
  

22.615, MHD Theory of Fusion Systems 
Prof. Freidberg 

      Lecture 9: The High Beta Tokamak 
 
Summary of the Properties of an Ohmic Tokamak 
 

1. Advantages: 
 

a. good equilibrium (small shift) 
 
b. good stability ( )1q ∼  

 

c. good confinement ( )2naRτ ∼  

 
d. good ohmic heating  ( )2keV∼ ∼e iT T

 
2. Disadvantages: 
 

a. low 
2 2

2
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b. external heating is required: joule heating is not adequate. External heating is 

expensive, but also raises β  
 

c. tight aspect ratio is required to raise β : this is technologically difficult 
 

d. pulsed operation is required unless current drive works efficiently 
 

3. The high β  tokamak resolves the problem of low β  
 

a. It allows a tokamak to operate at higher 5 10%−∼β . This leads to more 
economic devices 

 
b. How do we achieve higher β ? We apply additional auxiliary heating, keeping 

Bφ  fixed. This raises p relative to 2
0

2Bφ μ . 

 
High β  Tokamak Expansion 
 

1. We again assume large aspect ratio: 0 01 ∈≡�a R a R  
 
2. Stability is produced by a large toroidal field:  1∼q

 
3. Thus, as in the ohmic tokamak ,q rB RB∼ φ θ  implying that B B ∈∼θ φ   
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4. Radial pressure balance, however is produced by the toroidal field 

 

 
 

 0B B B= + δφ φ  

 
             diamagnetic 
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   neglect, confines only 2∈∼β  
 

5. To improve β  over that achievable in the ohmic tokamak we need 
 

2
0
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B B B
p

δ
∼ �φ θ
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6. Or in terms of β   
 

2
2

2
0

δ
∈∼ � ∼

B B
B B

φ θ

φ

β  

 
7. How large can β  and 0B Bδ  get? φ

 
8. The limiting condition is determined by toroidal force balance which is still 

accomplished by a combination of I and B  v

 
9. Increasing β  increases the toroidal shift. The largest possible β  occurs when the 

shift becomes of order unity 1.aΔ ∼  Recall that in an ohmic tokamak 0 .a a RΔ  ∼
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10. Let us estimate the shift using the small shift relation 

 
''

2 2
1 0' 2 0

2
b r

r

dr dp
B yB y

dyr B
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∫ ∫θ θ

θ

μ dy   

 
   neglect since 2

0p B� θμ  
2

0
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a p
B
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11. Therefore  
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12. For  then 1,q ∼ 1aΔ ∼  when 1t ∈ ∼β  
 
13. This suggests the following ordering for the high β  tokamak 

 

, ,
δ

∈ ∈ Δ∼ ∼
B

a
B

φ

φ
β 1∼  

 
Comparison of Expansions 

 
Ohmic Tokamak High Beta Tokamak 

1q ∼  1q ∼  

B B ∈∼θ φ  B B ∈∼θ φ  

2 2
0 02 p B ∈∼ ∼β μ  2 2

0 02 p B ∈∼ ∼β μ  

       2
0B Bδ ∼φ ∈ (para) 0B Bδ ∈∼φ (dia) 

2
02 1p p B∼ ∼θβ μ  2

02 1p p B ∈∼ ∼θβ μ  

 
 

Expansion of Grad-Shafranov Equation 
 

1. Since 1aΔ ∼ , toroidal force balance and radial pressure balance enter together 
in zeroth order. 

 
2. Good news: we need only the zeroth order equations. No first order corrections 

are required. 
 

3. Bad news: The zero other equations are still nonlinear partial differential 
equations. 
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4. Expansion: 

 
a.  ( ) 2

0 0, ...,r rRBψ = ψ + ψ ∼ ∼θθ a B

0

 
b. ( ) ( ) 2

0 0...,p p pψ = ψ + ∈∼μ B

ψ

 

 
c.  ( )≡ =F RB Fφ

      new free function 

( ) ( )2 2 2
0 0 22 2F R B p B B⎡ ⎤= − ψ + ψ⎣ ⎦μ  0 0

  

                   1∼ ∈∼ 2∈∼   2
2 0B B ∈∼  

 
d. This automatically produces a θ  pinch pressure balance 

 
2

0

const
2

B
p + ≈φ

μ
 

 
5. Substitute the expansion into the Grad-Shafranov equation 
 

( )
2

22
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  2
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6. Therefore, to leading order the Grad-Shafranov equation reduces to 
 

 ( ) ( )02 2
0 0 0 2 0 0 0

0 0

2 cos
ψ

∇ ψ = − ψ −
ψ ψ

dpd
R B B R r

d d
μ θ  

 

7. Note that , so that on a circular plasma flux surface 2
0RJ ≈ −∇ ψφμ

 

 2
0 0

d
RJ R B B

d
=

ψφμ 0 2  

   average over θ  
 

We see that 2dB dψ  is proportional to the average toroidal current within a given 
flux surface. 

 
8. Even though the equation is simpler, it is still a nonlinear PDE. 
 
9. In general, it must be solved numerically. 

 
10. The difficulty arises because the shifts are finite and cannot be treated 

perturbatively. 
 

11. We shall determine general features of high β  tokamak by examining a special 
case. 

 
Special Case 
 

1. Choose  
 

 0 0
0

2 c
dp

R C C
d

= − =
ψ

μ onst   

 

 2 2
0 0

0

const= − =
ψ

dB
R B A A

d
 

 
2. This implies p C− ψ∼  (assume ψ  (boundary)=0) and J A−∼φ  
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3. Solution: with these choices the Grad-Shafranov equation becomes 
 

 
2

0 0
2 2

1 1
cosr A

r r r r

∂ψ ∂ ψ∂
+ = +

∂ ∂ ∂
Cr θ

θ
 

 
4. Boundary conditions: We assume a circular plasma of radius r a=  
 
 ( ),aψ =θ 0

)

 (normalization of flux function is arbitrary) 

 
 ( ,rψ θ       regular for  r a≤

 
The circular assumption is made for simplicity and can be generalized to other 
cross sections. 

 
5. Solution: (We need only cos nθ  terms because of up-down symmetry.) 
 

 
2 3

cos
4 8part
r r

A Cψ = + θ  

 

 ( )4
1 2 3

2

cos
ln cos + cosn n

hom n n
n

k
k k r k r a r b r n

r

∞
−

=
ψ = + + + +∑θ

θ θ  

 
    

      not regular  not regular     not regular 
 
  
 3 1cos +k r k= θ   
  

   
 only terms which are regular and required 
  to balance partψ  on the boundary r a=  

 
For all , it follows that 2n ≥ 0=na  

 
6. Choose k  and  to make 1 3k ( ), 0aψ =θ  

 

 ( ) ( ) ( )2 2 3 2, c
4 8
A C

r r a r a rψ θ = − + − osθ  

 
7. Then  
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 ( ) ( )2 2 2 3
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Physical Interpretation 
 
Let us express A and C in terms of more physical quantities: ,t Iβ  or equivalently 

*, 1t q I∝β  
 

1.  is a parameter related to kink stability and the surface MHD safety factor  *q aq
 

 0
*
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2 pA B
q
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μ
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2. ( )0 B ,pI dl B a aθ= ⋅ =∫ ∫ dμ θ θ   

 
ON A CIRCLE 

  

 
2 22

0
0 0

2

0

= 2
2 2 2

a C Aa Aa
Aa d

R R R

π ⎡ ⎤ π
= + ⋅ π =⎢ ⎥

⎢ ⎥⎣ ⎦
∫ θ θcos

a
 

 

3. 
2

0 0
2

* 0 00

1
22

R Aa A
q Ra B

π
= =

π

μ
μ 0B

 

 
 

4. 0 0
2 2 2
0 0

2 2 1
t p pr dr d

B B a
= =

π ∫
μ μ

β θ  

 

( ) ( )3 cos
2 2 20

2 0 0
0 00

2
8 2

a 2C C
r dr d A a r a r r

Ra B

π ⎡ ⎤= − −+⎢ ⎥π ⎣ ⎦∫ ∫
μ

θ θ
μ

 

 

            
42

4
aπ

 

 

 
2 2

2
0 0 *0 0 48

a a
AC

R B qR B
= =

C
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6. General equilibrium relation for a high β  circular tokamak (minor degression) 
 

a. 
2

0 8
p
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b. The general equilibrium relation is given by 
 

2

2
p

t
*q

∈
=

β
β  

 

7. Substitute A and C back into the solutions. Define 
2
*= 1,t

p
q

r a=∈
∈

∼
β

ν β ρ =  
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Properties of High Beta Tokamak Equilibria 
 

1. Sketched below are typical midplane profiles (Z=0) showing radial pressure 
balance. 

 

  
   
2. Shown here are p and Jφ  profiles along the midplane for different ν . Increasing 

ν  implies higher β . 
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a. Observe the increased shift of the magnetic axis as β  increases. 
 
b. Observe the buildup of current on the outside of the torus to produce toroidal 

force balance at higher β . 
 

c. Observe Jφ  reversing on the inside of the torus when >1 2ν . 

 
3. The flux surfaces are “round”, but are not circles except for the boundary 
 

( )2 31 cos = c− + −ρ ν ρ ρ θ onst  

 

 
 

4. Let us calculate the magnetic axis shift 0Δ  by finding the value of r where 

0
∂ψ ∂

∝
∂ ∂

p
r r

= . By symmetry this occurs when ( )= 0 or πθ . 

 
a. At = 0θ  
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( )2 31ψ ∝ − + −ρ ν ρ ρ   

 
b. Set 
 

0 , 0
a
Δ⎛ ⎞∂ψ

= = =⎜ ⎟∂ ⎝ ⎠
ρ θ

ρ
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c. This yields  
 

2
0 0

2

2
3 1

a a

⎛ ⎞Δ Δ
+ −⎜ ⎟⎜ ⎟

⎝ ⎠
ν 0=  

 
d. The value of  is given by 0Δ
 

( )
0

1 22
1

1+ 1+3a
Δ

= ∼ν

ν
 

 

e. For the HBT 01 1
a
Δ

→∼ ∼ν  

Ohmic 0T 1
2a

Δ
∈→ ∈∼ ∼ ∼νν �  

 
5. Find the shape of the flux surfaces near the magnetic axis. 
 

a. Let cos sinx y= =ρ θ ρ θ  
 
b. Then ( )2 2 1 1x y xψ ∝ + − +⎡ ⎤⎣ ⎦ν  

 

c. Expand 0 , 1x x y y x y
a
Δ

= + δ = δ δ δ �  

 
     and define 0 0x a= Δ  
 
d. Substitute 
 

( ) ( )2 22
0 0 02 1 1⎡ ⎤ψ ∝ + δ + δ + δ − + + δ =⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

x x x x y x xν ν const

2

 

 
   ( ) ( )2 2

0 0 0 0 01 1 2 2x x x x x x⎡ ⎤= − + + δ + + −⎣ ⎦ν ν ν ν  

 
       0 definition of x0 
 

  ( ) ( ) ( )2 2
0 01 1y x x x+ δ + + δ + + 02 x⎡ ⎤⎣ ⎦ν ν ν  

 
 or  
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  ( )  ( ) ( ) ( )2 2
0 01 3 1 constx x x y+ δ + + δ =ν ν

 
e. This is the equation of an ellipse 
 

 
 

  elongated flux surfaces, squashed near the outside 
 
 
 
 
 

f. The elongation  is defined by 0κ
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0 1κ ≈ 1�ν  and 2
0 3 2κ =  for 1ν = . 
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