Problem Set 6 Solution

17.881/882

November 5, 2004

1 Gibbons 2.4

Let us find the best-response for player 2.

If $c_1 \ge R \Longrightarrow U_2 = V \quad \forall c_2$ If $c_2 < 0 \Longrightarrow U_2 = V - c_2^2 \quad \forall c_2 \ge R - c_1$ and $U_2 = 0 \ \forall c_2 < R - c_1$. From this, we have $BR_2(c_1) =$ 0 if $c_1 \geq R$ or $c_1 < R - \sqrt{V}$ $R - c_1$ if $R - \sqrt{V} < c_1 < R$ $\epsilon\{0,\sqrt{\ }$ \overline{V} } if $c_1 = R - \sqrt{V}$

Anticipating this response from player 2, player 1 conjectures that his payoff is as follows.

If $c_1 \ge R \Longrightarrow U_1 = V - c_1^2$
If $R - \sqrt{V} < c_1 < R \Longrightarrow U_1 = \delta V - c_1^2$
We need to consider different cases here. If $R - \sqrt{V} < 0$, then we have

characterised all possible payoffs for $c_1 \geq 0$.

If $R - \sqrt{V} = 0$, then we have that if $c_1 = 0$, $U_1 \in {\delta V, 0}$ depending on the decision of player 2 to invest or not.

If $R - \sqrt{V} > 0$, then for $c_1 \in [0, R - \sqrt{V})$, $U_1 = -c_1^2$ and for $c_1 = R - \sqrt{V}$, $U_1\epsilon{\delta V - c_1^2, 0}$ depending on the decision of player 2 to invest or not.

From these observations, we can derive the Nash Equilibrium outcomes (I stress outcomes; I'll only specify an outcome for player 2; a Nash Equilibrium strategy would write the full best-response correspondence for player 2 as written above).

1.1 $R - \sqrt{V} < 0$

Here, player 1 is choosing between $c_1 = 0$ and $c_1 = R$, with $U_1(0, BR_2(0)) = \delta V$; $U_1(R, BR_2(R)) = V - R^2$

Let us write c_i^{NEO} for the outcome of player i's choice in a Nash Equilibrium. So, we have $(c_1^{NEO}, c_2^{NEO}) =$

(0, R)	if $R > [(1 - \delta)V]^{1/2}$
(R,0)	if $R < [(1 - \delta)V]^{1/2}$
	$\{(0,R),(R,0)\}\mid$ if $R=[(1-\delta)V]^{1/2}$

1.2 $R - \sqrt{V} = 0$

Here, we add the possibility that player 1 plays $R-\sqrt{V}$, where his payoffs depend on player 2's strategy. Player 2 is indifferent between $c_2 = \sqrt{V}$ and $c_2 = 0$. Let us assume that player 2 is playing the former strategy with probability p and the latter with probability $1 - p$. Then it is easy to see that there is no Nash Equilibrium where $p \neq 1$. Why? Because then player 1 has no best-response. $U_1(R, BR_2(R)) = V - R^2 = 0$, $U_1(\varepsilon, BR_2(\varepsilon)) = \delta V - \varepsilon^2$ and $U_1(0, p * \sqrt{V} + (1-p) * 0) = p\delta V.$

Then, if $p \neq 1$, $U_1(\varepsilon, BR_2(\varepsilon)) > U_1(0, p*\sqrt{V} + (1-p)*0) \Leftrightarrow \varepsilon < \sqrt{(1-p)\delta V}$, which can always be satisfied for ε sufficiently small. But, there is no unique strategy $\varepsilon > 0$ that maximises $U_1(\varepsilon, BR_2(\varepsilon))$... So, we will assume that $p = 1$. Then we have $(c_1^{NEO}, c_2^{NEO}) = (0, R)$

1.3 $R - \sqrt{V} > 0$

In addition to the previous case, we add the possibility that player 1 plays $c_1 < R - \sqrt{V}$, in which case $U_1 = -c_1^2$. Of course, we need only to retain the value $c_1 = 0$ within that interval. Yet again it is clear that we cannot have a Nash Equilibrium where player 2 is playing $c_2 = 0$ with some probability when $c_1 = R - \sqrt{V}$.¹ So, we have $(c_1^{NEO}, c_2^{NEO}) =$

(0, 0)	if $R > (1 + \sqrt{\delta})\sqrt{V}$
$(R-\sqrt{V},\sqrt{V})$	if $R < (1 + \sqrt{\delta}) \sqrt{V}$
$\{(0,0),(R-\sqrt{V},\sqrt{V})\}\mid$ if $R=\left(1+\sqrt{\delta}\right)\sqrt{V}$	

¹The choices for 1 boil down to the following possible strategies, with the corresponding payoffs: $U_1(R, BR_2(R)) = V - R^2 < 0, U_1(0, BR_2(0)) = 0$ and $U_1(\gamma(R - \sqrt{V}), BR_2(\gamma(R - \sqrt{V}))) = δV - (γ(R - \sqrt{V}))^2$ where $1 < γ < \frac{R}{R - \sqrt{V}}$; $U_1((R - \sqrt{V}), p * \sqrt{V} + (1 - p) * 0) =$ $p\delta V - (R - \sqrt{V})^2$. If $p \neq 1, U_1(\gamma(R - \sqrt{V}), BR_2(\gamma(R - \sqrt{V}))) > U_1((R - \sqrt{V}), p * \sqrt{V} +$ $(1-p)*0 \Leftrightarrow (\gamma^2-1)(R-\sqrt{V})^2 < (1-p)\delta V$ is satisfied for γ close enough to 1. But again,

there is no unique γ that maximises $U_1(\gamma(R-\sqrt{V}),BR_2(\gamma(R-\sqrt{V})))$. (Note: I guess this depends on δ being large enough- you can always set $c_1 = 0$ and get 0- but I will ignore this at this point).