22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 11: Flux Conserving Tokamak - Con'd

A Simple Approximation

- 1. Instead of choosing $F(\psi)$ so $q(\psi)$ is the same everywhere, we choose a simpler $F(\psi)$ so that only q(0) and q(a) remain the same (as β_t increases).
- 2. Choose $dp/d\psi = \text{const}$, $dF^2/d\psi = \text{const}$. This is the same model we have already investigated.
- 3. The model has only two free parameters: $A, C \rightarrow \beta_t, q_*$.
- 4. Thus, as β_t increases, there is only one degree of freedom, q_* , remaining.
- 5. Therefore, we cannot adjust q_* so that both q_0 and q_a remain fixed: this would be an overdetermined system.
- 6. We make an ultra simple approximation and choose q_* so that only q_a remains fixed. This prevents the formation of a separatrix which requires $q_a \rightarrow \infty$.

HBT Equilibrium

$$\mu_{0}\rho = \beta_{t}B_{0}^{2}\left(1-\rho^{2}\right)\left[1-v\rho\cos\theta\right]$$

$$B_{\theta} = \frac{\epsilon}{q_{\star}}\left[\rho + \frac{v}{2}\left(3\rho^{2}-1\right)\cos\theta\right]$$

$$\hat{B}_{\theta} = \frac{\epsilon}{q_{\star}}\left[\frac{1}{\rho} + \frac{v}{2}\left(1+\frac{1}{\rho^{2}}\right)\cos\theta\right]$$

$$q_{a} = \frac{q_{\star}}{\left(1-v^{2}\right)^{1/2}}$$

$$v = \frac{\beta_{t}q_{\star}^{2}}{\epsilon}$$

$$\rho = r/a$$

- 1. HBT: Express all quantities in terms of β_t , $q_* \sim 1/I$
- 2. FCT: Express all quantities in terms of β_t , q_a (held fixed). Examine the behavior as β_t increases. Are there any equilibrium limits?

Procedure

- 1. Define $v_* = \beta_t q_a^2 / \epsilon \propto \beta_t$ since q_a is held fixed in the FCT.
- 2. v_* is the heating parameter: as β_t increases, v_* increases.
- 3. For the HBT: $\nu = \beta_t q_*^2 / \epsilon \propto \beta_t$ for fixed *I*.
- 4. v is the heating parameter for fixed *I*: as β_t increases, v increases.

Relation between v and v_*

1.
$$v = \frac{\beta_t q_\star^2}{\epsilon} = \frac{\beta_t q_a^2}{\epsilon} \frac{q_\star^2}{q_a^2} = v_\star (1 - v^2)$$

2. $v^2 + \frac{v}{v_\star} - 1 = 0$
 $v = \frac{2v_\star}{(1 + 4v_\star^2)^{1/2} + 1}$

Compute the Physical Quantities in Terms of v_* and Compare with the HBT

1.
$$I \propto 1/q_{\star}$$

a. HBT: $\frac{1}{q_{\star}} = \text{const.}$ fixed *I*
b. FCT: $\frac{1}{q_{\star}} = \frac{1}{q_{a}} \frac{1}{(1-v^{2})^{1/2}} = \frac{1}{q_{a}} \left(\frac{v_{\star}}{v}\right)^{1/2}$
 $\frac{1}{q_{\star}} = \frac{1}{q_{a}} \left[\frac{1+(1+4v_{\star}^{2})^{1/2}}{2}\right]^{1/2}$
2. B_{v}
a. HBT: $B_{v} = \frac{\mu_{0}I}{4\pi R_{0}} \beta_{p} = \frac{\epsilon B_{0}}{q_{\star}} \frac{\epsilon \beta_{p}}{2} = \frac{\epsilon B_{0}}{2} \frac{v}{q_{\star}}$
b. FCT: $B_{v} = \frac{\epsilon B_{0}}{2} \frac{v}{q_{\star}} = \frac{\epsilon B_{0}}{2} \frac{1}{q_{a}} \left[\frac{1+(1+4v_{\star}^{2})^{1/2}}{2}\right]^{1/2} \frac{2v_{\star}}{1+(1+4v_{\star}^{2})^{1/2}}$

Lecture 11 Page 2 of 6

$$B_{\nu} = \frac{\epsilon B_0}{2} \frac{\nu_*}{q_a} \left[\frac{2}{1 + (1 + 4\nu_*^2)^{1/2}} \right]^{1/2}$$

3. *ρ*_s

a. HBT:
$$\rho_s = \frac{1}{\nu} \left[1 + \left(1 - \nu^2 \right)^{1/2} \right]$$

b. FCT: $\rho_s = \frac{1 + \left(1 + 4\nu_*^2 \right)^{1/2}}{2\nu_*} \left[1 + \left(\frac{2}{1 + \left(1 + 4\nu_*^2 \right)^{1/2}} \right)^{1/2} \right]$

4. Define the plasma evolution in $\beta_t - q_{\star}$ space as β_t increases

a. HBT:
$$\frac{\beta_t q_*^2}{\epsilon} = v$$

 $q_* = \text{const.}$
b. FCT: $\frac{\beta_t q_*^2}{\epsilon} = v_*$ (1)
 $\frac{1}{q_*} = \frac{1}{q_a} \left[\frac{1 + (1 + 4v_*^2)^{1/2}}{2} \right]^{1/2}$ (2)

c. Solve (2) for v_* and substitute into (1) to give $\beta_t = F(q_*)$

$$v_{\star}^{2} = \frac{q_{a}^{2}}{q_{\star}^{2}} \left[\frac{q_{a}^{2}}{q_{\star}^{2}} - 1 \right]$$
$$\frac{\beta_{t} q_{a}^{2}}{\epsilon} = \left[\frac{q_{a}^{2}}{q_{\star}^{2}} \left(\frac{q_{a}^{2}}{q_{\star}^{2}} - 1 \right) \right]^{1/2}$$

Plot the Results

2. $I \propto 1/q_{\star}$

As v_* increases, *I* increases. This helps to prevent the separatrix from moving onto the plasma surface since less vertical field is required to maintain toroidal force balance.

Less vertical field is required. The separatrix stays away from the plasma surface.

No equilibrium limit. The separatrix does not move onto the plasma surface.

5. β_t vs. $1/q_*$

Summary

- 1. General HBT: covers all permissable β_t/ϵ , q_\star space
- 2. HBT at fixed *I*: exhibits an equilibrium limit
- 3. FCT at fixed q_a : no equilibrium limit