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Electric Potential 
 
 
3.1 Potential and Potential Energy  
 
In the introductory mechanics course, we have seen that gravitational force from the 
Earth on a particle of mass m located at a distance r from Earth’s center has an inverse-
square form: 
 

 2
ˆg

MmG
r

= −F r
G

 (3.1.1) 

 
where  is the gravitational constant and is a unit vector 
pointing radially outward. The Earth is assumed to be a uniform sphere of mass M. The 
corresponding gravitational field 

11 2 26.67 10 N m /kgG −= × ⋅ r̂

gG , defined as the gravitational force per unit mass, is 
given by 
 

 2
ˆg GM

m r
= = −

F
g r

G
G  (3.1.2) 

 
Notice that gG  only depends on M, the mass which creates the field, and r, the distance 
from M. 

 
 

Figure 3.1.1 
 
Consider moving a particle of mass m  under the influence of gravity (Figure 3.1.1). The 
work done by gravity in moving  from A to B is  m
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The result shows that gW is independent of the path taken; it depends only on the 
endpoints A and B. It is important to draw distinction between ,gW the work done by the 
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field and , the work done by an external agent such as you. They simply differ by a 
negative sign: .  

extW

extgW W= −
 
Near Earth’s surface, the gravitational field gG  is approximately constant, with a 
magnitude , where  is the radius of Earth. The work done by 
gravity in moving an object from height 

2 2/ 9.8m/Eg GM r= ≈ s Er

Ay  to  (Figure 3.1.2) is By
 
 cos cos ( )B

A

B B y

g g B AA A y
W d mg ds mg ds mg dy mg y yθ φ= ⋅ = = − = − = − −∫ ∫ ∫ ∫F s

G G  (3.1.4) 

 
 

Figure 3.1.2 Moving a mass m from A to B. 
 
 
The result again is independent of the path, and is only a function of the change in 
vertical height . B Ay y−
   
In the examples above, if the path forms a closed loop, so that the object moves around 
and then returns to where it starts off, the net work done by the gravitational field would 
be zero, and we say that the gravitational force is conservative. More generally, a force F

G
 

is said to be conservative if its line integral around a closed loop vanishes: 
 
 0d⋅ =∫ F s  (3.1.5) 

 
When dealing with a conservative force, it is often convenient to introduce the concept of 
potential energy U. The change in potential energy associated with a conservative force 

 acting on an object as it moves from A to B is defined as: F
JG

 

 
B

B A A
U U U d W∆ = − = − ⋅ = −∫ F s

G G
 (3.1.6) 

 
where W  is the work done by the force on the object.  In the case of gravity, gW W=  and 
from Eq. (3.1.3), the potential energy can be written as 
 

 0g
GMmU

r
U= − +  (3.1.7) 
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where  is an arbitrary constant which depends on a reference point. It is often 
convenient to choose a reference point where  is equal to zero. In the gravitational 
case, we choose infinity to be the reference point, with

0U

0U

0 ( )U r 0= ∞ = . Since gU  depends 
on the reference point chosen, it is only the potential energy difference gU∆ that has 
physical importance. Near Earth’s surface where the gravitational field gG  is 
approximately constant, as an object moves from the ground to a height h, the change in 
potential energy is gU mgh∆ = + , and the work done by gravity is gW mgh= − . 
 
A concept which is closely related to potential energy is “potential.” From , the 
gravitational potential can be obtained as  

U∆

 

 ( / )
Bg

g gA

U
V m d

m
∆

∆ = = − ⋅ = − ⋅∫ F s
B

A
d∫ g s

G G G G
 (3.1.8) 

 
Physically gV∆  represents the negative of the work done per unit mass by gravity to 
move a particle from .   to A B
 
Our treatment of electrostatics is remarkably similar to gravitation. The electrostatic force 

 given by Coulomb’s law also has an inverse-square form. In addition, it is also 
conservative. In the presence of an electric field E

eF JG
, in analogy to the gravitational field 

gG , we define the electric potential difference between two points as and A B
 

 0( / )
B

eA
V q d∆ = − ⋅ = − ⋅∫ ∫F s E

B

A
d s

G GG G
 (3.1.9) 

 
where  is a test charge. The potential  difference 0q V∆ represents the amount of work 
done per unit charge to move a test charge  from point A to B, without changing its 
kinetic energy. Again, electric potential should not be confused with electric potential 
energy. The two quantities are related by  

0q

 
 0U q V∆ = ∆  (3.1.10) 
 
The SI unit of electric potential is volt (V): 
 
  (3.1.11) 1volt 1 joule/coulomb  (1 V= 1 J/C)=
 
When dealing with systems at the atomic or molecular scale, a joule (J) often turns out to 
be too large as an energy unit. A more useful scale is electron volt (eV), which is defined 
as the energy an electron acquires (or loses) when moving through a potential difference 
of one volt: 
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  (3.1.12) 19 191eV (1.6 10 C)(1V) 1.6 10 J−= × = × −

 
 
3.2 Electric Potential in a Uniform Field 
 
Consider a charge q+ moving in the direction of a uniform electric field , as 
shown in Figure 3.2.1(a). 

0
ˆ( )E= −E j

JG

 

   (a)     (b) 
 
Figure 3.2.1 (a) A charge q which moves in the direction of a constant electric field E

JG
. 

(b) A mass m that moves in the direction of a constant gravitational field gG . 
 
Since the path taken is parallel to E

JG
, the potential difference between points A and B is 

given by 

 0 0 0
B B

B A A A
V V V d E ds E d∆ = − = − ⋅ = − = − <∫ ∫E s

JG G  (3.2.1) 

 
implying that point B is at a lower potential compared to A. In fact, electric field lines 
always point from higher potential to lower. The change in potential energy is 

. Since we have0B AU U U qE d∆ = − = − 0,q > 0U∆ < , which implies that the potential 
energy of a positive charge decreases as it moves along the direction of the electric field. 
The corresponding gravitational analogy, depicted in Figure 3.2.1(b), is that a mass m 
loses potential energy ( U mgd∆ = − ) as it moves in the direction of the gravitational 
field gG .  
 

 
 

Figure 3.2.2 Potential difference due to a uniform electric field 
 

What happens if the path from A to B is not parallel to E
JG

, but instead at an angle θ, as 
shown in Figure 3.2.2? In that case, the potential difference becomes 
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 0 cos
B

B A A
V V V d E s E yθ∆ = − = − ⋅ = − ⋅ − = −∫ E s E s = 0

JG JGG G  (3.2.2) 

 
Note that y increase downward in Figure 3.2.2. Here we see once more that moving along 
the direction of the electric field E

JG
leads to a lower electric potential. What would the 

change in potential be if the path were ? In this case, the potential difference 
consists of two contributions, one for each segment of the path: 

A C B→ →

 
 CA BCV V V∆ = ∆ + ∆  (3.2.3) 
 
When moving from A to C, the change in potential is 0CAV E y∆ = − . On the other hand, 

when going from C to B, since the path is perpendicular to the direction of E0BCV∆ =
JG

.  
Thus, the same result is obtained irrespective of the path taken, consistent with the fact 
that  E

JG
 is conservative.  

 
Notice that for the path , work is done by the field only along the segment 
AC which is parallel to the field lines. Points B and C are at the same electric potential, 
i.e., . Since 

A C B→ →

BV V= C U q V∆ = ∆ , this means that no work is required in moving a charge 
from B to C. In fact, all points along the straight line connecting B and C are on the same 
“equipotential line.”  A more complete discussion of equipotential will be given in 
Section 3.5. 
 
 
3.3 Electric Potential due to Point Charges 
 
Next, let’s compute the potential difference between two points A and B due to a charge 
+Q. The electric field produced by Q is 2

0 ˆ( / 4 )Q rπε=E r
JG

, where  is a unit vector 
pointing toward the field point.   

r̂

 

 
 

Figure 3.3.1 Potential difference between two points due to a point charge Q. 
 
From Figure 3.3.1, we see that ˆ cosd ds drθ⋅ = =r sG , which gives 
 

 2 2
0 0 0

1 1ˆ
4 4 4

B B

B A A A
B A

Q Q QV V V d dr
r rπε πε πε

⎛ ⎞
∆ = − = − ⋅ − = −⎜

⎝ ⎠
∫ ∫r s =G

r r ⎟  (3.3.1) 
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Once again, the potential difference V∆  depends only on the endpoints, independent of 
the choice of path taken. 
 
As in the case of gravity, only the difference in electrical potential is physically 
meaningful, and one may choose a reference point and set the potential there to be zero. 
In practice, it is often convenient to choose the reference point to be at infinity, so that the 
electric potential at a point P becomes 
 

 
P

PV
∞

d= − ⋅∫ E s
JG G  (3.3.2) 

 
With this reference, the electric potential at a distance r away from a point charge Q 
becomes 
 

 
0

1( )
4

QV r
rπε

=  (3.3.3) 

 
When more than one point charge is present, by applying the superposition principle, the 
total electric potential is simply the sum of potentials due to individual charges: 

 

0

1( )
4

i i
e

i ii i

q qV r k
r rπε

= =∑ ∑                            (3.3.4) 

 
A summary of comparison between gravitation and electrostatics is tabulated below: 

      

Gravitation Electrostatics 

Mass m Charge q 

Gravitational force 2
ˆg

MmG
r

= −F r
G

 Coulomb force 2
ˆe e

Qqk
r

=F r
G

 

Gravitational field  /g m=g F
GG

Electric field  /e q=E F
G G

Potential energy change 
B

gA
U∆ = − ⋅∫ F sd

G G  Potential energy change 
B

eA
U d∆ = − ⋅∫ F s

G G

Gravitational potential 
B

g A
V d= − ⋅∫ g sG G  Electric Potential 

B

A
V d= − ⋅∫ E s

G G  

For a source M:  g
GMV

r
= −  For a source Q:  e

QV k
r

=  

| |gU mg∆ = d   (constant  gG ) | |U qEd∆ =  (constant ) E
JG

 
 

 6



3.3.1 Potential Energy in a System of Charges 
 
If a system of charges is assembled by an external agent, then extU W W∆ = − = + . That is, 
the change in potential energy of the system is the work that must be put in by an external 
agent to assemble the configuration. A simple example is lifting a mass m through a 
height h.  The work done by an external agent  you, is mgh+  (The gravitational field 
does work mgh− ). The charges are brought in from infinity without acceleration i.e. they 
are at rest at the end of the process. Let’s start with just two charges  and . Let the 
potential due to  at a point be  (Figure 3.3.2).  

1q 2q

1q P 1V
 

 
 

Figure 3.3.2 Two point charges separated by a distance . 12r
 
The work  done by an agent in bringing the second charge  from infinity to P  is 
then . (No work is required to set up the first charge and ). Since 

2W 2q

2 2W q V= 1 1 0W =

1 1 0 12/ 4 ,V q rπε= where is the distance measured from  to P, we have  12r 1q
 

 1 2
12 2

0 12

1
4

q qU W
rπε

= =  (3.3.5) 

 
If  and q1q 2 have the same sign, positive work must be done to overcome the electrostatic 
repulsion and the potential energy of the system is positive, . On the other hand, 
if the signs are opposite, then 

12 0U >

12 0U <  due to the attractive force between the charges.  
 

 
 

Figure 3.3.3 A system of three point charges. 
 
 
To add a third charge q3 to the system (Figure 3.3.3), the work required is  
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 ( ) 3 1 2
3 3 1 2

0 13 234
q q qW q V V

r rπε
⎛ ⎞

= + = +⎜
⎝ ⎠

⎟  (3.3.6) 

 
The potential energy of this configuration is then 
 

 1 3 2 31 2
2 3 12 13 23

0 12 13 23

1
4

q q q qq qU W W U U U
r r rπε

⎛ ⎞
= + = + + = + +⎜ ⎟

⎝ ⎠
 (3.3.7) 

 
The equation shows that the total potential energy is simply the sum of the contributions 
from distinct pairs. Generalizing to a system of N charges, we have 
 

 
0 1 1

1
4

N N
i j

iji j
j i

q q
U

rπε = =
>

= ∑∑  (3.3.8) 

   
where the constraint  is placed to avoid double counting each pair. Alternatively, 
one may count each pair twice and divide the result by 2. This leads to 

j i>

 

 
0 01 1 1 1 1

1 1 1 1 ( )
8 2 4 2

N N N N N
i j j

i
ij iji j i j i

j i j i

q q q
U q

r rπε πε= = = = =
≠ ≠

⎛ ⎞
⎜ ⎟= = =⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑ ∑ ∑ ∑ i iqV r  (3.3.9) 

 
where , the quantity in the parenthesis, is the potential at ( )iV r ir

G  (location of qi) due to all 
the other charges.   
 
 
3.4 Continuous Charge Distribution 
 
If the charge distribution is continuous, the potential at a point P can be found by 
summing over the contributions from individual differential elements of charge dq . 
 

 
 

Figure 3.4.1 Continuous charge distribution 
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Consider the charge distribution shown in Figure 3.4.1. Taking infinity as our reference 
point with zero potential, the electric potential at P due to dq is  
 

 
0

1
4

dqdV
rπε

=  (3.4.1) 

 
Summing over contributions from all differential elements, we have 
 

 
0

1
4

dqV
rπε

= ∫  (3.4.2) 

 
 
3.5 Deriving Electric Field from the Electric Potential  
 
In Eq. (3.1.9) we established the relation between E

JG
 and V. If we consider two points 

which are separated by a small distance dsG , the following differential form is obtained: 
  
 dV d= − ⋅E s

JG G  (3.5.1) 
 
In Cartesian coordinates, ˆ ˆ ˆ

x y zE E E= + +E i j k
JG

and ˆ ˆ ˆ ,d dx dy dz= + +s i j kG  we have  
 
 ( ) ( )ˆ ˆ ˆ ˆˆ ˆ

x y z x y zdV E E E dx dy dz E dx E dy E dz= + + ⋅ + + = + +i j k i j k  (3.5.2) 

 
which implies 
 

 , ,x y z
V VE E E V
x y z

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
 (3.5.3)  

 
By introducing a differential quantity called the “del (gradient) operator” 
  

 ˆ ˆ ˆ
x y z

∂ ∂ ∂
∇ ≡ +

∂ ∂ ∂
i j+ k  (3.5.4) 

the electric field can be written as  
 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
x y z

V V VE E E V V
x y z x y z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= + + = − + = − + = −∇⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

E i j k i + j k i + j k
JG

 

 
 V= −∇E

JG
 (3.5.5) 

 
Notice that ∇ operates on a scalar quantity (electric potential) and results in a vector 
quantity (electric field). Mathematically, we can think of E

JG
 as the negative of the 

gradient of the electric potential V . Physically, the negative sign implies that if 
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V increases as a positive charge moves along some direction, say x, with , 
then there is a non-vanishing component of E

/ 0V x∂ ∂ >JG
 in the opposite direction ( . In the 

case of gravity, if the gravitational potential increases when a mass is lifted a distance h, 
the gravitational force must be downward. 

0)xE− ≠

 
If the charge distribution possesses spherical symmetry, then the resulting electric field is 
a function of the radial distance r, i.e., ˆrE=E r

G
. In this case, .rdV E dr= −  If is 

known, then E  may be obtained as 
( )V r

G

 

 ˆr
dVE
dr

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

E r r̂
JG

 (3.5.6) 

 
For example, the electric potential due to a point charge q is 0( ) / 4V r q rπε= . Using the 

above formula, the electric field is simply 2
0 ˆ( 4 )q rπε=E / r

JG
.  

 
 
3.5.1 Gradient and Equipotentials 
  
Suppose a system in two dimensions has an electric potential ( , )V x y . The curves 
characterized by constant ( , )V x y are called equipotential curves. Examples of 
equipotential curves are depicted in Figure 3.5.1 below. 
 

 
 

Figure 3.5.1 Equipotential curves 
 
In three dimensions we have equipotential surfaces and they are described by 

( , , )V x y z =constant. Since  we can show that the direction of E
JG

is always 
perpendicular to the equipotential through the point. Below we give a proof in two 
dimensions. Generalization to three dimensions is straightforward. 

,V= −∇E
G

 
Proof: 
 
Referring to Figure 3.5.2, let the potential at a point ( , )P x y be ( , )V x y . How much is 

changed at a neighboring point V ( ,P x dx )y dy+ + ? Let the difference be written as 
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( , ) ( , )

( , ) ( , )

dV V x dx y dy V x y

V V V VV x y dx dy V x y dx dy
x y x y

= + + −

⎡ ⎤∂ ∂ ∂ ∂
= + + + − ≈ +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

"
 (3.5.7) 

 

  

Figure 3.5.2 Change in V when moving from one equipotential curve to another 
 

With the displacement vector given by ˆd dx dy= +s i ĵG , we can rewrite as  dV
 

 ( )ˆ ˆ ˆ ˆ ( )V VdV dx dy V d d
x y

⎛ ⎞∂ ∂
= + ⋅ + = ∇ ⋅ = − ⋅⎜ ⎟∂ ∂⎝ ⎠

i j i j s E s
JG G  (3.5.8) 

 
 If the displacement d  is along the tangent to the equipotential curve through P(x,y), 
then  because V is constant everywhere on the curve. This implies that 

sG

0dV = d⊥E s
JG G  

along the equipotential curve. That is, E
JG

 is perpendicular to the equipotential. In Figure 
3.5.3 we illustrate some examples of equipotential curves. In three dimensions they 
become equipotential surfaces. From Eq. (3.5.8), we also see that the change in potential 

attains a maximum when the gradientdV V∇ is parallel to d sG : 
 

 max dV V
ds

⎛ ⎞ = ∇⎜ ⎟
⎝ ⎠

 (3.5.9) 

 
Physically, this means that always points in the direction of maximum rate of change 
of V with respect to the displacement s.   

V∇

 

 
  

Figure 3.5.3 Equipotential curves and electric field lines for (a) a constant E  field, (b) a 
point charge, and (c) an electric dipole.  

JG
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The properties of equipotential surfaces can be summarized as follows: 
 
(i) The electric field lines are perpendicular to the equipotentials and point from 

higher to lower potentials. 
 
(ii) By symmetry, the equipotential surfaces produced by a point charge form a family 

of concentric spheres, and for constant electric field, a family of planes 
perpendicular to the field lines. 

 
(iii) The tangential component of the electric field along the equipotential surface is 

zero, otherwise non-vanishing work would be done to move a charge from one 
point on the surface to the other. 

 
(iv) No work is required to move a particle along an equipotential surface. 

 
A useful analogy for equipotential curves is a topographic map (Figure 3.5.4). Each 
contour line on the map represents a fixed elevation above sea level. Mathematically it is 
expressed as . Since the gravitational potential near the surface of 
Earth is , these curves correspond to gravitational equipotentials. 

( , ) constantz f x y= =

gV g= z
 

  
Figure 3.5.4 A topographic map 

 
 
Example 3.1: Uniformly Charged Rod 
 
Consider a non-conducting rod of length A  having a uniform charge density λ . Find the 
electric potential at , a perpendicular distance P y  above the midpoint of the rod. 
 

 
 

Figure 3.5.5 A non-conducting rod of length  and uniform charge densityA λ .  
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Solution:  
 
Consider a differential element of length dx′  which carries a charge dq dxλ ′= , as shown 
in Figure 3.5.5. The source element is located at ( 0)x ,′ , while the field point P is located 
on the y-axis at (0 ), y . The distance from dx′  to P is .  Its contribution to 
the potential is given by 

2 2 1/(r x y′= + 2)

 

 2 2 1/
0 0

1 1 =
4 4 (

dq dxdV
r x y 2)

λ
πε πε

′
=

′ +
  

 
Taking V to be zero at infinity, the total potential due to the entire rod is 
 

 

/ 2/ 2 2 2

2 2/ 2
0 0 / 2

2 2

2 2
0

ln
4 4

( / 2) ( / 2)
ln

4 ( / 2) ( / 2)

dxV x
x y

y

y

λ λ
πε πε

λ
πε

−
−

′ ⎡ ⎤′ ′= = + +
⎣ ⎦′ +

⎡ ⎤+ +
= ⎢ ⎥

⎢ ⎥− + +⎣ ⎦

∫
AA

A
A

A A
A A

x y

 (3.5.10)  

 
where we have used the integration formula 
 

 ( )ln 2 2

2 2

dx x x y
x y

′
′ ′= + +

′ +
∫   

 
 
A plot of , where 0( ) /V y V 0 / 4V 0λ πε= , as a function of /y A  is shown in Figure 3.5.6 
 

 
 

Figure 3.5.6 Electric potential along the axis that passes through the midpoint of a non-
conducting rod. 
 
In the limit ,yA  the potential becomes 
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2 2

2 2
0 0

2

2 2 2
0 0

0

( / 2) / 2 1 (2 / ) 1 1 (2 / )
ln ln

4 4( / 2) / 2 1 (2 / ) 1 1 (2 / )

2ln ln
4 2 / 4

ln
2

y y
V

y y

y y

y

λ λ
πε πε

λ λ
πε πε

λ
πε

⎡ ⎤ ⎡+ + + +
= =⎢ ⎥ ⎢

⎢ ⎥ ⎢− + + − + +⎣ ⎦ ⎣
⎛ ⎞⎛ ⎞

≈ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

A A A A
A A A A

A
A

A

⎤
⎥
⎥⎦

(3.5.11)  

 
The corresponding electric field can be obtained as   
 

2 2
0

/ 2
2 ( / 2)

y
VE
y y y

λ
πε

∂
= − =

∂ +

A
A

 

 
in complete agreement with the result obtained in Eq. (2.10.9). 
 
 
Example 3.2: Uniformly Charged Ring 
 
Consider a uniformly charged ring of radius R  and charge density λ (Figure 3.5.7). What 
is the electric potential at a distance z from the central axis? 
 

 
 

Figure 3.5.7 A non-conducting ring of radius R with uniform charge density λ . 
 
 
Solution: 
 
Consider a small differential element d R dφ′=A  on the ring. The element carries a 
charge dq d R dλ λ φ′= =A , and its contribution to the electric potential at P is  
 

 
2 2

0 0

1 1
4 4

dq R ddV
r R z

λ φ
πε πε

′
= =

+
 

 
The electric potential at P due to the entire ring is  
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2 2 2 2 2 2

0 0 0

1 1 2 1
4 4 4

R RV dV d Q
R z R z R z
λ πλφ

πε πε πε
′= = = =

+ +
∫ ∫v

+
 (3.5.12) 

 
where we have substituted 2Q Rπ λ=  for the total charge on the ring. In the limit , 
the potential approaches its “point-charge” limit: 

z R�

 

 
0

1
4

QV
zπε

≈  

 
From Eq. (3.5.12), the z-component of the electric field may be obtained as  
 

 2 2 3/2 2
0 0

1 1
4 4 (z

V QE
z z R zR zπε πε

⎛ ⎞∂ ∂
= − = − =⎜ ⎟∂ ∂ ++⎝ ⎠

2)
Qz  (3.5.13) 

 
in agreement with Eq. (2.10.14). 
 
 
Example 3.3: Uniformly Charged Disk 
 
Consider a uniformly charged disk of radius R  and charge densityσ  lying in the xy-
plane. What is the electric potential at a distance  from the central axis? z
 

 
 

Figure 3.4.3 A non-conducting disk of radius R and uniform charge density σ.  
 
Solution:  
 
Consider a circular ring of radius r′  and width dr′ . The charge on the ring is 

(2 ).dq dA r drσ σ π′ ′ ′= = ′

2)

 The field point P is located along the z -axis a distance z  
from the plane of the disk. From the figure, we also see that the distance from a point on 
the ring to P is .  Therefore, the contribution to the electric potential at P 
is 

2 2 1/(r r z′= +

 

 
2 2

0 0

1 1 (2
4 4

dq r drdV
r r z

)σ π
πε πε

′ ′
= =

′ +
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By summing over all the rings that make up the disk, we have 
 

 2 2 2 2

2 20
0 0 00

2 | |
4 2 2

RR r drV r z
r z

σ π σ σ
πε ε ε

′ ′
R z z⎡ ⎤ ⎡′= = + = + ⎤−

⎣ ⎦ ⎣′ +
∫ ⎦  (3.5.14)  

 
In the limit | | , z R�
 

1/ 22 2
2 2

2 2| | 1 | | 1 ,
2

R RR z z z
z z

⎛ ⎞ ⎛
+ = + = + +⎜ ⎟ ⎜

⎝ ⎠ ⎝
"

⎞
⎟
⎠

 

 
and the potential simplifies to the point-charge limit: 
 

 
2 2

0 0

1 ( ) 1
2 2 | | 4 | | 4 | |0

R RV
z z z

σ σ π
ε πε πε

≈ ⋅ = =
Q   

 
As expected, at large distance, the potential due to a non-conducting charged disk is the 
same as that of a point charge Q. A comparison of the electric potentials of the disk and a 
point charge is shown in Figure 3.4.4. 
 

 
 

Figure 3.4.4 Comparison of the electric potentials of a non-conducting disk and a point 
charge. The electric potential is measured in terms of 0 0/ 4V Q Rπε= .  
 
Note that the electric potential at the center of the disk ( 0z = ) is finite, and its value is  
 

 c 2
0 0 0

1 2 2
2 2 4

R Q R QV
R R 0Vσ

ε π ε πε
= = ⋅ = =  (3.5.15) 

 
This is the amount of work that needs to be done to bring a unit charge from infinity and 
place it at the center of the disk.  
 
The corresponding electric field at P can be obtained as: 
 

 
2 2

02 | |z
V z zE
z z R z

σ
ε

⎡ ⎤∂
= − = −⎢ ⎥∂ +⎣ ⎦

 (3.5.16)  
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which agrees with Eq. (2.10.18). In the limit ,R z  the above equation becomes 

0/ 2zE σ ε= , which is the electric field for an infinitely large non-conducting sheet. 
 
 
Example 3.4: Calculating Electric Field from Electric Potential 
 
Suppose the electric potential due to a certain charge distribution can be written in 
Cartesian Coordinates as 
 
  2 2( , , )V x y z Ax y Bxyz= +
 
where A , B  and  are constants. What is the associated electric field? C
 
Solution: 
 
The electric field can be found by using Eq. (3.5.3): 
 

 

2

2

2

2

x

y

z

VE Axy
x
VE Ax y
y
VE Bxy
z

∂
= − = − −

∂
∂

= − = − −
∂
∂

= − = −
∂

Byz

Bxz  

 
Therefore, the electric field is 2 2ˆ ˆ ˆ( 2 ) (2 )Axy Byz Ax y Bxz Bxy= − − − + −E i j

G
k .  

 
 
 
 
3.6 Summary 
 
 
• A force F  is conservative if  the line integral of the force around a closed loop 

vanishes: 

G

 
 0d⋅ =∫ F s

G Gv  
 
• The change in potential energy associated with a conservative force F  acting on an 

object as it moves from A to B is 

JG

 
 

B

B A A
U U U d∆ = − = − ⋅∫ F s

G G   
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• The electric potential difference V∆  between points A and B in an electric field 
is given by E
G

 

 
0

B

B A A

UV V V d
q

∆
∆ = − = = − ⋅∫ E s

G G   

 
 The quantity represents the amount of work done per unit charge to move a test 

charge  from point A to B, without changing its kinetic energy. 0q
 
• The electric potential due to a point charge  at a distance r away from the charge is Q
 

 
0

1
4

QV
rπε

=   

  
 For a collection of charges, using the superposition principle, the electric potential is 
 

 
0

1
4

i

i i

QV
rπε

= ∑  

 
• The potential energy associated with two point charges  and separated by a 

distance  is 
1q 2q

12r
 

 1 2

0 12

1
4

q qU
rπε

=   

 
• From the electric potential V , the electric field may be obtained by taking the 

gradient of V :  
 
 V= −∇E

G
 

 
 In Cartesian coordinates, the components may be written as  
 

 , ,x y z
V VE E E V
x y z

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
 

 
• The electric potential due to a continuous charge distribution is 
 

 
0

1
4

dqV
rπε

= ∫  
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3.7 Problem-Solving Strategy: Calculating Electric Potential 
 
In this chapter, we showed how electric potential can be calculated for both the discrete 
and continuous charge distributions. Unlike electric field, electric potential is a scalar 
quantity. For the discrete distribution, we apply the superposition principle and sum over 
individual contributions: 
 

 i
e

i i

qV k
r

= ∑  

 
For the continuous distribution, we must evaluate the integral 
 

e
dqV k
r

= ∫  

 
In analogy to the case of computing the electric field, we use the following steps to 
complete the integration: 
 

(1) Start with e
dqdV k
r

= . 

 
(2) Rewrite the charge element dq as 
 

  
          (length)
         (area)
         (volume)

dl
dq dA

dV

λ
σ
ρ

⎧
⎪= ⎨
⎪
⎩

 
depending on whether the charge is distributed over a length, an area, or a volume.  
 
(3) Substitute dq into the expression for .  dV
 
(4) Specify an appropriate coordinate system and express the differential element (dl, dA 
or dV  ) and r  in terms of the coordinates (see Table 2.1.)  
 
(5) Rewrite dV  in terms of the integration variable. 
 
(6) Complete the integration to obtain V. 
 
Using the result obtained for V , one may calculate the electric field by .  
Furthermore, the accuracy of the result can be readily checked by choosing a point P 
which lies sufficiently far away from the charge distribution. In this limit, if the charge 
distribution is of finite extent, the field should behave as if the distribution were a point 
charge, and falls off as . 

V= −∇E
G

21/ r
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Below we illustrate how the above methodologies can be employed to compute the 
electric potential for a line of charge, a ring of charge and a uniformly charged disk. 

 

 Charged Rod Charged Ring  Charged disk 

           Figure 

 
 

 
(2) Express dq in 
terms of charge 
density 

dq dxλ ′=  dq dlλ=  dq dAσ=  

(3) Substitute dq 
into expression for  
dV 

e
dxdV k
r

λ ′
=  e

dldV k
r

λ
=  e

dAdV k
r

σ
=  

(4) Rewrite r and the 
differential element 
in terms of the 
appropriate 
coordinates  

dx′  
 
2 2r x y′= +  

dl R dφ′=  
 
2 2r R z= +  

2dA r drπ ′ ′=  
 
2 2r r z′= +  

(5) Rewrite  dV 2 2 1/( )e
dxdV k

x y 2

λ ′
=

′ +
 

2 2 1/( )e
R ddV k

R z 2

λ φ′
=

+
 

2 2 1/

2
( )e

r drdV k
r z 2

πσ ′ ′
=

′ +
 

(6) Integrate to get V 

 
/2

2 2/2
0

2 2

2 2
0

4

( / 2) ( / 2)
ln

4 ( / 2) ( / 2)

dxV
x y

y

y

λ
πε

λ
πε

−

′
=

′ +

⎡ ⎤+ +
= ⎢ ⎥

⎢ ⎥− + +⎣ ⎦

∫
A

A

A A
A A

 

2 2 1/ 2

2 2

2 2

( )
(2 )

e

e

e

RV k d
R z

Rk
R z

Qk
R z

λ φ

π λ

′=
+

=
+

=
+

∫v
 ( )

( )

2 2 1/20

2 2

2 2
2

2
( )

2 |

2 | |

R

e

e

e

r drV k
r z

k z R z

k Q z R z

|

R

πσ

πσ

′ ′
=

′ +

= + −

= + −

∫
 

Derive E from V 

 

2 2
0

/ 2
2 ( / 2)

y
VE
y

y y
λ

πε

∂
= −

∂

=
+

A
A

 
2 2 3/ 2( )

e
zE k QzV

z R z
∂

= − =
∂ +

 
 

2 2 2

2
| |

e
z

k QV z zE
z R z z R

⎛ ⎞∂
= − = −⎜ ⎟∂ +⎝ ⎠

 

Point-charge limit 
for E 2     e

y
k QE y
y

≈ �A  
 

2      e
z

k QE z R
z

≈ �  

 
2     e

z
k QE z R
z

≈ �  

 20



3.8 Solved Problems  
 
3.8.1 Electric Potential Due to a System of Two Charges 
 
Consider a system of two charges shown in Figure 3.8.1.  
 

 
 

Figure 3.8.1 Electric dipole 
 

Find the electric potential at an arbitrary point on the x axis and make a plot. 
 
Solution: 
 
The electric potential can be found by the superposition principle. At a point on the x 
axis, we have 
 

 
0 0 0

1 1 ( ) 1( )
4 | | 4 | | 4 | | | |

q q qV x 1
x a x a x a xπε πε πε a

⎡ ⎤−
= + = −⎢ ⎥− + − +⎣ ⎦

   

 
The above expression may be rewritten as 
 

 
0

( ) 1 1
| / 1| | / 1|

V x
V x a x a

= −
− +

   

 
where 0 / 4V q 0aπε= . The plot of the dimensionless electric potential as a function of x/a. 
is depicted in Figure 3.8.2. 
 

           Figure 3.8.2 
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As can be seen from the graph,  diverges at ( )V x /x a 1= ± , where the charges are 
located.  
 
 
3.8.2 Electric Dipole Potential 
 
Consider an electric dipole along the y-axis, as shown in the Figure 3.8.3. Find the 
electric potential V  at a point P in the x-y plane, and use V  to  derive the corresponding 
electric field. 
 

                                                Figure 3.8.3  
 
By superposition principle, the potential at P is given by 
 

 
0

1
4i

i

q qV V
r rπε + −

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑  

 
where 2 2 2 2 cosr r a ra θ± = + ∓ .  If we take the limit where then    ,r a�
 

 
1/ 22 21 1 1 11 ( / ) 2( / ) cos 1 ( / ) ( / ) cos

2
a r a r a r a r

r r r
θ θ

−

±

⎡ ⎤⎡ ⎤= + = − ± +⎣ ⎦ ⎢ ⎥⎣ ⎦
∓ "   

 
and the dipole potential can be approximated as  
 

 

2 2

0

2 2
0 0 0

1 11 ( / ) ( / ) cos 1 ( / ) ( / ) cos
4 2 2

ˆ2 cos cos
4 4 4

qV a r a r a r a r
r

q a p
r r r r

θ θ
πε

θ θ
πε πε πε

⎡ ⎤= − + − + + +⎢ ⎥⎣ ⎦
⋅

≈ ⋅ = =
p r

"
G   

   
where is the electric dipole moment. In spherical polar coordinates, the gradient 
operator is 

ˆ2aq=pG j

 

 1 1ˆˆ
sinr r r

ˆ
θ θ φ

∂ ∂
∇ = + +

∂ ∂ ∂
r θ

G ∂ φ   
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Since the potential is now a function of both r and θ , the electric field will have 
components along the and directions. Using r̂ θ̂ V= −∇E

G
, we have 

 
 

 3
0 0

cos 1 sin,
2 4r

V p V pE E
r r r rθ 3 , 0Eφ

θ θ
πε θ πε

∂ ∂
= − = = − = =

∂ ∂
  

 
 
3.8.3 Electric Potential of an Annulus 
 
Consider an annulus of uniform charge density σ , as shown in Figure 3.8.4. Find the 
electric potential at a point P along the symmetric axis. 
 

 
 

Figure 3.8.4 An annulus of uniform charge density. 
 
Solution: 
 
Consider a small differential element dA at a distance r away from point P. The amount 
of charge contained in dA is given by 
 
 ( ' ) 'dq dA r d drσ σ θ= =   
 
Its contribution to the electric potential at P is 
 

 
2 2

0 0

1 1 '
4 4 '

dq r dr ddV
r r z

'σ θ
πε πε

= =
+

  

 
Integrating over the entire annulus, we obtain 
 

 
2 2 2 2 2

2 2 2 20
0 0 0

' ' 2 '
4 4 2' '

b b

a a

r dr d r dsV b
r z r z

π
z a zσ θ πσ σ

πε πε ε
⎡ ⎤= = = + − +⎣ ⎦+ +

∫ ∫ ∫   

 
where we have made used of the integral 
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 2 2

2 2

ds s s z
s z

= +
+

∫   

 
Notice that in the limit and , the potential becomes 0a → b → R
 

 2 2

0

| |
2

V R z zσ
ε

⎡ ⎤= + −⎣ ⎦
  

 
which coincides with the result of a non-conducting disk of radius R shown in Eq. 
(3.5.14). 
 
3.8.4 Charge Moving Near a Charged Wire 
 
A thin rod extends along the z-axis from  z = −d  to  z = d . The rod carries a positive 
charge    uniformly distributed along its length  with charge densityQ   2d / 2Q dλ = .  
 
(a) Calculate the electric potential at a point  z > d along the z-axis.   
 
(b) What is the change in potential energy if an electron moves from   z = 4d to     z = 3d ?  
 
(c) If the electron started out at rest at the point   z = 4d , what is its velocity at     z = 3d ? 
 
Solutions: 
 
(a) For simplicity, let’s set the potential to be zero at infinity, ( ) 0V ∞ = . Consider an 
infinitesimal charge element dq dzλ ′=  located at a distance  along the z-axis. Its 
contribution to the electric potential at a point

'z
 z > d  is 

 

 
0

'
4 '

dzdV
z z

λ
πε

=
−

 

 
Integrating over the entire length of the rod, we obtain 
 

 
0 0

( ) ln
4 4

z d

z d

dz' z dV z
z z' z d

λ λ
πε πε

−

+

+⎛= = ⎜− −⎝ ⎠∫ ⎞
⎟   

 
 
(b) Using the result derived in (a), the electrical potential at   z = 4d  is 
 

 
0 0

4 5( 4 ) ln ln
4 4 4

d dV z d
d d

λ λ
πε πε

+⎛ ⎞ ⎛= = =⎜ ⎟ ⎜−⎝ ⎠ ⎝ 3
⎞
⎟
⎠

  

 
Similarly, the electrical potential at z 3d=  is 
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0 0

3( 3 ) ln ln
4 3 4

d dV z d
d d

λ λ
πε πε

+⎛ ⎞= = =⎜ ⎟−⎝ ⎠
2   

 
The electric potential difference between the two points is  
 

 
0

6( 3 ) ( 4 ) ln
4 5

V V z d V z d λ
πε

⎛ ⎞∆ = = − = = >⎜ ⎟
⎝ ⎠

0   

 
Using the fact that the electric potential difference V∆  is equal to the change in potential 
energy per unit charge, we have  
 

 
0

| | 6ln 0
4 5
eU q V λ
πε

⎛ ⎞∆ = ∆ = − <⎜ ⎟
⎝ ⎠

  

 
where | |q e= − is the charge of the electron.  
 
(c) If the electron starts out at rest at   z = 4d then the change in kinetic energy is  
 

 21
2 fK mv∆ =   

 
By conservation of energy, the change in kinetic energy is 
 

 
0

| | 6ln 0
4 5
eK U λ
πε

⎛ ⎞∆ = −∆ = >⎜ ⎟
⎝ ⎠

  

 
Thus, the magnitude of the velocity at 3z d=  is 
 

 
0

2 | | 6ln
4 5f

ev
m
λ

πε
⎛ ⎞= ⎜ ⎟
⎝ ⎠

  

 
 
3.9 Conceptual Questions 
 
1. What is the difference between electric potential and electric potential energy? 
 
2. A uniform electric field is parallel to the x-axis.  In what direction can a charge be    

displaced in this field without any external work being done on the charge? 
 
3. Is it safe to stay in an automobile with a metal body during severe thunderstorm? 

Explain. 
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4. Why are equipotential surfaces always perpendicular to electric field lines?  
 
5. The electric field inside a hollow, uniformly charged sphere is zero.  Does this imply 

that the potential is zero inside the sphere? 
 
 
3.10 Additional Problems 
 
 
3.10.1 Cube 
 
How much work is done to assemble eight identical point charges, each of magnitude q, 
at the corners of a cube of side a? 
 
 
3.10.2 Three Charges  
 
Three charges with and  are placed on the x-axis, as 
shown in the figure 3.10.1. The distance between q and q

183.00 10  Cq −= × 6
1 6 10  Cq −= ×

1 is a = 0.600 m.  
 

                    Figure 3.10.1  
 
(a) What is the net force exerted on q by the other two charges q1?   
 
(b) What is the electric field at the origin due to the two charges q1?   
 
(c) What is the electric potential at the origin due to the two charges q1? 
 
 
3.10.3 Work Done on Charges 

 
Two charges 1 3.0 Cq µ=  and 2 4.0 Cq µ= −  initially are separated by a distance 

. An external agent moves the charges until they are 0 2.0cmr = 5.0cmfr = apart.  
 
(a) How much work is done by the electric field in moving the charges from  to 0r fr ? Is 
the work positive or negative? 
 
(b)  How much work is done by the external agent in moving the charges from  to 0r fr ? 
Is the work positive or negative? 
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(c) What is the potential energy of the initial state where the charges are  
apart?  

0 2.0cmr =

 
(d) What is the potential energy of the final state where the charges are  apart?  5.0cmfr =
 
(e) What is the change in potential energy from the initial state to the final state? 
 
 
3.10.4 Calculating E from V 
 
Suppose in some region of space the electric potential is given by 
 

3
0

0 0 2 2 2 3/( , , )
( )

E a zV x y z V E z
x y z

= − +
+ + 2  

 
where  is a constant with dimensions of length. Find the x, y, and the z-components of 
the associated electric field. 

a

 
 
3.10.5 Electric Potential of a Rod 
 
A rod of length L lies along the x-axis with its left end at the origin and has a non-
uniform charge density xλ α= ,where α is a positive constant.   
 

Figure 3.10.2  
 
(a) What are the dimensions of α ?   
 
(b) Calculate the electric potential at A. 
 
(c) Calculate the electric potential at point B that lies along the perpendicular bisector of 
the rod a distance b above the x-axis.  
 
 
 

 27



3.10.6 Electric Potential 
 
Suppose that the electric potential in some region  of space is given by 
 

0( , , ) exp( | |) cosV x y z V k z kx= − . 
 
Find the electric field everywhere. Sketch the electric field lines in the   x − z  plane. 
 
 
3.10.7 Calculating Electric Field from the Electric Potential 
 
Suppose that the electric potential varies along the x-axis as shown in Figure 3.10.3 
below.   
 

Figure 3.10.3 
 
The potential does not vary in the y- or z -direction.  Of the intervals shown (ignore the 
behavior at the end points of the intervals), determine the intervals in which  has  xE
 
(a) its greatest absolute value. [Ans:  25 V/m in interval ab.] 
 
(b) its least.  [Ans: (b) 0 V/m in interval cd.] 
 
(c) Plot  as a function of x.    xE
 
(d) What sort of charge distributions would produce these kinds of changes in the 
potential?  Where are they located?  [Ans: sheets of charge extending in the yz direction 
located at points b, c, d, etc. along the x-axis. Note again that a sheet of charge with 
charge per unit area σ will always produce a jump in the normal component of the 
electric field of magnitude 0/σ ε ]. 
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3.10.8 Electric Potential and Electric Potential Energy 
 
A right isosceles triangle of side a has charges q, +2q and −q arranged on its vertices, as 
shown in Figure 3.10.4.   
 

          Figure 3.10.4 
 
(a)  What is the electric potential at point P, midway between the line connecting the +q 
and charges, assuming that V  = 0 at infinity?  [Ans: q/q− 2 πεoa.] 
 
(b)  What is the potential energy U of this configuration of three charges?  What is the 
significance of the sign of your answer? [Ans: −q2/4 2 πεoa, the negative sign means 
that work was done on the agent who assembled these charges in moving them in from 
infinity.] 
 
(c)  A fourth charge with charge +3q is slowly moved in from infinity to point P.  How 
much work must be done in this process?  What is the significance of the sign of your 
answer?  [Ans:  +3q2/ 2 πεoa, the positive sign means that work was done by the agent 
who moved this charge in from infinity.] 
 
 
3.10.9. Electric Field, Potential and Energy  
 
Three charges, +5Q, −5Q, and +3Q are located on the y-axis at y = +4a, y = 0, and 

4y a= − , respectively.  The point P is on the x-axis at x = 3a. 
 
(a) How much energy did it take to assemble these charges? 
 
(b) What are the x, y, and z components of the electric field E

G
at P? 

 
(c) What is the electric potential V at point P, taking V = 0 at infinity? 
 
(d) A fourth charge of +Q is brought to P from infinity. What are the x, y, and z 
components of the force F

G
that is exerted on it by the other three charges? 

 
(e) How much work was done (by the external agent) in moving the fourth charge +Q 
from infinity to P? 
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