Problem Set 6 Solution

17.881/882

November 5, 2004

1 Gibbons 2.4

Let us find the best-response for player 2.

 $\begin{array}{l} \text{If } c_1 \geq R \Longrightarrow U_2 = V \quad \forall c_2 \\ \text{If } c_2 < 0 \Longrightarrow U_2 = V - c_2^2 \quad \forall c_2 \geq R - c_1 \text{ and } U_2 = 0 \; \forall c_2 < R - c_1. \\ \text{From this, we have} \\ BR_2(c_1) = \\ \hline 0 & \text{if } c_1 \geq R \; \text{or } c_1 < R - \sqrt{V} \\ \hline R - c_1 & \text{if } R - \sqrt{V} < c_1 < R \\ \hline \epsilon \{0, \sqrt{V}\} & \text{if } c_1 = R - \sqrt{V} \\ \hline \end{array}$

Anticipating this response from player 2, player 1 conjectures that his payoff is as follows.

If $c_1 \ge R \Longrightarrow U_1 = V - c_1^2$ If $R - \sqrt{V} < c_1 < R \Longrightarrow U_1 = \delta V - c_1^2$ We need to consider different cases here. If $R - \sqrt{V} < 0$, then we have

characterised all possible payoffs for $c_1 \ge 0$.

If $R - \sqrt{V} = 0$, then we have that if $c_1 = 0$, $U_1 \in \{\delta V, 0\}$ depending on the decision of player 2 to invest or not.

If $R - \sqrt{V} > 0$, then for $c_1 \epsilon [0, R - \sqrt{V})$, $U_1 = -c_1^2$ and for $c_1 = R - \sqrt{V}$, $U_1 \epsilon \{\delta V - c_1^2, 0\}$ depending on the decision of player 2 to invest or not.

From these observations, we can derive the Nash Equilibrium **outcomes** (I stress outcomes; I'll only specify an outcome for player 2; a Nash Equilibrium strategy would write the full best-response correspondence for player 2 as written above).

1.1 $R - \sqrt{V} < 0$

Here, player 1 is choosing between $c_1 = 0$ and $c_1 = R$, with $U_1(0, BR_2(0)) = \delta V$; $U_1(R, BR_2(R)) = V - R^2$

Let us write c_i^{NEO} for the outcome of player i's choice in a Nash Equilibrium. So, we have $(c_1^{NEO}, c_2^{NEO}) =$

(0,R)	if $R > [(1 - \delta)V]^{1/2}$		
(R, 0)	if $R < [(1 - \delta)V]^{1/2}$		
$\{(0,R),(R,0)\}$	if $R = [(1 - \delta)V]^{1/2}$		

1.2 $R - \sqrt{V} = 0$

Here, we add the possibility that player 1 plays $R - \sqrt{V}$, where his payoffs depend on player 2's strategy. Player 2 is indifferent between $c_2 = \sqrt{V}$ and $c_2 = 0$. Let us assume that player 2 is playing the former strategy with probability p and the latter with probability 1 - p. Then it is easy to see that there is no Nash Equilibrium where $p \neq 1$. Why? Because then player 1 has no best-response. $U_1(R, BR_2(R)) = V - R^2 = 0$, $U_1(\varepsilon, BR_2(\varepsilon)) = \delta V - \varepsilon^2$ and $U_1(0, p * \sqrt{V} + (1 - p) * 0) = p\delta V$.

Then, if $p \neq 1$, $U_1(\varepsilon, BR_2(\varepsilon)) > U_1(0, p*\sqrt{V} + (1-p)*0) \Leftrightarrow \varepsilon < \sqrt{(1-p)\delta V}$, which can always be satisfied for ε sufficiently small. But, there is no unique strategy $\varepsilon > 0$ that maximises $U_1(\varepsilon, BR_2(\varepsilon))$... So, we will assume that p = 1. Then we have $(c_1^{NEO}, c_2^{NEO}) = (0, R)$

1.3 $R - \sqrt{V} > 0$

In addition to the previous case, we add the possibility that player 1 plays $c_1 < R - \sqrt{V}$, in which case $U_1 = -c_1^2$. Of course, we need only to retain the value $c_1 = 0$ within that interval. Yet again it is clear that we cannot have a Nash Equilibrium where player 2 is playing $c_2 = 0$ with some probability when $c_1 = R - \sqrt{V}$.¹ So, we have $(c_1^{NEO}, c_2^{NEO}) =$

(0, 0)	if $R > ($	$\left(1+\sqrt{\delta}\right)$	$\left(\sqrt{V} \right)$
$(R - \sqrt{V}, \sqrt{V})$	if $R < ($	$\left(1+\sqrt{\delta}\right)$	$\left \sqrt{V} \right $
$\{(0,0), (R-\sqrt{V},\sqrt{V})\}$	if $R = ($	$\left(1+\sqrt{\delta}\right)$	$\left(\sqrt{V} \right)$

¹The choices for 1 boil down to the following possible strategies, with the corresponding payoffs: $U_1(R, BR_2(R)) = V - R^2 < 0, U_1(0, BR_2(0)) = 0$ and $U_1(\gamma(R - \sqrt{V}), BR_2(\gamma(R - \sqrt{V}))) = \delta V - (\gamma(R - \sqrt{V}))^2$ where $1 < \gamma < \frac{R}{R - \sqrt{V}}$; $U_1((R - \sqrt{V}), p * \sqrt{V} + (1 - p) * 0) = p\delta V - (R - \sqrt{V})^2$. If $p \neq 1, U_1(\gamma(R - \sqrt{V}), BR_2(\gamma(R - \sqrt{V}))) > U_1((R - \sqrt{V}), p * \sqrt{V} + (1 - p) * 0) \Leftrightarrow (\gamma^2 - 1)(R - \sqrt{V})^2 < (1 - p)\delta V$ is satisfied for γ close enough to 1. But again,

there is no unique γ that maximises $U_1(\gamma(R - \sqrt{V}), BR_2(\gamma(R - \sqrt{V}))))$. (Note: I guess this depends on δ being large enough- you can always set $c_1 = 0$ and get 0- but I will ignore this at this point).