Problem Set 1 Solution

October 4, 2004

17.881/882

1 Gibbons 1.1 (p.48)

'The Normal-form representation of an n-player game specifies the players' strategy spaces $S_1, S_2, ..., S_n$ and their payoff functions $u_1, u_2, ..., u_n$.

We denote this game $G = \{S_1, S_2, ..., S_n ; u_1, u_2, ..., u_n\}$ ' (Gibbons, p.4). In such a game, players choose their actions simultaneously.

(The timing issue is important and contrasts the normal-form representation of the game with an extensive-form representation).

A Strictly Dominated strategy in a Normal-Form Game is a strategy s'_i such that there exists another strategy s''_i , with $s'_i, s''_i \epsilon S_i$, with the property that for each feasible combination of the other players' strategies, i's payoff from playing s'_i is strictly less than i's payoff from playing s''_i , ie

playing s'_i is strictly less than i's payoff from playing s''_i , ie $u_i(s_1, s_2, ..., s_{i-1}, s'_i, s_{i+1}, ..., s_n) < u_i(s_1, s_2, ..., s_{i-1}, s''_i, s_{i+1}, ..., s_n) \forall (s'_1, s'_2, ..., s_{i-1}, s'_{i+1}, ..., s'_n) \\ \epsilon (S_1, S_2, ..., S_{i-1}, S_{i+1}, ..., S_n) = 0$

A Pure-Strategy Nash Equilibrium in a Normal-Form Game is the solution $(s_1^*, ..., s_n^*)$ to a normal-form game in which, for each player i, s_i^* is (at least tied for) player i's best response to the strategies specified for the n-1 other players (Gibbons, p.8)