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Coulomb’s Law 
 

2.1 Electric Charge 
 
There are two types of observed electric charge, which we designate as positive and 
negative.  The convention was derived from Benjamin Franklin’s experiments. He rubbed 
a glass rod with silk and called the charges on the glass rod positive. He rubbed sealing 
wax with fur and called the charge on the sealing wax negative.  Like charges repel and 
opposite charges attract each other. The unit of charge is called the Coulomb (C).   
 
The smallest unit of “free” charge known in nature is the charge of an electron or proton, 
which has a magnitude of   

 
  (2.1.1) 191.602 10 Ce −= ×
 
Charge of any ordinary matter is quantized in integral multiples of e. An electron carries 
one unit of negative charge, , while a proton carries one unit of positive charge, e− e+ . In 
a closed system, the total amount of charge is conserved since charge can neither be 
created nor destroyed. A charge can, however, be transferred from one body to another.  
 
 
2.2 Coulomb's Law 
 
Consider a system of two point charges,  and , separated by a distance  in vacuum. 
The force exerted by  on  is given by Coulomb's law: 

1q 2q r

1q 2q
 

 1 2
12 2

ˆe
q qk
r

=F r
G

 (2.2.1) 

  
where  is the Coulomb constant, and  ek ˆ / r=r rG  is a unit vector directed from  to , 
as illustrated in Figure 2.2.1(a). 

1q 2q

(a) (b) 
 

Figure 2.2.1 Coulomb interaction between two charges 
 
Note that electric force is a vector which has both magnitude and direction. In SI units, 
the Coulomb constant  is given by ek
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 9 2

0

1 8.9875 10 N m / C
4ek
πε

= = × ⋅ 2  (2.2.2) 

 
where  

 12 2 2
0 9 2 2

1 8 85 10 C N m
4 (8.99 10 N m C )

.ε
π

−= = ×
× ⋅

⋅  (2.2.3) 

 
is known as the “permittivity of free space.” Similarly, the force on  due to  is given 

by , as illustrated in Figure 2.2.1(b). This is consistent with Newton's third law.  
1q 2q

21 12= −F F
G G

 
As an example, consider a hydrogen atom in which the proton (nucleus) and the electron 
are separated by a distance . The electrostatic force between the two 
particles is approximately . On the other hand, one may show 
that the gravitational force is only  . Thus, gravitational effect can be 
neglected when dealing with electrostatic forces! 

115.3 10  mr −= ×
2 2 8/ 8.2 10  Ne eF k e r −= = ×

473.6 10  NgF −≈ ×

 
 
Animation 2.1: Van de Graaff Generator 
 
Consider Figure 2.2.2(a) below. The figure illustrates the repulsive force transmitted 
between two objects by their electric fields. The system consists of a charged metal 
sphere of a van de Graaff generator.  This sphere is fixed in space and is not free to move.  
The other object is a small charged sphere that is free to move (we neglect the force of 
gravity on this sphere).  According to Coulomb’s law, these two like charges repel each 
another.  That is, the small sphere experiences a repulsive force away from the van de 
Graaff sphere.   
 

  
Figure 2.2.2 (a) Two charges of the same sign that repel one another because of the 
“stresses” transmitted by electric fields.  We use both the “grass seeds” representation 
and the ”field lines” representation of the electric field of the two charges. (b) Two 
charges of opposite sign that attract one another because of the stresses transmitted by 
electric fields. 
 
The animation depicts the motion of the small sphere and the electric fields in this 
situation.  Note that to repeat the motion of the small sphere in the animation, we have 
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the small sphere “bounce off” of a small square fixed in space some distance from the 
van de Graaff generator.   

 
Before we discuss this animation, consider Figure 2.2.2(b), which shows one frame of a 
movie of the interaction of two charges with opposite signs.  Here the charge on the small 
sphere is opposite to that on the van de Graaff sphere. By Coulomb’s law, the two objects 
now attract one another, and the small sphere feels a force attracting it toward the van de 
Graaff. To repeat the motion of the small sphere in the animation, we have that charge 
“bounce off” of a square fixed in space near the van de Graaff.  
 
The point of these two animations is to underscore the fact that the Coulomb force 
between the two charges is not “action at a distance.” Rather, the stress is transmitted by 
direct “contact” from the van de Graaff to the immediately surrounding space, via the 
electric field of the charge on the van de Graaff.  That stress is then transmitted from one 
element of space to a neighboring element, in a continuous manner, until it is transmitted 
to the region of space contiguous to the small sphere, and thus ultimately to the small 
sphere itself.  Although the two spheres are not in direct contact with one another, they 
are in direct contact with a medium or mechanism that exists between them.  The force 
between the small sphere and the van de Graaff is transmitted (at a finite speed) by 
stresses induced in the intervening space by their presence.     
 
Michael Faraday invented field theory; drawing “lines of force” or “field lines” was his 
way of representing the fields.  He also used his drawings of the lines of force to gain 
insight into the stresses that the fields transmit.  He was the first to suggest that these 
fields, which exist continuously in the space between charged objects, transmit the 
stresses that result in forces between the objects.   
 
 
2.3  Principle of Superposition 
 
Coulomb’s law applies to any pair of point charges. When more than two charges are 
present, the net force on any one charge is simply the vector sum of the forces exerted on 
it by the other charges. For example, if three charges are present, the resultant force 
experienced by  due to  and  will be 3q 1q 2q
 
 3 13 2= +F F F 3

G G G
 (2.3.1) 

 
The superposition principle is illustrated in the example below.  
 
Example 2.1: Three Charges 
 
Three charges are arranged as shown in Figure 2.3.1. Find the force on the charge  
assuming that , , and 

. 

3q
6

1 6.0 10 Cq −= × 6
2 1 6.0 10 Cq q −= − = − × 6

3 3.0 10 Cq −= + ×
22.0 10 ma −= ×
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Figure 2.3.1 A system of three charges 
 
Solution:   
 
Using the superposition principle, the force on  is 3q
 

 1 3 2 3
3 13 23 13 232 2

0 13 23

1 ˆ ˆ
4

q q q q
r rπε

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
F F F r r
G G G

  

 
In this case the second term will have a negative coefficient, since  is negative.  The 
unit vectors  and  do not point in the same directions. In order to compute this sum, 
we can express each unit vector in terms of its Cartesian components and add the forces 
according to the principle of vector addition.  

2q

13r̂ 23r̂

 
From the figure, we see that the unit vector  which points from  to  can be written 
as 

13r̂ 1q 3q

13
2ˆ ˆ ˆˆ cos sin ( )

2
ˆ= + = +r i j iθ θ j

i

 

 
Similarly, the unit vector  points from  to .  Therefore, the total force is 23

ˆˆ =r 2q 3q
 

 

1 3 2 3 1 3 1 3
3 13 232 2 22

0 13 23 0

1 3
2

0

( )1 1 2 ˆ ˆ ˆˆ ˆ ( )
4 4 2( 2 )

1 2 2ˆ ˆ1
4 4 4

q q q q q q q q
r r aa

q q
a

πε πε

πε

⎛ ⎞⎛ ⎞ −
= + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

F r r i j i

i j

G

  

 
upon adding the components. The magnitude of the total force is given by 
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1 22 2

1 3
3 2

0

6 6
9 2 2

2 2

1 2 21
4 4 4

(6.0 10 C)(3.0 10 C)(9.0 10 N m / C ) (0.74) 3.0 N
(2.0 10 m)

q qF
aπε

− −

−

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

× ×
= × ⋅ =

×

  

 
The angle that the force makes with the positive -axis is x
 

 3,1 1

3,

2 / 4tan tan 151.3
1 2 / 4

y

x

F
F

φ − −⎛ ⎞ ⎡ ⎤
= = =⎜ ⎟ ⎢ ⎥⎜ ⎟ − +⎣ ⎦⎝ ⎠

°   

 
Note there are two solutions to this equation. The second solution 28.7φ = − °  is incorrect 
because it would indicate that the force has positive  and negative î ĵ  components. 
 
For a system of charges, the net force experienced by the jth particle would be N
 

 
1

N

j
i
i j
=
≠

= ij∑F F
G G

 (2.3.2) 

where denotes the force between particles i  and . The superposition principle 
implies that the net force between any two charges is independent of the presence of 
other charges.  This is true if the charges are in fixed positions. 

ijF
G

j

 
 
2.4 Electric Field  
 
The electrostatic force, like the gravitational force, is a force that acts at a distance, even 
when the objects are not in contact with one another. To justify such the notion we 
rationalize action at a distance by saying that one charge creates a field which in turn acts 
on the other charge.  
 
An electric charge q  produces an electric field everywhere.  To quantify the strength of 
the field created by that charge, we can measure the force a positive “test charge”  
experiences at some point.  The electric field E

0q
G

 is defined as:  
 

 
0 0

0

lim e

q q→

FE =
GG

 (2.4.1) 

 
We take to be infinitesimally small so that the field  generates does not disturb the 
“source charges.” The analogy between the electric field and the gravitational field 

is depicted in Figure 2.4.1. 

0q 0q

0
00

lim /mm
m

→
g = F

GG
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Figure 2.4.1 Analogy between the gravitational field gG  and the electric field E . 
G

 
From the field theory point of view, we say that the charge q creates an electric field 

which exerts a force  on a test charge . E
G

0e q=F
G G

E 0q
 
Using the definition of electric field given in Eq. (2.4.1) and the Coulomb’s law, the 
electric field at a distance r from a point charge q is given by 
 

 2
0

1 ˆ
4

q
rπε

=E r
G

 (2.4.2) 

 
Using the superposition principle, the total electric field due to a group of charges is 
equal to the vector sum of the electric fields of individual charges: 
 

 2
0

1 ˆ
4

i
i

i i i

q
rπε

= =∑ ∑E E r
G G

 (2.4.3) 

 
Animation 2.2: Electric Field of Point Charges 
 
Figure 2.4.2 shows one frame of animations of the electric field of a moving positive and 
negative point charge, assuming the speed of the charge is small compared to the speed of 
light.   
 

  

Figure 2.4.2  The electric fields of (a) a moving positive charge,  (b) a moving negative 
charge, when the speed of the charge is small compared to the speed of light. 
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2.5 Electric Field Lines 
 
Electric field lines provide a convenient graphical representation of the electric field in 
space. The field lines for a positive and a negative charges are shown in Figure 2.5.1. 
 

(a) (b) 
 

Figure 2.5.1 Field lines for (a) positive and (b) negative charges. 
 

Notice that the direction of field lines is radially outward for a positive charge and 
radially inward for a negative charge. For a pair of charges of equal magnitude but 
opposite sign (an electric dipole), the field lines are shown in Figure 2.5.2. 
 

 
 

Figure 2.5.2 Field lines for an electric dipole. 
 
 

The pattern of electric field lines can be obtained by considering the following: 
 

(1) Symmetry: For every point above the line joining the two charges there is an 
equivalent point below it. Therefore, the pattern must be symmetrical about the line 
joining the two charges 

 
(2) Near field: Very close to a charge, the field due to that charge predominates. 
Therefore, the lines are radial and spherically symmetric. 
 
(3)  Far field: Far from the system of charges, the pattern should look like that of a single 
point charge of value . Thus, the lines should be radially outward, unless 

. 
ii

Q = ∑ Q

0Q =
 
(4)  Null point: This is a point at which =E 0

GG
, and no field lines should pass through it. 
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The properties of electric field lines may be summarized as follows: 
 
• The direction of the electric field vector E

G
 at a point is tangent to the field lines. 

 
• The number of lines per unit area through a surface perpendicular to the line is 

devised to be proportional to the magnitude of the electric field in a given region. 
 
• The field lines must begin on positive charges (or at infinity) and then terminate on 

negative charges (or at infinity). 
 
• The number of lines that originate from a positive charge or terminating on a negative 

charge must be proportional to the magnitude of the charge. 
 
• No two field lines can cross each other; otherwise the field would be pointing in two 

different directions at the same point.  
 
 
2.6 Force on a Charged Particle in an Electric Field 
 
Consider a charge  moving between two parallel plates of opposite charges, as shown 
in Figure 2.6.1. 

q+

 

 
 

Figure 2.6.1 Charge moving in a constant electric field 
 
Let the electric field between the plates be ˆ

yE= −E j
G

, with . (In Chapter 4, we 
shall show that the electric field in the region between two infinitely large plates of 
opposite charges is uniform.) The charge will experience a downward Coulomb force 

0yE >

 
 e q=F E

G G
 (2.6.1) 

 
Note the distinction between the charge  that is experiencing a force and the charges on 
the plates that are the sources of the electric field.  Even though the charge    is also a 
source of an electric field, by Newton’s third law, the charge cannot exert a force on 
itself. Therefore, E

G
is the field that arises from the “source” charges only. 

 q
q

 
According to Newton’s second law, a net force will cause the charge to accelerate with an 
acceleration 
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 ˆye qEq
m m m

= = = −
F Ea j
G G

G  (2.6.2) 

  
Suppose the particle is at rest ( 0 0v = ) when it is first released from the positive plate. 
The final speed v  of the particle as it strikes the negative plate is 
 

 
2

2 | | y
y y

yqE
v a y

m
= =  (2.6.3)   

 
where y  is the distance between the two plates. The kinetic energy of the particle when it 
strikes the plate is  
 

 21
2 y yK mv qE= = y  (2.6.4)  

  
2.7 Electric Dipole 
 
An electric dipole consists of two equal but opposite charges, q+  and , separated by a 
distance , as shown in Figure 2.7.1. 

q−
2a

 

 
 

Figure 2.7.1 Electric dipole 
 
The dipole moment vector p  which points fromG q−  to q+  (in the y+ - direction) is given 
by 
 
 ˆ2qa=p jG  (2.7.1)  
 
The magnitude of the electric dipole is 2p qa= , where . For an overall charge-
neutral system having N charges, the electric dipole vector 

0q >
pG  is defined as 

 

 
1

i N

i
i

q
=

=

≡ ∑ ip rG G  (2.7.2) 
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where  is the position vector of the charge . Examples of dipoles include HCL, CO, 
H

irG iq
2O and other polar molecules. In principle, any molecule in which the centers of the 

positive and negative charges do not coincide may be approximated as a dipole. In 
Chapter 5 we shall also show that by applying an external field, an electric dipole 
moment may also be induced in an unpolarized molecule. 
 
 
2.7.1 The Electric Field of a Dipole 
 
What is the electric field due to the electric dipole? Referring to Figure 2.7.1, we see that 
the x-component of the electric field strength at the point is P
  

 3/ 2 3/ 22 2 2 2 2 2
0 0

cos cos
4 4 ( ) ( )

x
q q xE

r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡⎝ ⎠ + − + +⎣ ⎦ ⎣⎝ ⎠

x
⎤⎦

2∓

 (2.7.3) 

 
where  
  (2.7.4) 2 2 2 22 cos ( )r r a ra x y aθ± = + = +∓
 
Similarly, the -component is y

  

 3/ 2 3/ 22 2 2 2 2 2
0 0

sin sin
4 4 ( ) ( )

y
q q y a yE

r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ − +⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡⎝ ⎠ + − + +⎣ ⎦ ⎣⎝ ⎠

a
⎤⎦

 (2.7.5) 

 
In the “point-dipole” limit where , one may verify that (see Solved Problem 2.13.4) 
the above expressions reduce to  

r a�

 

 3
0

3 sin cos
4x

pE
r

θ θ
πε

=  (2.7.6) 

and 

 ( 2
3

0

3cos 1
4y

pE
r

θ
πε

)= −  (2.7.7) 

 
where sin /x rθ = and cos /y rθ = . With 3 cos 3pr θ = ⋅p rG G and some algebra, the electric 
field may be written as  
 

 3 5
0

1 3(( )
4 r rπε

⋅⎛= − +⎜
⎝ ⎠

) ⎞
⎟

p p r rE r
G G G GG G  (2.7.8) 

 
Note that Eq. (2.7.8) is valid also in three dimensions where ˆ ˆ ˆx y z= + +r i j kG . The 
equation indicates that the electric field E

G
 due to a dipole decreases with r  as , 31/ r
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unlike the  behavior for a point charge. This is to be expected since the net charge of 
a dipole is zero and therefore must fall off more rapidly than  at large distance. The 
electric field lines due to a finite electric dipole and a point dipole are shown in Figure 
2.7.2.   

21/ r
21/ r

  
 

 Figure 2.7.2 Electric field lines for (a) a finite dipole and (b) a point dipole.  
 
 
Animation 2.3: Electric Dipole 
 
Figure 2.7.3 shows an interactive ShockWave simulation of how the dipole pattern arises.  
At the observation point, we show the electric field due to each charge, which sum 
vectorially to give the total field.  To get a feel for the total electric field, we also show a 
“grass seeds” representation of the electric field in this case. The observation point can be 
moved around in space to see how the resultant field at various points arises from the 
individual contributions of the electric field of each charge. 
 

 
 

Figure 2.7.3 An interactive ShockWave simulation of the electric field of an two equal 
and opposite charges. 

 
2.8  Dipole in Electric Field 
 
What happens when we place an electric dipole in a uniform field ˆE=E

G
i , with the 

dipole moment vector pG  making an angle with the x-axis?  From Figure 2.8.1, we see that 
the unit vector which points in the direction of pG  is os ˆc ˆsinθ θ+i j . Th

ˆ

us, we have   
 
 ˆ2 (cos sin )qa θ θ= +p i jG  (2.8.1) 
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Figure 2.8.1 Electric dipole placed in a uniform field. 
 

As seen from Figure 2.8.1 above, since each charge experiences an equal but opposite 
force due to the field, the net force on the dipole is net 0+ −= + =F F F

G G G
. Even though the net 

force vanishes, the field exerts a torque a toque on the dipole. The torque about the 
midpoint O of the dipole is  

 

 

ˆ ˆ ˆ ˆ ˆ( cos sin ) ( ) ( cos sin ) ( )
ˆ ˆsin ( ) sin ( )
ˆ2 sin ( )

a a F a a F

a F a F

aF

θ θ θ θ

θ θ

θ

+ + − − + −

+ −

= × + × = + × + − − × −

= − + −

= −

τ r F r F i ˆj i i j i

k k

k

G GG GG

 (2.8.2) 

 
where we have used F . The direction of the torque is F F+ −= = ˆ−k , or into the page. 
The effect of the torque  is to rotate the dipole clockwise so that the dipole moment 

becomes aligned with the electric field E
τG

pG
G

. With F qE= , the magnitude of the torque 
can be rewritten as  
 

2 ( )sin (2 ) sin sina qE aq E pEτ θ θ= = = θ  
 

and the general expression for toque becomes 
 
 = ×τ p E

GGG  (2.8.3) 
 
Thus, we see that the cross product of the dipole moment with the electric field is equal to 
the torque.   
 
 
2.8.1 Potential Energy of an Electric Dipole 
 
The work done by the electric field to rotate the dipole by an angle dθ is 
 
 sindW d pE dτ θ θ θ= − = −  (2.8.4) 
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The negative sign indicates that the torque opposes any increase inθ . Therefore, the total 
amount of work done by the electric field to rotate the dipole from an angle 0θ  to θ  is 

 
 (

0
0( sin ) cos cosW pE d pE

θ

θ
)θ θ θ= − = −∫ θ  (2.8.5)  

  
The result shows that a positive work is done by the field when 0cos cosθ > θ . The 
change in potential energy  of the dipole is the negative of the work done by the 
field: 

U∆

 
 ( )0 cos cosU U U W pE 0θ θ∆ = − = − = − −  (2.8.6) 
 
where 0 cosU PE 0θ= −  is the potential energy at a reference point. We shall choose our 
reference point to be 0 2θ π=  so that the potential energy is zero there, . Thus, in 
the presence of an external field the electric dipole has a potential energy 

0 0U =

 
 cosU pE θ= − = −p E⋅

GG  (2.8.7) 
 
A system is at a stable equilibrium when its potential energy is a minimum. This takes 
place when the dipole  is aligned parallel to EpG

G
, making U  a minimum with 

. On the other hand, when pminU = − pE G and E
G

 are anti-parallel,  is a 
maximum and the system is unstable.  

maxU = + pE

 
If the dipole is placed in a non-uniform field, there would be a net force on the dipole in 
addition to the torque, and the resulting motion would be a combination of linear 
acceleration and rotation. In Figure 2.8.2, suppose the electric field +E

G
at  differs from 

the electric field  at .  

q+

−E
G

q−
 

 
 

Figure 2.8.2 Force on a dipole 
 
Assuming the dipole to be very small, we expand the fields about : x
 

 ( ) ( ) , ( ) ( )dE dEE x a E x a E x a E x a
dx dx+ −

⎛ ⎞ ⎛+ ≈ + − ≈ −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎞
⎟  (2.8.8) 

  
The force on the dipole then becomes 
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 ˆ( ) 2e
dE dEq qa p
dx dx+ −

⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

F E E i
G G G

î  (2.8.9) 

 
An example of a net force acting on a dipole is the attraction between small pieces of 
paper and a comb, which has been charged by rubbing against hair. The paper has 
induced dipole moments (to be discussed in depth in Chapter 5) while the field on the 
comb is non-uniform due to its irregular shape (Figure 2.8.3). 
 

 
Figure 2.8.3 Electrostatic attraction between a piece of paper and a comb 

 
 
2.9  Charge Density 
 
The electric field due to a small number of charged particles can readily be computed 
using the superposition principle. But what happens if we have a very large number of 
charges distributed in some region in space? Let’s consider the system shown in Figure 
2.9.1: 

 
 

Figure 2.9.1 Electric field due to a small charge element . iq∆
  
2.9.1  Volume Charge Density                                                   

 
Suppose we wish to find the electric field at some point P . Let’s consider a small 
volume element  which contains an amount of chargeiV∆ iq∆ . The distances between 
charges within the volume element iV∆  are much smaller than compared to r, the 
distance between  and . In the limit where iV∆ P iV∆  becomes infinitesimally small, we 
may define a volume charge density ( )ρ rG  as  

 

 
0

( ) lim
i

i

V
i

q dq
V dV

ρ
∆ →

∆
= =

∆
rG  (2.9.1) 
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The dimension of ( )ρ rG  is charge/unit volume  in SI units. The total amount of 
charge within the entire volume V is  

3(C/m )

 
 
 ( )i

i V

Q q dρ= ∆ = V∑ ∫ rG  (2.9.2) 

 
The concept of charge density here is analogous to mass density ( )mρ rG . When a large 
number of atoms are tightly packed within a volume, we can also take the continuum 
limit and the mass of an object is given by 
 
 ( )m

V

M dVρ= ∫ rG  (2.9.3) 

  
2.9.2 Surface Charge Density 
 
In a similar manner, the charge can be distributed over a surface S of area A with a 
surface charge density σ  (lowercase Greek letter sigma): 

 

 ( ) dq
dA

σ =rG  (2.9.4) 

 
The dimension of σ  is charge/unit area  in SI units. The total charge on the entire 
surface is: 

2(C/m )

 
 ( )

S

Q σ= ∫∫ r dAG  (2.9.5) 

 
2.9.3 Line Charge Density 
 
If the charge is distributed over a line of length A , then the linear charge density λ  
(lowercase Greek letter lambda) is 

 

 ( ) dq
d

λ =rG
A

 (2.9.6) 

 
where the dimension of λ  is charge/unit length (C . The total charge is now an 
integral over the entire length: 

/m)

 
 

line

( )Q λ= ∫ r dG A  (2.9.7) 
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If charges are uniformly distributed throughout the region, the densities ( ,  or )ρ σ λ  then 
become uniform.   
 
 
2.10 Electric Fields due to Continuous Charge Distributions 
 
The electric field at a point P due to each charge element  is given by Coulomb’s law:  dq
 

 
0

1 ˆ
4 2

dqd
rπε

=E r
G

 (2.10.1) 

 
where   r is the distance from   to  and  is the corresponding unit vector. (See Figure 
2.9.1). Using the superposition principle, the total electric field E

dq  P r̂ G
is the vector sum 

(integral) of all these infinitesimal contributions: 
 

 2
0

1 ˆ
4 V

dq
rπε

= ∫E r
G

 (2.10.2) 

 
This is an example of a vector integral which consists of three separate integrations, one 
for each component of the electric field.   
 
 
Example 2.2: Electric Field on the Axis of a Rod  
 
A non-conducting rod of length A  with a uniform positive charge density λ  and a total 
charge Q  is lying along the -axis, as illustrated in Figure 2.10.1. x
 

 
 

Figure 2.10.1 Electric field of a wire along the axis of the wire 
 
Calculate the electric field at a point located along the axis of the rod and a distance P 0x  
from one end.  
 
Solution:  
 
The linear charge density is uniform and is given by /Qλ = A . The amount of charge 
contained in a small segment of length d ′ x  is dq dxλ ′= .  
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Since the source carries a positive charge Q, the field at P points in the negative x 
direction, and the unit vector that points from the source to P is ˆˆ = −r i .  The contribution 
to the electric field due to is dq
 

 2
0 0 0

1 1 1ˆˆ ( )
4 4 42 2

dq dx Qdxd
r x

ˆ
x

λ
πε πε πε

′ ′
= = − = −

′ ′
E r i
G

A
i   

 
Integrating over the entire length leads to 
 

 0

0
2

0 0 0 0 0

1 1 1 1 1ˆ ˆ
4 4 4

x

x

Q dx Q Qd
0 0

ˆ
( )x x x x xπε πε πε

+ ⎛ ⎞′
= = − = − − = −⎜ ⎟′ + +⎝ ⎠

∫ ∫E E i i
AG G

A A A
i

A
 (2.10.3)  

 
Notice that when P is very far away from the rod, , and the above expression 
becomes  

0x � A

 

 2
0 0

1 ˆ
4

Q
xπε

≈ −E i
G

 (2.10.4) 

 
The result is to be expected since at sufficiently far distance away, the distinction 
between a continuous charge distribution and a point charge diminishes. 
 
 
Example 2.3: Electric Field on the Perpendicular Bisector 
 
A non-conducting rod of length A  with a uniform charge density λ  and a total charge Q  
is lying along the x -axis, as illustrated in Figure 2.10.2. Compute the electric field at a 
point P, located at a distance y from the center of the rod along its perpendicular bisector. 
 

                             Figure 2.10.2 
 
Solution: 
 
We follow a similar procedure as that outlined in Example 2.2. The contribution to the 
electric field from a small length element d ′ x  carrying charge dq dxλ ′= is 
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 2 2
0 0

1 1
4 4

dq dxdE
r x 2y

λ
πε πε

′
= =

′ ′ +
 (2.10.5) 

 
Using symmetry argument illustrated in Figure 2.10.3, one may show that the x -
component of the electric field vanishes.  
 

 
 

Figure 2.10.3 Symmetry argument showing that 0xE = . 
 

The y-component of is  dE
 

 2 2 2 2 3/ 22 2
0 0

1 1cos
4 4 (y

dx y y dxdE dE
x y x yx y )

λ λθ
πε πε

′ ′
= = =

′ + +′ + ′
 (2.10.6) 

 
By integrating over the entire length, the total electric field due to the rod is 
 

 
/ 2 / 2

2 2 3/ 2 2 2 3// 2 / 2
0 0

1
4 ( ) 4 (y y

ydx y dxE dE
x y x y 2)

λ λ
πε πε− −

′ ′
= = =

′ +∫ ∫ ∫
A A

A A ′ +
 (2.10.7) 

 
By making the change of variable: tanx y θ′ ′= , which gives 2secdx y dθ θ′ ′= ′ , the 
above integral becomes 
 

2 2/ 2

2 2 3/ 2 3 2 3/ 2 2 2 3/ 2 2 3/ 2

2 2 2

sec 1 sec 1 sec
( ) (sec 1) (tan 1) sec

1 1 2sincos
sec

dx y d d d
x y y y y

d d
y y y

θ θ θ

θ θ

θ θ

θ θ

2

θ

θ θ θ θ
θ θ

θ θθ θ
θ

− − − −

− −

′ ′ ′ ′ ′
= = =

′ ′ ′+ + +
′

′ ′= = =
′

∫ ∫ ∫ ∫

∫ ∫

A

A

θ θ
θ
′ ′
′

 (2.10.8) 

 
which gives 
 

 
2

0 0

1 2 sin 1 2 / 2
4 4 ( / 2)

yE
y y y 2

λ θ λ
πε πε

= =
+

A
A

 (2.10.9) 
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In the limit where , the above expression reduces to the “point-charge” limit: y� A
 

 2
0 0

1 2 / 2 1 1
4 4 4y

QE
y y y y2

0

λ λ
πε πε πε

≈ = =
A A  (2.10.10) 

 
On the other hand, when , we have  yA �
 

 
0

1 2
4yE

y
λ

πε
≈  (2.10.11) 

 
In this infinite length limit, the system has cylindrical symmetry. In this case, an 
alternative approach based on Gauss’s law can be used to obtain Eq. (2.10.11), as we 
shall show in Chapter 4. The characteristic behavior of 0/yE E  (with 2

0 0/ 4E Q πε= A ) as 
a function of  is shown in Figure 2.10.4. /y A
 

 
Figure 2.10.4 Electric field of a non-conducting rod as a function of . /y A

 
 
Example 2.4: Electric Field on the Axis of a Ring 
 
A non-conducting ring of radius R with a uniform charge density λ  and a total charge Q  
is lying in the xy - plane, as shown in Figure 2.10.5. Compute the electric field at a point 
P, located at a distance z from the center of the ring along its axis of symmetry. 
 

 
 

Figure 2.10.5 Electric field at P due to the charge element . dq

 20



 
Solution: 
 
Consider a small length element d ′A�on the ring. The amount of charge contained within 
this element is dq d R dλ λ φ′= =A ′ . Its contribution to the electric field at P is  
 

 2
0 0

1 1ˆ
4 4

dq R dd
r r 2

ˆλ φ
πε πε

′
= =E r

G
r  (2.10.12) 

 

                               Figure 2.10.6  
 
Using the symmetry argument illustrated in Figure 2.10.6, we see that the electric field at 
P must point in the z+ direction.  
 

 2 2 2 2 3/2 2
0 0

1cos
4 4 (z

R d z Rz ddE dE
R z R zR z 2)
λ φ λθ

πε πε
φ′ ′

= = =
+ ++

 (2.10.13) 

 
Upon integrating over the entire ring, we obtain 
 

 2 2 3/ 2 2 2 3/ 2 2 2 3/
0 0 0

2 1
4 ( ) 4 ( ) 4 ( )z

Rz Rz QzE d
R z R z R z 2

λ λ πφ
πε πε πε

′= = =
+ +∫v +

R

 (2.10.14) 

 
where the total charge is (2 )Q λ π= . A plot of the electric field as a function of z  is 
given in Figure 2.10.7. 
 

 
 

Figure 2.10.7 Electric field along the axis of symmetry of a non-conducting ring of 
radius R, with 2

0 0/ 4E Q Rπε= . 
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Notice that the electric field at the center of the ring vanishes. This is to be expected from 
symmetry arguments. 
 
 
 
Example 2.5: Electric Field Due to a Uniformly Charged Disk 
 
A uniformly charged disk of radius  R  with a total charge  lies in the xy-plane. Find the 
electric field at a point  , along the z-axis that passes through the center of the disk 
perpendicular to its plane. Discuss the limit where . 

 Q
P

R z
 
Solution: 
 
By treating the disk as a set of concentric uniformly charged rings, the problem could be 
solved by using the result obtained in Example 2.4. Consider a ring of radius r′ and 
thickness , as shown in Figure 2.10.8. dr′
 

 
 

Figure 2.10.8 A uniformly charged disk of radius R. 
 
By symmetry arguments, the electric field at P points in the z+ -direction. Since the ring 
has a charge (2 )dq r drσ π ′ ′= , from Eq. (2.10.14), we see that the ring gives a 
contribution  
 

 2 2 3/ 2 2 2 3/ 2
0 0

1 1 (2
4 ( ) 4 ( )z

z dq z r drdE
r z r z

)πσ
πε πε

′ ′
= =

′ ′+ +
 (2.10.15) 

 
Integrating from to , the total electric field at P becomes 0r′ = r R′ =
 

 

2 2

2

2 21/ 2

2 2 3/ 2 3/ 2 20
0 0 0

2 2 2 2 2
0 0

2 ( ) 4 4 ( 1/ 2)

1 1
2 2 | |

R R z

z z z

R zz r dr z du z uE dE
r z u z

z z z
zR z z R z

σ σ σ
ε ε ε

σ σ
ε ε

−+ +′ ′
= = = =

′ + −

⎡ ⎤ ⎡ ⎤
= − − = −⎢ ⎥ ⎢ ⎥

+ +⎣ ⎦ ⎣ ⎦

∫ ∫ ∫
 (2.10.16) 
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The above equation may be rewritten as 
 

 
2 2

0

2 2
0

1 ,
2

1 ,
2

z

z z
z R

E
z z

z R

σ
ε

σ
ε

⎧ ⎡ ⎤
0

0

− >⎪ ⎢ ⎥
+⎪ ⎣ ⎦= ⎨

⎡ ⎤⎪ − − <⎢ ⎥⎪ +⎣ ⎦⎩

 (2.10.17) 

 
The electric field  (0/zE E 0 / 2E 0σ ε= ) as a function of /z R is shown in Figure 2.10.9. 
 

 
 

Figure 2.10.9 Electric field of a non-conducting plane of uniform charge density. 
 
To show that the “point-charge” limit is recovered for z , we make use of the 
Taylor-series expansion: 

R�

 

 
1/ 22 2

2 22 2

11 1 1 1 1
2 2

z R R
z zz R

−
⎛ ⎞ ⎛ ⎞

− = − + = − − + ≈⎜ ⎟ ⎜ ⎟
+ ⎝ ⎠ ⎝ ⎠

"
2

2

1 R
z

 (2.10.18) 

 
This gives 
 

 
2 2

2 2
0 0

1 1
2 2 4 4z 2

0

R RE
z z z

σ σπ
ε πε πε

= = =
Q  (2.10.19) 

 
which is indeed the expected “point-charge” result. On the other hand, we may also 
consider the limit where R z� . Physically this means that the plane is very large, or the 
field point P is extremely close to the surface of the plane. The electric field in this limit 
becomes, in unit-vector notation, 
 

 0

0

ˆ , 0
2

ˆ , 0
2

z

z

σ
ε

σ
ε

⎧ >⎪⎪= ⎨
⎪− <
⎪⎩

k
E

k

G
 (2.10.20) 
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The plot of the electric field in this limit is shown in Figure 2.10.10. 
 

 
 

Figure 2.10.10 Electric field of an infinitely large non-conducting plane. 
 
Notice the discontinuity in electric field as we cross the plane. The discontinuity is given 
by 
 

 
0 02 2z z zE E E

0

σ σ σ
ε ε ε+ −

⎛ ⎞
∆ = − = − − =⎜ ⎟

⎝ ⎠
 (2.10.21) 

 
As we shall see in Chapter 4, if a given surface has a charge densityσ , then the normal 
component of the electric field across that surface always exhibits a discontinuity with 

0/nE σ ε∆ = .  
 
 
2.11 Summary 
 
• The electric force exerted by a charge  on a second charge  is given by 

Coulomb’s law: 
1q 2q

 

 1 2 1 2
12 2

0

1ˆ
4e

q q q qk
r rπε

=F r =
G

2 r̂   

 where  
 

 9 2

0

1 8.99 10  N m / C
4ek
πε

= = × ⋅ 2  

  is the Coulomb constant. 
 
• The electric field at a point in space is defined as the electric force acting on a test 

charge  divided by :  0q 0q
 

 
0 0

0

lim e

q q→

FE =
GG
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• The electric field at a distance r from a charge q is   
 

 2
0

1 ˆ
4

q
rπε

=E r
G

  

 
• Using the superposition principle, the electric field due to a collection of point 

charges, each having charge  and located at a distance  away is  iq ir
 

 2
0

1 ˆ
4

i
i

i i

q
rπε

= ∑E r
G

  

 
• A particle of mass m and charge q moving in an electric field E

G
has an acceleration 

 

 q
m

=
Ea
G

G   

 
• An electric dipole consists of two equal but opposite charges.  The electric dipole 

moment vector p  points from the negative charge to the positive charge, and has a 
magnitude  

G

 
2p aq=  

  
• The torque acting on an electric dipole places in a uniform electric field E is 

G

 
 = ×τ p E

GGG  
 
• The potential energy of an electric dipole in a uniform external electric field is E

G

 
U = − ⋅p E

GG  
 
• The electric field at a point in space due to a continuous charge element dq  is 
 

 2
0

1 ˆ
4

dqd
rπε

=E r
G

  

 
• At sufficiently far away from a continuous charge distribution of finite extent, the 

electric field approaches the “point-charge” limit. 
 
 
 
 

 25



2.12 Problem-Solving Strategies 
 
In this chapter, we have discussed how electric field can be calculated for both the 
discrete and continuous charge distributions. For the former, we apply the superposition 
principle: 
 

 2
0

1 ˆ
4

i
i

i i

q
rπε

= ∑E r
G

 

 
For the latter, we must evaluate the vector integral 
 

2
0

1 ˆ
4

dq
rπε

= ∫E r
G

 

 
where   r is the distance from  to the field point  and  is the corresponding unit 
vector. To complete the integration, we shall follow the procedures outlined below: 

  dq P r̂

 

(1) Start with 2
0

1 ˆ
4

dqd
rπε

=E r
G

 

 
(2) Rewrite the charge element dq as 
 

  
          (length)
         (area)
        (volume)

d
dq dA

dV

λ
σ
ρ

⎧
⎪= ⎨
⎪
⎩

A

 
depending on whether the charge is distributed over a length, an area, or a volume.  
 
(3) Substitute dq into the expression for dE

G
. 

 
(4) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and 
express the differential element ( d , dA or dV ) and r  in terms of the coordinates (see  
Table 2.1 below for summary.) 

A

 
 Cartesian (x, y, z) Cylindrical (ρ, φ, z) Spherical (r, θ, φ) 

dl  ,   ,   dx dy dz  ,   ,   d d dzρ ρ φ  ,  ,  sindr r d r dθ θ φ  

dA  ,   ,   dx dy dy dz dz dx  ,   ,   d dz d dz d dρ ρ φ ρ φ ρ 2,  sin ,  sinr dr d r dr d r d dθ θ φ θ θ φ

dV  dx dy dz  d d dzρ ρ φ  2 sinr dr d dθ θ φ  
 

Table 2.1 Differential elements of length, area and volume in different coordinates 
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(5) Rewrite d  in terms of the integration variable(s), and apply symmetry argument to 
identify non-vanishing component(s) of the electric field.  

E
G

 
(6) Complete the integration to obtain E

G
. 

 
In the Table below we illustrate how the above methodologies can be utilized to compute 
the electric field for an infinite line charge, a ring of charge and a uniformly charged disk. 
 
 

 Line charge Ring of charge Uniformly charged disk 

           Figure 

 
(2) Express dq in 
terms of charge 
density 

dq dxλ ′=  dq dλ= A  dq dAσ=  

 (3) Write down dE 2e
dxdE k

r
λ ′

=
′

 2e
dldE k

r
λ

=  2e
dAdE k
r

σ
=  

(4) Rewrite r and the 
differential element 
in terms of the 
appropriate 
coordinates  

dx′  

cos y
r

θ =
′
 

2 2r x y′ ′= +  

d R dφ′=A  

cos z
r

θ =  

2 2r R z= +  

2 ' 'dA r drπ=  

cos z
r

θ =  

2 2r r z′= +  

(5) Apply symmetry 
argument to identify 
non-vanishing 
component(s) of  dE 

2 2 3/ 2

cos

( )

y

e

dE dE

ydxk
x y

θ

λ

=

′
=

′ +

 
2 2 3/

cos

( )

z

e

dE dE
Rz dk

R z 2

θ
λ φ

=
′

=
+

 
2 2 3/

cos
2
( )

z

e

dE dE

2

zr drk
r z

θ
πσ

=
′ ′

=
′ +

 

(6) Integrate to get E 

/2

2 2 3//2

2 2

( )
2 / 2

( / 2)

y e

e

dxE k y
x y

k
y y

λ

λ

+

−
=

+

=
+

∫
A�

A

A
A

2  

2 2 3/ 2

2 2 3/ 2

2 2 3/ 2

( )
(2 )

( )

( )

z e

e

e

R zE k d
R z

R zk
R z

Qzk
R z

λ φ

π λ

′=
+

=
+

=
+

∫v
 

2 2 3/20

2 2

2
( )

2
| |

R

z e

e

r drE k z
r z

z zk
z z R

πσ

πσ

′ ′
=

′ +

⎛ ⎞
= −⎜ ⎟

+⎝ ⎠

∫

 27



 
2.13 Solved Problems 
 
 
2.13.1 Hyd

model of the hydrogen atom

rogen Atom 
 

 the classical , the electron revolves around the proton with 
n is 

= × .  

) What is the magnitude of the electric force between the proton and the electron?  

) What is ratio of the magnitudes of the electrical and gravitational force between 

f your calculation in (b), explain why electrical forces do not influence the 
otion of planets. 

olutions:  

) The magnitude of the force is given by 

In
a radius of 100 53 10 mr . −= × . The magnitude of the charge of the electron and proto

19−e 1.6 10 C
 
(a
 
(b) What is the magnitude of the electric field due to the proton at r?  
 
(c
electron and proton? Does the result depend on the distance between the proton and the 
electron? 
 
(d) In light o
m
 
S
 
(a
 

2

2
0

1
4e

eF
r

=
πε

   

 
Now we can substitute our numerical values and find that the magnitude of the force 
etween the proton and the electron in the hydrogen atom is b

 
9 2 2 19 2

8
11 2

(9.0 10 N m / C )(1.6 10 C) 8.2 10eF
−

−
−

× ⋅ ×
= = × N

(5.3 10 m)×
  

agnitude of the electric field due to the proton is given by 

 

 
(b) The m
 
   

9 2 2 19

 11
2 1

0

1 (9.0 10 N C) 5.76 10 N / C
4 (

qE
rπε

× ⋅
= = = ×  

(c) The mass of

0 2

m / C )(1.6 10
0.5 10 m)

−

−

×
×

 
 the electron is  and the mass of the proton is 
. Thus, the ratio of the magnitudes of the electric and gravitational 

force is given by 

 319 1 10 kgem . −= ×
271 7 10 kgpm . −= ×
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2
2

2 9 2 2 19 2
0 390

11 2 2 27 31

2

1 1
4 4 (9.0 10 N m / C )(1.6 10 C) 2.2 10

(6.67 10 N m / kg )(1.7 10 kg)(9.1 10 kg)p e p e

e
e

r
m m Gm m

G
r

πε πεγ
−

− − −

⎛ ⎞
⎜ ⎟

× ⋅ ×⎝ ⎠= = = =
× ⋅ × ×⎛ ⎞

⎜ ⎟
⎝ ⎠

  ×  

hich is independent of r, the distance between the proton and the electron.  

men

ectrically neutral. Therefore the force between planets is entirely determined 
y gravity.  

.13.2 Millikan Oil-Drop Experiment 

 
w
 
(d) The electric force is 39 orders of magnitude stronger than the gravitational force 
between the electron and the proton. Then why are the large scale motions of planets 
determined by the gravitational force and not the electrical force. The answer is that the 
magnitudes of the charge of the electron and proton are equal. The best experi ts show 
that the difference between these magnitudes is a number on the order of 2410− . Since 
objects like planets have about the same number of protons as electrons, they are 
essentially el
b
 
 
2
 
An oil drop of radius 61.64 10 mr −= ×  and mass density 2 3

oil 8.51 10 mρ = ×  is 
allowed to fall from rest and then enters into a region of constant external field E  applied 
in the downward direction. The oil drop has an unknown electric charge q  (due to 
irradiation by burst e magnitude of the electric field is adjusted until the 
gravitational force g m mg= = −F

kg

s of X

G

-rays). Th
ˆg j

G G

force, 
G

Suppose th lancing occurs en the electr ield is 

 on the oil drop is exactly balanced by the electric 

is ba wh.e q=F E
G

ic f
5ˆ ˆ(1.92 10 N C)yE= − = − ×E j j

G
, with 51.92 10 N CyE = × .  

) What is the mass of the oil drop? 

) What is the charge on the oil drop in units of electronic charge ? 

olutions:  

densit

 
(a
 

191.6 10 Ce −= ×(b
 
S
 
(a) The mass y oilρ  times the volume of the oil drop will yield the total mass M  of 

 

the oil drop, 
3

oil oil
4
3

M V rρ ρ π⎛= = ⎜ ⎟
⎝ ⎠

⎞   

here the oil drop is assumed to be a sphere of radius  with volume 3

ow we can substitute our numerical values into our symbolic expression for the mass, 

 
r 34 /V r= π .  w

 
 N
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 3 2 3 6 3
oil

4 4(8.51 10 kg m ) (1.64×10 m) 1.57×10 kg
3 3

M r πρ π − −⎛ ⎞ ⎛ ⎞= = × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

14   

 downward, the 
lectric force on the oil must be upward. Using our force laws, we have 

 
(b) The oil drop will be in static equilibrium when the gravitational force exactly balances 
the electrical force: g e+ =F F 0 . Since the gravitational force points

GG G

e
 
 0 ym q      mg qE= + ⇒ = −g E

GG   

 unit vector

 
 With the electrical field pointing downward, we conclude that the charge on the oil drop 
must be negative. Notice that we have chosen the  ĵ  to point upward. We can 

lve this equation for the charge on the oil drop: 
 

 

so

14 2
19

5

(1.57 10 kg)(9.80 m / s ) 8.03 10 C
1.92 10 N Cy

mgq
E

−
−×

= − = − = − ×
×

  

ince the electron has charge , the charge of the oil drop in units of is 

 

 
191 6 10 Ce . −= × eS

 
19

19

8.02 10 C 5
1.6 10 C

qN
e

−

−

×
= = =

×
  

ized. Thus, 
om the given data we can assert that there are five electrons on the oil drop! 

.13.3 Charge Moving Perpendicularly to an Electric Field 

s own in Figure 2.13.1. The particle has an initial velocity 
erpendicular to . 

 

 
You may at first be surprised that this number is an integer, but the Millikan oil drop 
experiment was the first direct experimental evidence that charge is quant
fr
 
 
2
 
An electron is injected horizontally into a uniform field produced by two oppositely 
charged plates, a sh 0 0

ˆv=v iG  
 E
G

p

 
 

Figure 2.13.1 Charge moving perpendicular to an electric field 
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(a) While between the plates, what is the force on the electron? 

) What is the acceleration of the electron when it is between the plates? 

tes have length  in the -direction. At what time will the electron leave 
e plate? 

e ld at time 

 
(b
 
(c) The pla  1L x 1t  
th
 
(d) Suppose the lectron enters the electric fie 0t = . What is the velocity of the 
lectron at time  when it leaves the plates?  

t is the vertical displacement of the electron after time when it leaves the 
lates?  

1te
 
(e) Wha 1t  
p
 
(f) What angle 1θ  does the electron make 1θ  with the horizontal, when the electron leaves 

e plates at tim ? 

(g  the
is e total vertical displacem  time until it hits the 

een at ? 

olutions:   

) Since the electron has a negative charge,

e 1tth
 

) The electron hits the screen located a distance 2L  from the end of  plates at a time 

2t . What  th ent of the electron from 0t =  
scr  2t
 
 
S
 
(a  q e= − , the force on the electron is 
 

ˆ ˆ( )( )e y yq e e E eE= = − = − − =F E E j j
JG JG G

   
 
where the electric field is written as ˆ

yE= −E j
G

, with 0yE > . The force on the electron is 
upward. Note that the motion of the electron is analogous to the motion of a mass that is 
thrown horizontally in a constant gravitational field. The mass follows a parabolic 
trajectory downward. Since the electron is negatively charged, the constant force on the 
lectron is upward and the electron will be deflected upwards on a parabolic path. 

) The acceleration of the electron is 

e
 
(b
  

ˆ ˆy yqE eEq
m m m

= = − =
Ea j j
G

G   

nd its direction is upward.  
 

 
a
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(c) The time of passage for the electron is given by 1 1 /t L v0= .  The time  is not affected 
by the acceleration because , the horizontal component of the velocity which 
determines the time, is not affected by the field.  

1t

0v

 
(d) The electron has an initial horizontal velocity, 0

ˆv=0v iG . Since the acceleration of the 
electron is in the + -direction, only the y -component of the velocity changes. The 
velocity at a later time  is given by 

y

1t
 

 1
0 1 0 1 0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆy
x y y

eE eE L
v v v a t v t v

m m
⎛ ⎞⎛ ⎞

= + = + + + ⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

v i ˆy

v ⎟j i j = i j = i jG   

 
(e) From the figure, we see that the electron travels a horizontal distance  in the time 1L

1 1t L v= 0  and then emerges from the plates with a vertical displacement  
 

 
2

2 1
1 1

0

1 1
2 2

y
y

eE Ly a t
m v

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  

 
(f) When the electron leaves the plates at time , the electron makes an angle 1t 1θ  with the 
horizontal given by the ratio of the components of its velocity,  
 

 1 0 1
2

0 0

( / )( / )
tan y y y

x

v eE m L v eE L
v v m

θ = = =
v

  

 
(g) After the electron leaves the plate, there is no longer any force on the electron so it 
travels in a straight path. The deflection  is 2y
 

 1 2
2 2 1 2

0

tan yeE L L
y L

mv
θ= =   

  
and the total deflection becomes 
 

 
2

1 1 2 1
1 2 1 22 2 2

0 0 0

1
2 2

y y yeE L eE L L eE L
y y y L L

mv mv mv
⎛= + = + = +⎜
⎝ ⎠

1 ⎞
⎟   

 
 
2.13.4 Electric Field of a Dipole 
 
Consider the electric dipole moment shown in Figure 2.7.1. 
 
(a) Show that the electric field of the dipole in the limit where  is r a�
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 ( 2
3 3

0 0

3 sin cos ,    3cos 1
4 4x y

p pE E
r r

θ θ θ
πε πε

= = )−   

 
where sin /x rθ =  and cos /y rθ = .  
 
(b) Show that the above expression for the electric field can also be written in terms of 
the polar coordinates as 
 
 ˆˆ( , ) rr E Eθθ = +E r θ

G
  

 
where  

 3 3
0 0

2 cos sin,    
4 4r
p pE E

r rθ
θ θ

πε π
= =

ε
   

   
Solutions:  
 
(a) Let’s compute the electric field strength at a distance  due to the dipole. The -
component of the electric field strength at the point with Cartesian coordinates ( ,

r a� x
P , 0)x y  

is given by 
  

 3/ 2 3/ 22 2 2 2 2 2
0 0

cos cos
4 4 ( ) ( )

x
q q xE

r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡⎝ ⎠ + − + +⎣ ⎦ ⎣⎝ ⎠

x
⎤⎦

2∓

  

 
where  
  
   2 2 2 22 cos ( )r r a ra x y aθ± = + = +∓
 
Similarly, the y -component is given by 

  

 3/ 2 3/ 22 2 2 2 2 2
0 0

sin sin
4 4 ( ) ( )

y
q q y a yE

r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ − +⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡⎝ ⎠ + − + +⎣ ⎦ ⎣⎝ ⎠

a
⎤⎦

  

 
We shall make a polynomial expansion for the electric field using the Taylor-series 
expansion. We will then collect terms that are proportional to and ignore terms that 
are proportional to , where 

31/ r
51/ r 2 2 1( )r x y= + + 2 . 

 
We begin with 
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3/ 22

2 2 3/ 2 2 2 2 3/ 2 3
2

2[ ( ) ] [ 2 ] 1 a ayx y a x y a ay r
r

−

− − − ⎡ ⎤±
+ ± = + + ± = +⎢ ⎥

⎣ ⎦
  

 
In the limit where , we use the Taylor-series expansion with : r >> a 2 2( 2 ) /s a ay r≡ ±
 

 3/ 2 23 15(1 ) 1 ...
2 8

s s s−+ = − + −   

  
and the above equations for the components of the electric field becomes 
 

 5
0

6 ...
4x

q xyaE
rπε

= +   

and 

 
2

3 5
0

2 6 ...
4y

q a y aE
r rπε

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
    

 
where we have neglected the terms. The electric field can then be written as 2( )O s
 

     
2

3 5 3 2 2
0 0

2 6 3 3ˆ ˆ ˆ ˆ ˆ ˆ( ) 1
4 4x y

q a ya p yx yE E x y
r r r r rπε πε

ˆ⎡ ⎤⎛ ⎞⎡ ⎤= + = − + + = + −⎢ ⎥⎜⎢ ⎥⎣ ⎦ ⎝ ⎠
⎟

⎣ ⎦
E i j j i j i
G

j

q

  

 
where we have made used of the definition of the magnitude of the electric dipole 
moment . 2p a=
 
In terms of the polar coordinates, with sin x rθ = and cos y rθ =  (as seen from Figure 
2.13.4), we obtain the desired results: 
 

 ( 2
3 3

0 0

3 sin cos     3cos 1
4 4x y

p pE E
r r

θ θ, θ
πε πε

= = )−    

  
(b) We begin with the expression obtained in (a) for the electric dipole in Cartesian 
coordinates:  
  

 ( 2
3

0

ˆ, ) 3sin cos 3cos 1
4

pr
r

θ θ θ θ
πε

) ˆ⎡ ⎤= + −⎣ ⎦E( i j
G

  

 
With a little algebra, the above expression may be rewritten as  
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G
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where the trigonometric identity ( )2cos 1 sin2θ θ− = −  has been used. Since the unit 

vectors and in polar coordinates can be decomposed as  r̂ θ̂
 

 
ˆ ˆˆ sin cos

ˆ ˆcos sin ,ˆ
θ θ

θ θ

= +

= −

r i

θ i j

j
  

 
the electric field in polar coordinates is given by 
 

 3
0

ˆˆ, ) 2cos sin
4

pr
r

θ θ θ
πε

⎡ ⎤= +⎣ ⎦E( r θ
G

  

 
and the magnitude of  is  E

JG

 

 ( 1/ 22 2 1/ 2 2
3

0

( ) 3cos
4r

pE E E
rθ θ

πε
= + = + )1   

 
 
2.13.5 Electric Field of an Arc 
 
A thin rod with a uniform charge per unit length λ  is bent into the shape of an arc of a 
circle of radius R. The arc subtends a total angle 02θ , symmetric about the x-axis, as 
shown in Figure 2.13.2.  What is the electric field E

G
 at the origin O? 

 
Solution:  
 
Consider a differential element of length d R dθ=A , which makes an angle θ  with the 

- axis, as shown in Figure 2.13.2(b).  The amount of charge it carries is x
dq d R dλ λ θ= =A . 
 
The contribution to the electric field at O is 
 

 ( ) ( )2
0 0 0

1 1 1ˆ ˆ ˆˆ cos sin cos sin
4 4 42

dq dq dd
r R R

ˆλ θθ θ θ
πε πε πε

= = − − = − −E r i j i
G

θ j   
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Figure 2.13.2 (a) Geometry of charged source. (b) Charge element  dq
 

Integrating over the angle from 0θ−  to 0θ+  , we have 
 

 ( ) ( )0

0

0

0

0

0 0

2 sin1 1ˆ ˆ ˆ ˆcos sin sin cos
4 4

d
R R

θ

θ

θ

θ 0

1 ˆ
4 R

λ θλ λθ θ θ θ θ
πε πε πε− −

= − − = − = −∫E i j i + j i
G

  

 
We see that the electric field only has the x -component, as required by a symmetry 
argument. If we take the limit 0θ π→ , the arc becomes a circular ring. Since sin 0π = , 
the equation above implies that the electric field at the center of a non-conducting ring is 
zero. This is to be expected from symmetry arguments.  On the other hand, for very 
small 0θ , 0sin 0θ θ≈  and we recover the point-charge limit:    
 

 0 0
2 2

0 0

2 21 1 1ˆ ˆ
4 4 4

R Q

0

ˆ
R R R
λθ λθ

πε πε πε
≈ − = − = −E i i

G
i  

 
where the total charge on the arc is 0(2 )Q Rλ λ θ= =A . 
 
 
2.13.6 Electric Field Off the Axis of a Finite Rod 
 
A non-conducting rod of length A  with a uniform charge density λ  and a total charge Q  
is lying along the x -axis, as illustrated in Figure 2.13.3. Compute the electric field at a 
point P, located at a distance y off the axis of the rod. 
 

              Figure 2.13.3 
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Solution: 
 
The problem can be solved by following the procedure used in Example 2.3. Consider a 
length element dx  on the rod, as shown in Figure 2.13.4. The charge carried by the 
element is dq

′
dxλ ′= .  

 

Figure 2.13.4 
 
The electric field at P produced by this element is 
 

 ( )2 2 2
0 0

1 1 ˆ ˆˆ sin cos
4 4

dq dxd
r x y

λ θ θ
πε πε

′
′ ′= = − +

′ ′ +
E r i
G

j  

 
where the unit vector has been written in Cartesian coordinates: r̂ ˆ ˆˆ sin cosθ θ′ ′= − +r i j . 
In the absence of symmetry, the field at P has both the x- and y-components.  The x-
component of the electric field is 
 

 2 2 2 2 2 2 3/2 2
0 0 0

1 1 1sin
4 4 4 (x

dx dx x x dxdE
x y x y x yx y 2)

λ λ λθ
πε πε πε

′ ′ ′
′= − = − = −

′ ′+ + ′ +

′ ′
′ +

 

 
Integrating from 1x x′ =  to 2x x′ = , we have  
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2 2 2

2 2 2 21 1
1
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2 2 3/ 2 3/ 2

0 0 0

2 2 2 2 2 2 2 2
0 02 1 2 1

2 1
0

1
4 ( ) 4 2 4

1 1
4 4

cos cos
4

x x y

x x x y

x y

x y

x dx duE u
x y u

y y
yx y x y x y x y

y

λ λ λ
πε πε πε

λ λ
πε πε

λ θ θ
πε

+ −

+

+

+

′ ′
= − = − =

′ +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −
⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦

= −

∫ ∫

 

 
Similarly, the y-component of the electric field due to the charge element is  
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 2 2 2 2 2 2 3/2 2
0 0 0

1 1 1cos
4 4 4 (y

dx dx y ydxdE
x y x y x yx y 2)

λ λ λθ
πε πε πε

′ ′
′= = =

′ ′+ + ′ +

′
′ +

 

 
Integrating over the entire length of the rod, we obtain  
 

 ( )2 2

1 1
2 12 2 3/ 2 2

0 0 0

1 cos sin sin
4 ( ) 4 4

x

y x

y dx yE d
x y y y

θ

θ

λ λ λθ θ θ
πε πε πε

′
′ ′= = =

′ +∫ ∫ θ−  

 
where we have used the result obtained in Eq. (2.10.8) in completing the integration. 
 
In the infinite length limit where and , with 1x → −∞ 2x → +∞ tani ix y θ= , the 
corresponding angles are 1 / 2θ π= − and 2 / 2θ π= + . Substituting the values into the 
expressions above, we have 
 

 
0

1 20,       
4x yE E

y
λ

πε
= =  

 
in complete agreement with the result shown in Eq. (2.10.11). 
 
 
2.14 Conceptual Questions 
 
1. Compare and contrast Newton’s law of gravitation, , and 

Coulomb’s law, 

2
1 2 /gF Gm m r=

2
1 2 /eF kq q r= . 

 
2. Can electric field lines cross each other? Explain.   
 
3. Two opposite charges are placed on a line as shown in the figure below.  
 

 
 
The charge on the right is three times the magnitude of the charge on the left. 
Besides infinity, where else can electric field possibly be zero?  

 
 
4. A test charge is placed at the point P near a positively-charged insulating rod.  
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How would the magnitude and direction of the electric field change if the 
magnitude of the test charge were decreased and its sign changed with everything 
else remaining the same? 

 
5. An electric dipole, consisting of two equal and opposite point charges at the ends of 

an insulating rod, is free to rotate about a pivot point in the center. The rod is then 
placed in a non-uniform electric field. Does it experience a force and/or a torque? 

 
 
2.15 Additional Problems 
 
2.15.1 Three Point Charges 
 
Three point charges are placed at the corners of an equilateral triangle, as shown in 
Figure 2.15.1. 
 

  
 

Figure 2.15.1 Three point charges 
 
Calculate the net electric force experienced by (a) the 9.00 Cµ  charge, and (b) the 

6.00 Cµ−  charge. 
 
2.15.2 Three Point Charges 
 
A right isosceles triangle of side a has charges q, +2q and −q arranged on its vertices, as 
shown in Figure 2.15.2.   
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          Figure 2.15.2 
 
What is the electric field at point P, midway between the line connecting the +q and  −q 
charges?  Give the magnitude and direction of the electric field.   
 
 
2.15.3 Four Point Charges  
 
Four point charges are placed at the corners of a square of side a, as shown in Figure 
2.15.3. 

 
 

Figure 2.15.3 Four point charges 
 
 

(a) What is the electric field at the location of charge q ?  
 

(b) What is the net force on 2q? 
 
 
2.15.4 Semicircular Wire 
 
A positively charged wire is bent into a semicircle of radius R, as shown in Figure 2.15.4. 

                 Figure 2.15.4   
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The total charge on the semicircle is Q. However, the charge per unit length along the 
semicircle is non-uniform and given by 0 cosλ λ θ= .   
 
(a) What is the relationship between 0λ , R and Q?  
 
(b) If a charge q is placed at the origin, what is the total force on the charge? 
 
 
2.15.5 Electric Dipole 
 
An electric dipole lying in the xy-plane with a uniform electric field applied in the x+ -
direction is displaced by a small angle θ from its equilibrium position, as shown in Figure 
2.15.5.  
 

Figure 2.15.5   
 
The charges are separated by a distance 2a, and the moment of inertia of the dipole is I.  
If the dipole is released from this position, show that its angular orientation exhibits 
simple harmonic motion. What is the frequency of oscillation? 
 
 
2.15.6 Charged Cylindrical Shell and Cylinder 
 
(a) A uniformly charged circular cylindrical shell of radius R and height h  has a total 
charge Q. What is the electric field at a point P a distance z from the bottom side of the 
cylinder as shown in Figure 2.15.6?  (Hint: Treat the cylinder as a set of ring charges.)  
 

 
 

Figure 2.15.6 A uniformly charged cylinder 
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(b) If the configuration is instead a solid cylinder of radius R , height h  and has a 
uniform volume charge density. What is the electric field at P?  (Hint: Treat the solid 
cylinder as a set of disk charges.)  
 
 
2.15.7 Two Conducting Balls 
 
Two tiny conducting balls of identical mass m  and identical charge  hang from non-
conducting threads of length l . Each ball forms an angle 

q
θ  with the vertical axis, as 

shown in Figure 2.15.9.  Assume that θ  is so small that tan sin≈θ θ .   
 

                        Figure 2.15.9 
 
(a) Show that, at  equilibrium, the separation between the balls is  
 

1 32

02
qr

mgπε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

A  

 
 (b) If , , and 21.2 10 cml = × 11.0 10m g= × 5.0cmx = , what is ?  q
 
 
2.15.8 Torque on an Electric Dipole 
 
An electric dipole consists of two charges q1 = +2e  and q2 = −2e  ( ), 
separated by a distance . The electric charges are placed along the y-axis as 
shown in Figure 2.15.10. 

191.6 10 Ce −= ×
910 md −=

 

                        Figure 2.15.10 
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Suppose a constant external electric field ext

ˆ ˆ(3 3 )N/C= +E i j
G

is applied.  
 
(a) What is the magnitude and direction of the dipole moment?  
  
(b) What is the magnitude and direction of the torque on the dipole?  
 
(c) Do the electric fields of the charges  and  contribute to the torque on the dipole? 
Briefly explain your answer.  

1q 2q
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