
22.615, MHD Theory of Fusion Systems 
Prof. Freidberg 

Lecture 2: Derivation of Ideal MHD Equation 
 
 
Review of the Derivation of the Moment Equation 
 

1. Starting Point: Boltzmann Equation for electrons, ions and Maxwell Equations 
 
2. Moments of Boltzmann Equation: conservation of mass, momentum and 

energy. 
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∫     momentum 
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3. Accounting: ( ) �v u e, t v, uα= + α =  fluid velocity, �v = random velocity 

 
n F dα α= ∫ v    density 

 
1

u vF dv
n αα
α

= =∫ v   fluid velocity 

 
P n m v vα α α=
I HG HG

  pressure tensor 
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3α α α=
HG

  scalar pressure 

 

� �2n m
h

2
α α

α = v v   heat flux 

 
� �R m v C dα α α= ∫ β v   friction due to collisions 

 
�

�
2m v

Q C
2
α

α α= ∫ βdv   heat generated due to collisions 

 
General 2 Fluid Equations 
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∂
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 ( )du
m n q n E u B P R

dt
α

αα α α α α α
= + × − ∇ ⋅ +  

        e, i 

 
dT3

n P : u Q
2 dt

α hαα ααα
+ ∇ = − ∇ ⋅  

 
 ( )i ee n nσ = −  

 
 ( )i ei eJ e nu n u= −  

 
Physical Assumptions Leading to Ideal MHD 
 

1. Moment equations as they now stand are exact, but not closed. 
 
2. Certain assumptions lead to closure - 1 fluid MHD model 

 
Asymptotic Assumptions 
 

1. MHD is concerned with low frequency - long wavelength macroscopic behavior 
 
2. The first simplification of the 2 fluid equations eliminates short wavelength, 

fast time scale phenomena: well satisfied assumptions experimentally 
 

3. Asymptotic assumptions change basic mathematical structure of the time 
evolution. 
 
speed of light  →∞
 
electron inertia  0→

 
First Asymptotic Assumption c    →∞

     
1. Maxwell equations  low frequency Maxwell equations →
 
2. Formally let ∈ →  0 0

 

0 2

1 E
B u J J

tc

∂
∇ × = + ≈ 0μ∂

  neglect displacement current 

 
0

i en n E 0
e
∈

− = ∇ ⋅ ≈   quasineutrality  

 
3. Equations are now Gallilean invariant 
 
4. Conditions for validity: 

 
Te

pe d
pe

v
aω ω λ ≡

ω
� �   no plasma oscillations 
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Ti Tev v
k
ω ∼ � � c

n

  no high frequency waves 

 
5. Note:  does not imply e in n= ≡ E or E 0∇ ⋅ = . Only that 
 

 0 E en 1∈ ∇ ⋅ �  
 
Second Asymptotic Assumption  0→em
 

1. The electron response time is essentially instantaneous because  e im m�
 
2. We then neglect electron inertia in the momentum equation 

 
( ) e ee e0 en E u B P R≈ − + × − ∇ +

I
 

 
3. Conditions for validity 
 

pe d aω ω λ� �   no electron plasma oscillations  to B &

 
ce cer aω ω� �   no electrons cyclotron oscillations  

 
4. Both  assumptions are well satisfied for MHD behavior ec , m→α ∞0

 
Subtle Effect 
 

1. Neglect of electron inertia along B can be tricky 
 
2. For long wavelengths, electrons can still require a finite response time 

even though me is small. This is region of the drift wave 
 

3. We shall see that MHD consistently treats &  motion poorly, but for MHD 
behavior, remarkably this does not matter!!  

 
4. To treat such behavior more sophisticated models are required. The 

resulting instabilities are much weaker, (and still important) than for MHD. 
 
The two Fluid Equations with Asymptotic Assumptions 
 

 
B

E
t

∂
∇ × = − ∇ ⋅ =

∂
B 0   e

n
nu 0

t
∂

+ ∇ ⋅ =
∂

 

 

 ( )0 i e e iB en u u n n∇ × = μ − = = n i
n

nu 0
t

∂
+ ∇ ⋅ =

∂
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 ( )e
ii i i

du
mn en E u B P R

dt
− + × + ∇ ⋅ =

HJG
 

 

 
dT3

n P : u J h Q
2 dt

α
α ααα

+ ∇ + ⋅ =
I

      e 

 
 ( ) ee e

en E u B P R+ × + +∇ ⋅ =
I

 

 
Single Fluid Equations 
 

1. Introduce single fluid variable 
 

iv u=     the momentum of fluid is carried by ions since m 0  i =
 

e ip p p= +   total pressure 
 

imnρ =    mass density 
 

( )i eJ en u u= −   current density 

 
2. Use all information!!. This is not trivial!! Initially the unknowns are 

E, B, J, V , n, p  (19 variables). The finally unknowns are 
E, B, J, V , n, p (14 variables) 

 
3. Maxwell equations  OK as is in low frequency form →
 
4. Mass conservation 

 
a. Mi ×  ion 
 

v 0
t

∂ρ
+ ∇ ⋅ ρ =

∂
 

 
b. e (ion-electron) →  ( )i een u u∇ ⋅  −

 
J 0= ∇ ⋅ =  

 
This is automatic from the low frequency Maxwell equations  
 

0B J J∇ × = μ → ∇ ⋅ = 0   
 

5. Momentum Equation (ion + electron) 
 

a. ( ) ( ) i ei e i e

dv
en u u B P P R R

dt
ρ − − × + ∇ ⋅ + = +

HJG
 

 

  J     B× ( )i e i e
p p⎡ ⎤∇ ⋅ + Ι + Π + Π⎣ ⎦

HJG HJG
 � � �

e ei i iedv m v c m v c 0⎡ ⎤+ =⎣ ⎦∫  
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b. ( )i e

dv
J B p

dt
ρ − × + ∇ = −∇ ⋅ Π + Π

HJG HJG
 

 
6. Electron Momentum equation 
 

a. e e
e

R P
E u B

en

− ∇ ⋅
+ × =  

 

e i
J J

u u v
en en

= − = −  

 

b. e e

1
E v B R P J B

en
⎡ ⎤+ × = − ∇ ⋅ + ×⎣ ⎦  

 
7. Energy Equation (ions) 
 

    ii
P : u∇
I

 

 

a. i
ii ii ii

p3 d
n p u Q h :

2 dt n
+ ∇ ⋅ = − ∇ ⋅ − Π ∇u

HJG
 

 
1 2 
         

b. 1: i idp p3 3 d
2 dt 2 n dt

−
n

 

 

c. 2: 
n n dn

nv 0 v n n v n v
t t dt

∂ ∂
+ ∇ ⋅ = = + ⋅ ∇ + ∇⋅ → = − ∇⋅

∂ ∂
 

 
i

i
p dn

p v
n dt

∇ ⋅ = −  

  

d. 1+2: 5 3i i
5 3

dp p p3 5 dn 3 d
n

2 dt 2 n dt 2 dt n
− = i  

 

e. i
i iir r

pd 2
Q h :

dt 3
⎡ ⎤= − ∇ ⋅ − Π⎣ ⎦ρ ρ

v∇
HJG

 r=5/3 

 
8. Energy Equation (electrons) 
 

a. e e
e e eer r r

p pd 2 J
Q h : v :

dt en en3

⎡ ⎤
= − ∇ ⋅ − Π ∇ + ⋅ ∇ + Π ∇⎢ ⎥

ρ ρ

d

⎣ ⎦

HJG HJG

ρ
 

 
 

from 
e

d
dt

   from e e: uΠ ∇
HJG
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b. d
v

dt t
∂

= + ⋅ ∇
∂

= ion convective derivation 

 
Assumptions Leading to Ideal MHD 
 

1. Philosophy: Ideal MHD is concerned with phenomena occurring on certain 
length and time scales. 

 
2. Ordering: Using this, we can order all the terms in the one fluid equations. 

After ignoring small terms, we obtain ideal MHD.  
 

3. Status: At this point only the assumptions c ,  have been used 
in the equation 

em 0→∞ →

 
Characteristic Length and Time Scales for Ideal MHD 
 

1. Tiv
t a
∂

ω
∂
∼ ∼  

 

2. 1
k

x a
∂
∂
∼ ∼   macroscopic MHD phenomena 

 
3.  Tiv v∼

 
4. a  macroscopic length →

 
5. macroscopic ion velocity Tiv →

 
6. Tia v →  corresponding macroscopic time scale 

 
 Two Approaches to Ideal MHD  
 

A. Collision dominated plasma: regions limit to ideal MHD 
 
B. Collision free limit: also works but for subtle reasons 
 

Collision Dominated Limit 
 

1. The electrons and ions are assumed collision dominated 
 
2. This is the basic requirement to keep the pressure isotropic. Many 

collisions keep particle close together. This allows us to divide the plasma 
into small fluid element and provides a good physical description. 

 
3. There are 2 conditions for a collision dominated plasma  

 
a. on the time scale of internal there are many collisions, so the plasma 

is near maxwellion 
 

• ions: ion-ion coulomb collisions dominate 
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• electrons: electron-ion, electron-electron collisions are 
comparable 

 

• ions: Ti ii
ii

v
1

a
τ

ωτ ∼ �   

 

• electrons: 
1 2

eTi Ti ii
ee ee ee

i

mv v
1

a m a

⎛ ⎞ τ
ωτ ωτ τ ⎜ ⎟

⎝ ⎠
∼ ∼ ∼ �  

 

• Recall: ( )1 2
ee ei e i iim mτ τ τ∼ ∼  and ( )1 2

EQ i e iim mτ τ∼  

 
• The ion condition is most severe 

 

     Ti iiv
1

a
τ
�  

 
b. The macroscopic length scale must be much larger than the mean free 

path for collisions. Tvα α ααλ = τ  
 

• ions i Ti iiv
1

a a
λ τ

= �  (same as before) 

 

• electrons e Te ee Ti iiv v
1

a a a
λ τ τ

∼ ∼ �  (same as ions) 

 
MHD Limit 
 

1. Use the collision dominated assumption to obtain ideal MHD  
 
2. Several additional assumptions will also be required  

 
3. Various moments in the equations are approximated by classical transport 

theory of Braginskii. 
 

4. Transport coefficients can also be derived in the homework problems 
 
Reduction of 1 Fluid Equation 
 

1. Maxwell Equations – OK 
 
2. Mass conservation – OK 

 
3. Momentum Equation 

 

a. ions: i
ii i ii i

u2
2 u u

3 a
⎡ ⎤Π μ ∇ ⋅ − ∇ ⋅ μ⎢ ⎥⎣ ⎦

& &

HJG
∼ ∼  

 
viscosity 
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b. electrons: e
ee e

u
a

Π μ
HJG

∼  

 

c. Note: e
J

u v
en

= −  

 
ii

Ti

rJ p T
1

env Benv aBev a
∇∼ ∼ ∼ �  

 
     assume small gyro radius 
 

d. iu u∴ ≈ e : small difference in the flow velocities generate macroscopic 

current density Tii eJ, but u u v− �  

 
e. Ordering:  

 

• e Ti
ee e e

u v
a a

Π μ μ∼ ∼  

 

• 
1 2

e
e i e

i

m
m

⎛ ⎞
μ μ →Π⎜ ⎟

⎝ ⎠
∼ � iΠ  

 

• ii i Ti
i i i

i i

v
nT

P ap
Π μ

iμ τ∼ ∼   viscosity coefficient 

 
 

• ii ii Ti

i

v
1

p a
Π τ

∴ ∼ �  collision dominated assumption 

 
• Both  terms are negligible in momentum equation Π

 

f. dv
J B p

dt
ρ = × − ∇  momentum equation 

 
4. Ohms Law 
 
 

4      3         2        1 

e e

1
E v B R P J B

en
⎡ ⎤+ × = − ∇ ⋅ + ×⎣ ⎦

I
 

        
              Hall effect 
        

       Electron diamagnetism ω  re

 
        Resistivity 
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a.  1 2∼
 

1 / 4 Lir
J enV 1

a
∼ ∼ �  small gyro radius assumptions 

 
b. Re ∼  resistivity momentum transfer due to collisions 
 

•  e
e 2

ei

m
R en d,

ne
= η η =

τ
 

  

•  3 / 4 
1 2 2

e e eii ii
2

Ti ei i Ti iiei

m m mr rJ a
v B e B a m V ane

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟τ ττ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∼ ∼ ∼  

 

c. 
1 2 2

e ii

i Ti ii

m ra
1

m v a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟τ ⎝ ⎠⎝ ⎠ ⎝ ⎠

�  

 
d. The plasma must be larger enough so that resistive diffusion does not 

play an important role. 
 

5. Energy equation v
t
∂⎛ ⎞⋅ ∇⎜ ⎟∂⎝ ⎠

∼  

 
a. ions: i ip 1Π �  
 
b. electrons: ( ) ( )e e e e e ep 1, J en p p , J en vpΠ ⋅ ∇ ∇ ⋅ Π� � �  

 

c. i
iir r

pd 2
Q h

dt 3
= − ∇ ⋅⎡ ⎤⎣ ⎦ρ ρ

 

 

d. e
eer r

pd 2
Q h

dt 3
= − ∇ ⋅⎡ ⎤⎣ ⎦ρ ρ

 

 
 
e. i i i i i  h T ⊥ ⊥= −κ ∇ − κ ∇& & T

dominant contribution is from thermal 
conduction 

f. e e e eh T ⊥ ⊥= −κ ∇ − κ ∇& & eT  

 
g. In general ⊥κ κ& ����  

 

h. ( )i e
1

eq

n T T
Q

−
= − →

τ
 equilibration 

i. ( )e i
e

eq

n T T J Re
Q

en

− ⋅
= − + →

τ
equilibration plus ohmic heating 
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j. Note: cons. of energy i eQ Q J Re en 0→ + − ⋅ =  

 
k. Compare 

 

•  
1 2 2

e ii
e

i Ti ii

m raJRe
p 1

en m v a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
ω = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟τ ⎝ ⎠⎝ ⎠ ⎝ ⎠

�  

 
• small ohmic heating in MHD time scale 

 
  

l. ( ) ( )
i

e ii
n ir r

EQ

T Tpd 2
T n

dt 3

⎡ ⎤−
∴ = ∇ κ ⋅ ∇ +⎢ ⎥

τρ ρ ⎢ ⎥⎣ ⎦
& &  

 

m. ( ) ( )
e

i ee
n er r

EQ

T Tpd 2
T n

dt 3

⎡ ⎤−
= ∇ κ ⋅ ∇ +⎢ ⎥

τρ ρ ⎢ ⎥⎣ ⎦
& &  

 
n. But MHD is a single fluid model - 1 pressure, 1 temperature 

 
o. This occurs if  is very small, forcing EQτ e iT T≈  

 

p. Small  require EQτ
EQ

nT
pω

τ
�  or EQ 1ωτ �   

 

q. 
1 2

i Ti ii

e

m v
1

m a

⎛ ⎞ τ
⎜ ⎟
⎝ ⎠

�    

 
This is more severe than the collision dominated momentum condition 
energy equilibration τ �  momentum equilibration τ . 

 
r. If this is true then 

 
• 1st information e iT T T 2≈ ≡  
 
• 2nd information (add equations) 

 

• ( )i er r

d p 1
T

dt 3
= ∇ κ + κ ∇

ρ ρ
& & & &  

 

• But ( )1 2
i e i e e e eim m , nT mκ ≈ κ κ ≈ τ& & & e  

 

• Thus 
1 2

i i ii Ti

e

T m v
1

p m a

∇ ⋅ κ ∇ ⎛ ⎞ τ
⎜ ⎟

ω ⎝ ⎠

& & ∼ �  
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This gives Ideal MHD Equation 
 

 
B

E B
t

∂
∇ × = − ∇ ⋅ =

∂
0  

 
 0 i eB u J n n n∇ × = = =  
 

 
p

v 0
t

∂
+ ∇ ⋅ ρ =

∂
 

 

 
dv

J B p
dt

ρ = × − ∇  

 
 E V B 0+ × =  
 

 
r

d p
0

dt
=

ρ
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