1.3 Forward Kolmogorov equation

Let us again start with the Master equation, for a system where the states can be ordered

along a line, such as the previous examples with population size n = 0,1,2---, N. We start
again with a general Master equation
dpn

In many relevant circumstances, the number of states is large and the probability varies
smoothly from one site to the next. In such cases, it is reasonable to replace the discrete
index n with a continuous variable z, the probabilities p,(t) with a probability density
p(z,t), and the rates R,,, with a rate function R(z’,x). The rate function R depends on
two variables denoting the start and end positions along the line. We are free to redefine the
two arguments of this function, and it is useful to reparametrize it as R(z’ — z, x) indicating
the rate at which, starting from the position z, a transition is made to a position A = 2/ —z
away. As in the case of mutations, there is usually a preference for changes that are local,
i.e. the rates decay rapidly when the separation 2’ — x becomes large.
These transformations and relabelings,

n—x, pp — px,t), Rpn — R(2' —z,2), (1.29)

enable us to transform Eq. (1.28) to the continuous integral equation

*

%p(z, t)=— /* de'R(z' — x,x)p(x,t) + / de'R(x — o', 2" )p(a', t). (1.30)

Note, however, that the sum in Eq. (1.28) excluded the term m = n. To treat this properly
in the continuum limit, we can focus on an interval y around any point x, and the change
in probability due to incoming flux from x — y and the outgoing flux to z + y, leading to

a *
Gy ) = [ dy Rz = (o~ 9) - Ry (o). (1.31)
We now make a Taylor expansion the first term in the square bracket, but only with respect
to the location of the incoming flux, treating the argument pertaining to the separation of
the two points as fixed, i.e.

0 y? 0

R(y,z —y)p(x —y) = Ry, z)p(x) — Y (R(y, x)p(z)) + 5 922 (R(y, )p(z)) +--- . (1.32)

While formally correct, the above expansion is useful only in cases where typical values of
y are small (only almost local transitions occur). If we keep terms up to the second order,
Eq. (1.31) can be rewritten as

2

ol t) == [ dyy s (R @) + 5 [ dy o (R @) (139)
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The integrals over y can be taken inside the derivatives with respect to x,

% (2,t) = _8% {p(x) (/ dny(y,x))} + %;—; {p(fﬂ) (/ dyyzR(y,x))} ;o (1.34)

after which we obtain

WD) 0 (o) pla, )] + g (D)ol ). (139
We have introduced A
v(z) E/dny(y,x) _ A(f», (1.36)
and
D(z) = %/dyyzR(y,x) _ %<A§) ) (1.37)

Equation (1.35) is a prototypical description of drift and diffusion which appears in many
contexts. The drift term v(x) expresses the rate (velocity) with which the position changes
from = due to the transition rates. Given the probabilistic nature of the process, there are
variations in the rate of change of position captured by the position dependent diffusion
coefficient D(x). The drift—diffusion equation is known as the forward Kolmogorov equation
in the context of populations. As a description of random walks it appeared earlier in physics
literature as the Fokker—Planck equation.

In the context of population genetics, it is convenient to introduce the variable z = n/N,
such that in the continuum limit x € [0,1]. The rates in Eq. (1.22) change n by £1, and
hence

<An) Rn—l—l,n x 1+ Rn—l,n X (—1) 1

o) =20 kL = L (N = ) = pan] = (1~ ) —
(1.38)

while
D(z) = (An*) _ Ryjin+ R 1 un(N = n) + pion] = (1l —x) + psx (1.39)

2N?2 IN?2 ~ 2N?2 2N

1.3.1 Binomial selection

Consider a population with two forms of an allele, say A; and A, corresponding to blue or
brown eye colors. The probability for a spontaneous mutation to occur that changes the
allele for eye color is extremely small, and effectively p1 = pz = 0 in Eq. (1.23). Yet the
proportions of the two alleles in the population does change from generation to generation.
One reason is that some individuals do not reproduce and leave no descendants, while others
reproduce many times and have multiple descendants. This is itself a stochastic process and
the major source of rapid changes in allele proportions. In principle this effect also leads
to variations in population size. In practice, and to simplify computations, it is typically
assumed that the size of the population is fixed.
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In the model of binomial selection, the process or reproduction from one generation to
the next is assumed to be as follows: Let us assume that in a population of N alleles, Ny =n
are A, and N —n are Ay. The population at the next generation may have m individuals
with allele A;, and the probability for such a transition is

= (302 (). o

This probability is like reaching into a bag with n balls of blue color and N —m balls of brown
color, recording the color of the ball and throwing it back. After repeating the process N
times, the probability that the blue color is recorded m times is given by the above binomial
distribution. (The probability of getting a blue ball in each trial is simply n/N, and 1 —n/N
for brown.) Clearly some balls can be picked up multiple times (multiple descendants), while
some balls are never picked (no offspring).

Regarding R,,, as the probability to obtain random variable m, given initial n, it is easy
to deduce from standard properties of the binomial distribution that

(m) =N X N =" ie ((m—n))=0, (1.41)
while n n
(m?), = (m=m?) =Nx(1-) (1.42)

We can construct a continuum evolution equation by setting z = n/N € [0, 1], and replacing
p(n,t+1)—p(n,t) ~ dp(x)/dt, where t is measured in number of generations. Clearly, from
Eq. (1.41), there is no drift

v(z) = ((m—mn)) =0, (1.43)
while the diffusion coefficient is given by
1 9 1
Dhaploid(f) = W (m — n) > = ﬁl’(l — ZE') . (]_44)

A light variant of binomial selection is also applicable to mating of diploid organism. For
two alleles, there are three genotypes of A;A;, A1As, and Ay A, in proportions of 11, x19,
and xqo respectively. To mimic a mating event, pick one allele of one individual, another
allele from a second individual. Set aside the resulting offspring and return the parents to the
initial pool. Repeat the process N times to construct the new generation. For each offspring
the probability of selecting allele A; is 17 +12/2, while allele A, is selected with probability
Tog + x12/2. If the initial population is in Hardy—Weinberg equilibrium, the relative genotype
frequencies are related to the proportions of the two alleles simply by x1, = 22, 219 = 22124,
and w9y = x3. The mating process is thus again equivalent to the process we considered
earlier for haploids, with A; and A, chosen with probabilities of x and 1 — x respectively.
Since, in a diploid population of N individuals, the number of alleles is 2N, the previous

result is simply modified to
1
Ddiploid(x) = mx(l — ,’L’) . (145)
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1.3.2 Chemical analog & Selection

Through the reactions in Eq. (1.25), we introduced a chemical reaction that mimicks a
mutating population. Consider a system where a reaction between molecules A and B can
lead to two outcomes:?

A+B—=,A+A or A+B—-?B+B, (1.46)
at rates ¢ and d. In a “mean-field” approximation the number of A molecules changes as
dN
d—tf‘ = (¢—d)NsNp = (¢ — d)NA(N — Ny4) . (1.47)

Equation (1.47) predicts steady states N} = 0 for ¢ < d, Nj = N for ¢ > d, while any com-
position is permitted for the symmetric case of ¢ = d. As we shall demonstrate, fluctuations
modify the latter conclusion.

As before, let us denote Ny = n, Ng = N — Ny, and follow the change in composition
after a single reaction. The number of A particles may change by 4+1 with rates

Runsr =dn+1)(N—n—1), and Ry._i=c(n—1)(N—n+1), (1.48)

where the product is over the number of possible pairs of A-B particles that can participate
in the reaction. The diagonal terms are again obtained from the normalization condition in
Eq. (1.14) resulting in the Master equation

dp(d? Y~ At 1) (N=n=1)p(n+1)+e(n—1) (N=n+1)p(n—1)—dn(N—n)p(n) —en(N—n)p(n).
(1.49)
for 0 < n < N, and with boundary terms
dp(d?t’ ) d(N —1)p(1), and dp(ﬁ’ 9. ¢(N—1)p(N -1). (1.50)

When the number N is large, it is reasonable to take the continuum limit and construct
a Kolmogorov equation for the fraction x = n/N € [0,1]. The rates in Eq. (1.48) change n
by +1, and hence

<An> Rn+1,n - Rn—l,n 1

v(r) = N = N = [en(N —n) — dn(N —n)]

= N(c—d)z(1—-2), (1.51)

while

<An2> o Rn+1,n + Rn—l,n o 1 [cn(
2N? 2N? 2N?
c+d
= — z(l—x). (1.52)
2In a sense these reactions mimic the mating process in which the offspring of a heterozygote (a diploid
organism with different alleles A; and As) and a homozygote (say with two copies of allele A1) may be either
heterozygote (A1 As) or homozygote (A1 Ay).

D(x) = N —n) +dn(N —n)]
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Comparison with Eqs.(1.43) and Eq. (1.45) indicates that the above reaction has the same
behavior as binomial selection provided that ¢ = d = 1/(4N). Indeed the superficial differ-
ence in factor of N between the two cases is because in the latter we followed the reactions
one at a time (at rate ¢ = d), while in the former we computed the transition probabilities
after a whole generation (N steps of reproduction and removal). The selection process char-
acterized by Eq.(1.40) treats the two alleles as completely equivalent. In reality one allele
may provide some advantage to individuals carrying it. If so, there should be a selection pro-
cess by which individuals with this allele are more likely to reproduce, on average increasing
their population in the next generation. This would then cause a drift in the appropriate
Kolmogorov equation. The population genetics perspective on selection will be covered in
detail by Professor Mirny. It turns out that this prescription is mathematically equivalent
to the binary reaction of Eq. (1.46) with ¢ # d. In future lectures, selection is quantified by
a parameter s, which is related to ¢ and d by
1

1+s) and dzw(l—s). (1.53)

c

“in
In the following, we shall employ the nomenclature of population genetics, such that

v(z) = gat(l —x), and D(x)= ﬁx(l — ). (1.54)

1.3.3 Steady states

While it is usually hard to solve the Kolmogorov equation as a function of time, it is relatively
easy to find the steady state solution to which the population settles after a long time. Let
us denote the steady-state probability distribution by p*(x), which by definition must satisfy

Op*(x)
pu— . ].-
=0 (1.55)
Therefore, setting the right-hand side of Eq. (1.35) to zero, we get
——8[()*( )]+—82 [D(z)p"(x)] = 0 (1.56)
5y V(@) (@ 52 (D@ ()] =0. .

The most general solution admits steady states in which there is an overall current and the
integral over x of the last equation leads to a constant flow in probability. It is not clear how
such a circumstance may arise in the context of population genetics, and we shall therefore
focus on circumstances where there is no probability current, such that

—o(a)p () + (D@ () = 0 (157
We can easily rearrange this equation to
1 0 . 0 . ~v(x)
W%(D(l'm () = %ln (D(z)p*(x)) = D) (1.58)



This equation can be integrated to

In D(x)p*(z) = /x dx’ g((z/)) + constant, (1.59)

such that

7@ pyee | [ B 160

with the proportionality constant set by boundary conditions.

Let us examine the case of the dynamics of a fixed population, including mutations, and
reproduction with selection. Adding the contributions in Egs. (1.38), (1.39) and (1.54), we
have 5

v(x) = 51’(1 —z) + (1 —x) — pox, (1.61)
while a " )
il — &) T fol
= ml’ (1 — ZL’) + ON ~ m
The last approximation of ignoring the contribution from mutations to diffusion is common
to population genetics and we shall follow it here without further justification. It enables a
closed form solution to the steady state, as

s D@ (a) = [ ar i)

! H1 M2 S
= 4N dr' | — — =
/ x[x’ 1—x’+2}

= 4N [ul Inz+ pIn(l —x) + gat] + constant,

D(x)

x(1—1x). (1.62)

resulting in

1
p*(x) o R ) e (1.63)

In the special case of no selection, s = 0 and (for convenience) p; = puy = p, the steady-
state solution (1.63) simplifies to
pr(x) o [2(1 — )Nt (1.64)

The shape of the solution is determined by the parameter 4Npu. If 4Nu > 1, then the
distribution has a peak at x = 1/2 and diminishes to the sides. On the other hand, if the
population is small and 4Ny < 1, then p*(z) has peaks at either extreme—a situation where
genetic drift is dominant.
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