
1.4 Backward Kolmogorov equation

When mutations are less likely, genetic drift dominates and the steady state distributions are
peaked at x = 0 and 1. In the limit of µ1 = 0 (or µ2 = 0), Eq. (1.63) no longer corresponds
to a well-defined probability distribution, as the 1/x (or 1/(1−x)) divergence close to x = 0
(or x = 1) precludes normalization. This is the mathematical signal that our expression
for the steady state is no longer valid in this limit. Indeed, in the absence of mutations a
homogeneous population (all individuals A1 or A2) cannot change through random mating.
In the parlance of dynamics these are absorbing states, where transitions are possible into
the state but not away from it. In the presence of a single absorbing state, the steady state
probability is one at this state, and zero for all other states. If there is more than one
absorbing state, the steady state probability will be proportioned (split) among them.

In the absence of mutations, our models of reproducing populations have two absorbing
states at x = 0 and x = 1. At long times, a population of fixed number either evolves to
x = 0 with probability Π0, or to x = 1 with probability Π1 = 1 − Π0. The value of Π0

depends on the initial composition of the population that we shall denote by 0 < y < 1, i.e.
p(x, t = 0) = δ(x − y). Starting from this initial condition, we can follow the probability
distribution p(x, t) via the forward Kolmogorov equation (1.35). For purposes of finding the
long-time behavior with absorbing states it is actually more convenient to express this as a
conditional probability p(x, t|y) that starting from a state y at t = 0, we move to state x at
time t. Note that in any realization the variable x(t) evolves from one time step to the next
following the transition rates, but irrespective of its previous history. This type of process
with no memory is called Markovian, after the Russian mathematician Andrey Andreyevich
Markov (1856-1922). We can use this probability to construct evolution equations for the
probability by focusing on the change of position for the last step (as we did before in deriving
Eq. (1.35)), or the first step. From the latter perspective, we can write

p(x, t + dt|y) =

∫

dδy R(δy, y)dt× p(x, t|y + δy) +

(

1−

∫

dδy R(δy, y)dt

)

p(x, t|y) , (1.65)

where we employ the same parameterization of the reaction rates as in Eq. (1.30), with δy

denoting the change in position. (The second term is the probability that the particle does
not move in the initial dt.) The above equation merely states that the probability to arrive
at x from y in time t + dt is the same as that of first moving away from y by δy in the initial
interval of dt, and then proceeding from y + δy to x in the remaining time t (first term). The
second term corresponds to staying in place in the initial interval dt. (Naturally we have to
integrate over all allowed intermediate positions.) Expanding both sides of Eq. (1.65) gives

p(x, t|y) + dt
∂p(x, t|y)

∂t
= p(x, t|y) +

(
∫

dδy R(δy, y)dt−

∫

dδy R(δy, y)dt

)

p(x, t|y)

+

(
∫

dδy δyR(δy, y)dt

)

∂p(x, t|y)

∂y

+
1

2

(
∫

dδy δ2
yR(δy, y)dt

)

∂2p(x, t|y)

∂y2
+ · · · . (1.66)
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Using the normalization condition for R(δy, y) and the definitions of drift and diffusion
coefficients from Eqs. (1.36) and (1.37), we obtain

∂p(x, t|y)

∂t
= v(y)

∂p

∂y
+ D(y)

∂2p

∂y2
, (1.67)

which is known as the backward Kolmogorov equation. If the drift velocity and the diffusion
coefficient are independent of position, the forward and backward equations are the same-
more generally one is the adjoint of the other.

1.4.1 Fixation probability

Let us denote by Π∗(xa, y), the probability that starting a starting composition y is at long
time fixed to absorbing state xa, i.e. Π(xa, y) = limt→∞ p(xa, t|y). For our problem, we have
two such states with Π0(y) ≡ Π∗(0, y) and Π1(y) ≡ Π∗(1, y), but keep the more general
notation for the time being. These functions must correspond to steady state solutions to
Eq. (1.67), and thus obey

v(y)
dΠ∗(y)

dy
+ D(y)

d2Π∗(y)

dy2
= 0 . (1.68)

After rearranging the above equation to

Π∗(y)′′

Π∗(y)′
=

d

dy
log

dΠ∗(y)

dy
= −

v(y)

D(y)
, (1.69)

we can integrate it to

log Π∗(y)′ = −

∫ y

dy′ v(y′)

D(y′)
= − ln (D(y)p∗(y)) . (1.70)

The result of the above integration is related to an intermediate step in calculation of the
steady state solution p∗ of the forward Kolmogorov equation in (1.59). However, as we
noted already, in the context of absorbing states the function p∗ is not normalizable and
thus cannot be regarded as a probability. Nonetheless, we can express the results in terms
of this function. For example, the probability of fixation, i.e. Π1(y) is obtained with the
boundary conditions Π1(0) = 0 and Π1(1) = 1, as

Π1(y) =

∫ y

0
dy′[D(y)p∗(y′)]−1

∫ 1

0
dy′[D(y)p∗(y′)]−1

. (1.71)

When there is selection, but no mutation, Eq. (1.54) implies

log Π∗(y)′ = −

∫ y

dy′ v(y′)

D(y′)
= −2

∫ y

(Ns) = −2Nsy + constant. (1.72)
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Figure 1: Fixation probability

Integrating Π∗(y)′ and adjusting the constants of proportionality by the boundary conditions
Π1(0) = 0 and Π1(1) = 1, then leads to the fixation probability of

Π1(y) =
1− e−2Nsy

1− e−2Ns
. (1.73)

The fixation probability of a neutral allele is obtained from the above expression in the limit
of s→ 0 as Π1(y) = y.

When a mutation first appears in a diploid population, it is present in one copy and
hence y = 1/(2N). The probability that this mutation is fixed is Π1 = 1/(2N) as long as it
is approximately neutral (if 2sN ≪ 1). If it is advantageous (2sN ≫ 1) it will be fixed with
probability Π1 = 1− e−s irrespective of the population size! If it is deleterious (2sN ≪ −1)
it will have a very hard time getting fixed, with a probability that decays with population
size as Π1 = e−(2N−1)|s|. The probability of loss of the mutation is simply Π0 = 1− Π1.

1.4.2 Mean times to fixation/loss

When there is an absorbing state in the dynamics, we can ask how long it takes for the
process to terminate at such a state. In the context of random walks, this is known as the
first passage time, and can be visualized as the time it takes for a random walker to fall
into a trap. Actually, since the process is stochastic, the time to fixation (or loss) is itself a
random quantity with a probability distribution. Here we shall compute an easier quantity,
the mean of this distribution, as an indicator of a typical time scale.

Let us consider an absorbing state at xa, and the difference p(xa, t + dt|y)− p(xa, t|y) =
dt∂p(xa, t|y)/∂t. Clearly the probability to be at xa only changes due to absorption of
particles, and thus ∂p(xa, t|y)/∂t is proportional to the probability density function (PDF)
for fixation at time t. The conditional PDF that the process terminates at xa must be
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properly normalized, and we have to divide by the integral
∫∞

0
dt∂p(xa, t|y)/∂t, which is

simply Π∗(xa, y). Thus the normalized conditional PDF for fixation at time t at xa is

pa(t|y) =
1

Π∗(xa, y)

∂p(xa, t|y)

∂t
. (1.74)

The mean fixation time is now computed from

〈τ(y)〉a =

∫ ∞

0

dt t pa(t|y) =
1

Π∗(xa, y)

∫ ∞

0

dt t
∂p(xa, t|y)

∂t
. (1.75)

Following Kimura and Ohta (1968)3, we first examine the numerator of the above ex-
pression, defined as

Ta(y) = lim
T→∞

∫ T

0

dt t
∂p(xa, t|y)

∂t
. (1.76)

(Writing limT→∞

∫ T

0
rather than simply

∫∞

0
is for later convenience.) We can integrate this

equation by parts to get

Ta(y) = lim
T→∞

[

Tp(xa, T |y)−

∫ T

0

dt p(xa, t|y)

]

= lim
T→∞

TΠ∗(xa, y)−

∫ ∞

0

dt p(xa, t|y) . (1.77)

Let us denote the operations involved on the right-hand side of the backward Kolmogorov
equation by the short-hand By, i.e.

ByF (y) ≡ v(y)
∂F (y)

∂y
+ D(y)

∂2F (y)

∂y2
. (1.78)

Acting with By on both sides of Eq. (1.77), we find

ByTa(y) = lim
T→∞

TByΠ
∗(xa, y)−

∫ ∞

0

dtByp(xa, t|y) . (1.79)

But ByΠ
∗(xa, y) = 0 according to Eq. (1.68), while Byp(xa, t|y) = ∂p(xa, t|y)/∂t from

Eq. (1.67). Integrating the latter over time leads to

ByTa(y) = −p(xa,∞|y) = −Π∗(xa, y) . (1.80)

For example, let us consider a population with no selection (s = 0), for which the
probability to lose a mutation is Π0 = (1− y). In this case, Eq. (1.80) reduces to

y(1− y)

4N

∂2T0

∂y2
= −(1− y) ⇒

∂2T0

∂y2
= −

4N

y
. (1.81)

3M. Kimura and T. Ohta, Genetics 61, 763 (1969).

18



After two integrations we obtains

T0(y) = −4Ny (ln y − 1) + c1y + c2 = −4Ny ln y , (1.82)

where the constants of integration are set by the boundary conditions T0(0) = T0(1) = 0,
which follow from Eq. (1.76). From Eq. (1.75), we then obtain the mean time to loss of a
mutation as

〈τ(y)〉0 = −4N
y ln y

1− y
. (1.83)

A single mutation appearing in a diploid population corresponds to y = 1/(2N), for which
the mean number of generations to loss is 〈τ(y)〉0 ≈ 2 ln(2N). The mean time to fixation is
obtained simply by replacing y with (1− y) in Eq. (1.83) as

〈τ(y)〉1 = −4N
(1− y) ln(1− y)

y
. (1.84)

The mean time for fixation of a newly appearing mutation (y = 1/(2N)) is thus 〈τ(y)〉1 ≈
(4N).

We can also examine the amount of time that the mutation survives in the population.
The net probability that the mutation is still present at time t is

S(t|y) =

∫ 1−

0+

dxp(x, t|y) , (1.85)

where the integrations exclude the absorbing points at 0 and 1. Conversely, the PDF that
the mutation disappears (by loss or fixation) at time t is

p×(t|y) = −
dS(t|y)

dt
= −

∫ 1−

0+

dx
dp(x, t|y)

dt
. (1.86)

(Note that the above PDF is properly normalized as S(∞) = 0, while S(0) = 1.) The mean
survival time is thus given by

〈τ(y)〉× = −

∫ ∞

0

dt t

∫ 1−

0+

dx
dp(x, t|y)

dt
=

∫ 1−

0+

dx

∫ ∞

0

dt p(x, t|y) , (1.87)

where we have performed integration by parts and noted that the boundary terms are zero.
Applying the backward Kolmogorov operator to both sides of the above equation gives

By 〈τ(y)〉× =

∫ 1−

0+

dx

∫ ∞

0

dtByp(x, t|y)

=

∫ 1−

0+

dx

∫ ∞

0

dt
dp(x, t|y)

dt

= S(∞|y)− S(0|y) = −1 . (1.88)
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In the absence of selection, we obtain

y(1− y)

4N

∂2 〈τ(y)〉×
∂y2

= −1 ⇒
∂2 〈τ(y)〉×

∂y2
= −4N

(

1

y
+

1

1− y

)

. (1.89)

After two integrations we obtains

〈τ(y)〉× = −4Ny [y ln y + (1− y) ln(1− y)] , (1.90)

where the constants of integration are set by the boundary conditions 〈τ(0)〉× = 〈τ(1)〉× = 0.
Note the interesting relation

〈τ(y)〉× = Π0(y) 〈τ(y)〉0 + Π1(y) 〈τ(y)〉1 . (1.91)
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