Physics 8.03 Vibrations and Waves

Lecture 6
Driven Coupled Oscillators

Last time: Coupled oscillators

- Normal modes of oscillation
 - Harmonic motion at fixed (eigen)frequencies
 - Amplitude ratios for each mode (constant)
- "Any old motion"
 - All allowed motions are a superposition of all the normal modes

External driving force

- Introduce harmonic external driving force in a coupled oscillator system
- N oscillators (N ⑦ 1)

A Recipe'

- Find forces acting on each particle
- Coupled differential equations
 - No driving force → homogeneous
 - Driving force → at least one eqn. is inhomogenous
- Always solve homogeneous equation first
- Trial solution $\rightarrow x_i(t) = C_i \cos(\omega t \delta)$
- Coupled (simultaneous)algebraic equations

$$C = D$$

$$\begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_N \end{pmatrix}$$

...The Recipe'

- "Normal" modes
 - Frequencies (eigenvalues): $ω_i$ are the roots of $ω_i$, calculate by solving for ω when det(ω) = 0
 - Ratios of amplitudes: Plug $\omega = \omega_i$ back into $\mathcal{O}^{\text{**}} \subset \mathcal{C}$
- Any other motion → superposition of all normal modes
- Now turn on the harmonic driving force
- Solve inhomogenous set using Cramer's rule
 - For each C_i replace the *i*-th column of 6^{**} with D