such that $\hat{S} \succ 0$. Then both SDP and SDD attain their optimal values, and

$$z_P^*=z_D^*$$
 .

Some Important Weaknesses of SDP

- There may be a finite or infinite duality gap.
- The primal and/or dual may or may not attain their optima.
- Both programs will attain their common optimal value if both programs have feasible solutions that are SPD.
- ullet There is no finite algorithm for solving SDP.
- ullet There is a simplex algorithm, but it is not a finite algorithm. There is no direct analog of a "basic feasible solution" for SDP.

M. Goemans and D. Williamson, *Improved Approximation Algorithms for Maximum Cut and Satisf iability Problems using Semidef inite Programming*, J. ACM 42 1115-1145, 1995.

G is an undirected graph with nodes $N = \{1, \ldots, n\}$ and edge set E.

Let $w_{ij} = w_{ji}$ be the weight on edge (i,j), for $(i,j) \in E$.

We assume that $w_{ij} \geq 0$ for all $(i,j) \in E$.

The MAX CUT problem is to determine a subset S of the nodes N for which the sum of the weights of the edges that cross from S to its complement \bar{S} is maximized ($\bar{S} := N \setminus S$).

Formulations

The MAX CUT problem is to determine a subset S of the nodes N for which the sum of the weights w_{ij} of the edges that cross from S to its complement \bar{S} is maximized ($\bar{S} := N \setminus S$).

Let
$$x_j=1$$
 for $j\in S$ and $x_j=-1$ for $j\in ar{S}$.

$$MAXCUT: ext{maximize}_x frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij} (1-x_i x_j)$$

s.t.
$$x_j \in \{-1,1\}, \ j=1,\ldots,n.$$

Formulations

$$MAXCUT: ext{maximize}_x rac{1}{4} \sum\limits_{i=1}^n \sum\limits_{j=1}^n w_{ij} (1-x_i x_j)$$

s.t.
$$x_j \in \{-1,1\}, \ j=1,\ldots,n.$$

Let

$$Y = xx^T$$
.

Then

$$Y_{ij} = x_i x_j$$
 $i = 1, \ldots, n, j = 1, \ldots, n.$

Formulations

Also let W be the matrix whose $(i,j)^{ ext{th}}$ element is w_{ij} for $i=1,\ldots,n$ and $j=1,\ldots,n$. Then

$$MAXCUT: ext{maximize}_{Y,x} frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij} \left(1 - Y_{ij}
ight)$$

s.t.
$$x_j \in \{-1,1\}, \ j=1,\ldots,n$$

$$Y = xx^T$$
.

Formulations

$$MAXCUT: ext{maximize}_{Y,x} frac{1}{4} \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} w_{ij} \left(1 - Y_{ij}
ight)$$

s.t.
$$x_j \in \{-1,1\}, \ j=1,\ldots,n$$

$$Y = xx^T$$
.

Formulations

The first set of constraints are equivalent to

$$Y_{jj}=1, j=1,\ldots,n$$
.

$$MAXCUT: ext{maximize}_{Y,x} \ frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij} \left(1 - Y_{ij}
ight)$$

s.t.
$$Y_{jj}=1,\ j=1,\ldots,n$$

$$Y = xx^T$$
.

Formulations

$$MAXCUT: ext{maximize}_{Y,x} \ frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij} \left(1 - Y_{ij}
ight)$$

s.t.
$$Y_{jj}=1, \quad j=1,\ldots,n$$

$$Y = xx^T$$
.

Notice that the matrix $Y = xx^T$ is a rank-1 SPSD matrix.

Formulations

We *relax* this condition by removing the rank-1 restriction:

$$RELAX: ext{maximize}_{Y} \ rac{1}{4} \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} w_{ij} \left(1 - Y_{ij}
ight)$$

s.t.
$$Y_{jj}=1, \quad j=1,\ldots,n$$

$$Y \succeq 0$$
.

It is therefore easy to see that RELAX provides an upper bound on MAXCUT, i.e.,

$$MAXCUT \leq RELAX$$
.

Computing a Good Solution

$$RELAX: ext{maximize}_{Y} frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(1 - Y_{ij}
ight)$$

s.t.
$$Y_{jj} = 1, j = 1, ..., n$$

$$Y \succeq 0$$
.

Let \hat{Y} solve RELAX

Factorize
$$\hat{Y} = \hat{V}^T \hat{V}$$

$$\hat{V} = [\hat{v}_1 \ \hat{v}_2 \ \cdots \ \hat{v}_n]$$
 and $\hat{Y}_{ij} = \left(\hat{V}^T \hat{V}
ight)_{ij} = \hat{v}_i^T \hat{v}_j$

Computing a Good Solution

Let \hat{Y} solve RELAX

Factorize $\hat{Y} = \hat{V}^T \hat{V}$

$$\hat{V} = [\hat{v}_1 \; \hat{v}_2 \; \cdots \; \hat{v}_n]$$
 and $\hat{Y}_{ij} = \left(\hat{V}^T \hat{V}
ight)_{ij} = \hat{v}_i^T \hat{v}_j$

Let r be a random uniform vector on the unit n-sphere S^n

$$S := \{i \mid r^T \hat{v}_i \geq 0\}$$

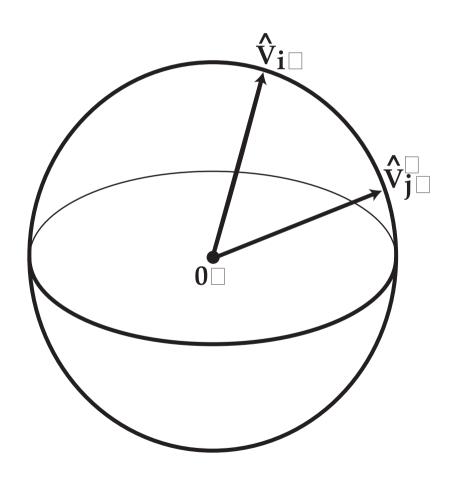
$$\overline{S} := \{i \mid r^T \hat{v}_i < 0\}$$

Computing a Good Solution

Proposition:

$$P\left(\mathsf{sign}(r^T\hat{v}_i)
eq \mathsf{sign}(r^T\hat{v}_j)
ight) = rac{rccos(\hat{v}_i^T\hat{v}_j)}{\pi}\,.$$

Computing a Good Solution



Computing a Good Solution

Let r be a random uniform vector on the unit n-sphere S^n

$$S := \{i \mid r^T \hat{v}_i \geq 0\}$$

$$\overline{S} := \{i \mid r^T \hat{v}_i < 0\}$$

Let E[Cut] denote the expected value of this cut.

Theorem: $E[\mathsf{Cut}] \geq 0.87856 imes MAXCUT$

Computing a Good Solution

$$egin{aligned} E[\mathsf{Cut}] &= rac{1}{2} \sum_{i,j} w_{ij} imes P\left(\mathsf{sign}(r^T \hat{v}_i)
eq \mathsf{sign}(r^T \hat{v}_j)
ight) \\ &= rac{1}{2} \sum_{i,j} w_{ij} rac{rccos(\hat{v}_i^T \hat{v}_j)}{\pi} \ &= rac{1}{2} \sum_{i,j} w_{ij} rac{rccos(\hat{Y}_{ij})}{\pi} \ &= rac{1}{2\pi} \sum_{i,j} w_{ij} rccos(\hat{Y}_{ij}) \end{aligned}$$

Computing a Good Solution

$$egin{aligned} E[\mathsf{Cut}] &= rac{1}{2\pi} \sum_{i,j} w_{ij} \arccos(\hat{Y}_{ij}) \ &= rac{1}{4} \sum_{i,j} w_{ij} \left(1 - \hat{Y}_{ij}
ight) rac{2rccos(\hat{Y}_{ij})}{1 - \hat{Y}_{ij}} \ &\geq rac{1}{4} \sum_{i,j} w_{ij} \left(1 - \hat{Y}_{ij}
ight) \min_{-1 \leq t \leq 1} rac{2rccos(t)}{\pi} \ &= RELAX imes \min_{0 \leq heta \leq \pi} rac{2}{\pi} rac{ heta}{1 - \cos heta} \ &\geq RELAX imes 0.87856 \end{aligned}$$

Computing a Good Solution

So we have

 $MAXCUT \geq E[\mathsf{Cut}] \geq RELAX imes 0.87856 \geq MAXCUT imes 0.87856$

This is an impressive result, in that it states that the value of the semidefinite relaxation is guaranteed to be no more than 12.2% higher than the value of NP-hard problem MAXCUT.

The Logarithmic Barrier Function for SPD Matrices

Let $X \succeq 0$, equivalently $X \in S^n_+$.

X will have n nonnegative eigenvalues, say $\lambda_1(X), \ldots, \lambda_n(X) \geq 0$ (possibly counting multiplicities).

$$\partial S^n_+ = \{X \in S^n \mid \lambda_j(X) \geq 0, j = 1, \ldots, n, \ ext{and } \lambda_j(X) = 0 ext{ for some } j \in \{1, \ldots, n\}\}.$$

The Logarithmic Barrier Function for SPD Matrices

$$\partial S^n_+ = \{X \in S^n \mid \lambda_j(X) \geq 0, j = 1, \ldots, n, \ ext{and } \lambda_j(X) = 0 ext{ for some } j \in \{1, \ldots, n\}\}.$$

A natural barrier function is:

$$B(X) := -\sum_{j=1}^n \ln(\lambda_i(X)) = -\ln\left(\prod_{j=1}^n \lambda_i(X)
ight) = -\ln(\det(X)).$$

This function is called the log-determinant function or the logarithmic barrier function for the semidefinite cone.

The Logarithmic Barrier Function for SPD Matrices

$$B(X) := -\sum_{j=1}^n \ln(\lambda_i(X)) = -\ln\left(\prod_{j=1}^n \lambda_i(X)
ight) = -\ln(\det(X)).$$

Quadratic Taylor expansion at $X = \bar{X}$:

$$B(ar{X}+lpha D)pprox B(ar{X})+lphaar{X}^{-1}ullet D+rac{1}{2}lpha^2\left(ar{X}^{-rac{1}{2}}Dar{X}^{-rac{1}{2}}
ight)ullet\left(ar{X}^{-rac{1}{2}}Dar{X}^{-rac{1}{2}}
ight)\;.$$

B(X) has the same remarkable properties in the context of interior-point methods for SDP as the barrier function $-\sum_{i=1}^{n}\ln(x_{j})$ does in the context of linear optimization.

Primal and Dual SDP

$$SDP: ext{minimize} \ C ullet X \ ext{s.t.} \qquad A_i ullet X = b_i \ \ , i = 1, \ldots, m, \ X \succeq 0$$

and

$$SDD: ext{maximize} \ \sum_{i=1}^m y_i b_i \ ext{s.t.} \ \ \sum_{i=1}^m y_i A_i + S = C \ S \succeq 0 \ .$$

If X and (y, S) are feasible for the primal and the dual, the duality gap is:

$$Cullet X-\sum_{i=1}^m y_ib_i=Sullet X\geq 0$$
 .

Also,

$$S \bullet X = 0 \iff SX = 0$$
.

Primal and Dual SDP

$$B(X) = -\sum_{j=1}^n \ln(\lambda_i(X)) = -\ln\left(\prod_{j=1}^n \lambda_i(X)
ight) = -\ln(\det(X)) \;.$$

Consider:

$$BSDP(\mu)$$
: minimize $C \bullet X - \mu \ln(\det(X))$

s.t.
$$A_i \bullet X = b_i$$
 , $i = 1, \ldots, m$,

$$X\succ 0$$
.

Let $f_{\mu}(X)$ denote the objective function of $BSDP(\mu)$. Then:

$$-\nabla f_{\mu}(X) = C - \mu X^{-1}$$

Primal and Dual SDP

$$BSDP(\mu)$$
: minimize $C \bullet X - \mu \ln(\det(X))$

s.t.
$$A_i ullet X = b_i \ , i = 1, \ldots, m,$$

$$X\succ 0$$
.

$$abla f_{\mu}(X) = C - \mu X^{-1}$$

Karush-Kuhn-Tucker conditions for $BSDP(\mu)$ are:

$$\left\{egin{aligned} A_iullet X=b_i \ ,i=1,\ldots,m,\ &X\succ 0,\ &C-\mu X^{-1}=\sum\limits_{i=1}^m y_iA_i. \end{aligned}
ight.$$

Primal and Dual SDP

$$\left\{egin{aligned} A_iullet X=b_i \ ,i=1,\ldots,m,\ X\succ 0,\ C-\mu X^{-1}=\sum\limits_{i=1}^m y_iA_i. \end{aligned}
ight.$$

Define

$$S=\mu X^{-1}\ ,$$

which implies

$$XS = \mu I$$
,

Primal and Dual SDP

and rewrite KKT conditions as:

$$\left\{egin{aligned} A_iullet X=b_i \;\;,i=1,\ldots,m,\;\;X\succ 0\ \sum\limits_{i=1}^m y_iA_i+S=C\ XS=\mu I. \end{aligned}
ight.$$

Primal and Dual SDP

$$\left\{egin{aligned} A_iullet X=b_i \;\;,i=1,\ldots,m,\;\;X\succ 0\ \sum\limits_{i=1}^m y_iA_i+S=C\ XS=\mu I. \end{aligned}
ight.$$

If (X, y, S) is a solution of this system, then X is feasible for SDP, (y, S) is feasible for SDD, and the resulting duality gap is

$$Sullet X = \sum_{i=1}^n \sum_{j=1}^n S_{ij} X_{ij} = \sum_{j=1}^n (SX)_{jj} = \sum_{j=1}^n (\mu I)_{jj} = n\mu.$$

Primal and Dual SDP

$$\left\{egin{aligned} A_iullet X=b_i \;\;,i=1,\ldots,m,\;\;X\succ0\ \sum\limits_{i=1}^m y_iA_i+S=C\ XS=\mu I. \end{aligned}
ight.$$

If (X, y, S) is a solution of this system, then X is feasible for SDP, (y, S) is feasible for SDD, the duality gap is

$$S \bullet X = n\mu$$
.

Primal and Dual SDP

This suggests that we try solving $BSDP(\mu)$ for a variety of values of μ as $\mu \to 0$.

Interior-point methods for SDP are very similar to those for linear optimization, in that they use Newton's method to solve the KKT system as $\mu \to 0$.

Website for SDP

A good website for semidefinite programming is:

http://www-user.tu-chemnitz.de/ helmberg/semidef.html.