
22.615, MHD Theory of Fusion Systems 
Prof. Freidberg 

Lecture 10: The High Beta Tokamak Con’d and the High Flux Conserving 
Tokamak 

 
 
Properties of the High β  Tokamak  
 

1. Evaluate the MHD safety factor: 
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2. The safety factor on axis is given by 
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3. The safety factor at the plasma edge is given by 
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4. Note that 
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c. as 1 ?aq→ → ∞ν  
 

d. as *
1

1 q
I

→ ∝ν  by definition: 1aq I  ≈

 
5. What is the significance of 1.→ν  Clearly 1≤ν  for real solutions 
 
6. As 1→ν  
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7. In the high β  tokamak there is an equilibrium β  limit 
 

2
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q
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8. The significance of 1→ν  can be understood by solving the Grad-Shafranov  
equation outside the plasma 

 
9. Outside the plasma we solve  
 

l l2
0 0

2 2

1 1
0r

r r r r

∂ψ ∂ ψ∂
+ =

∂ ∂ ∂θ
   (no current, no pressure) 

 
l ( )0 ,aψ θ 0=      (continuity of flux) 

 
 l ( ) ( ) ( )0 *, , 1 coB a B a B q= = ∈ + s⎡ ⎤⎣ ⎦θ θθ θ ν θ  (no surface currents) 
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10. The solution is given by  
 

l 4
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    I Bv Dvam. 
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11. The vacuum field has a separatrix: l ( ) l ( ), , 0= =r s s s sB r  B rθθ θ
 

    
  

12. Choose = πθ  or 0. This makes l 0=rB  
 

a. Only = πθ  has the possibility of a real solution for rs, satisfying  
 

l ( ), 0s sB r =θ θ  

 
b. At s = πθ  
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c. Solve for sρ  
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⎥  radius of the separatrix X point 
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13. For low ( )1 , 2 :≈� sβ ν ρ ν  the X point is far from the plasma 

 
For 1, 1:s∼ ∼ν ρ  the X point is near the plasma 
 
For = 1, = 1:sν ρ  the X point moves onto the plasma surface 
 

14. Physical picture of the separatrix and X point 
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15. The equilibrium β  limit corresponds to the situation where the separatrix 
moves onto the plasma surface 

 
16. At fixed I, the β  limit given by 2 2

*t q≤ ∈β  
 

17. At fixed I, the only way to hold higher pressure is to increase the vertical 
field. Eventually, the separatrix moves onto the plasma surface 

 
18.     

  
 
 

19. Calculation of the vertical field  
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b. Far from the plasma  
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d. Note: Bv increases with ν  
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0 0
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83
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i

v p
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μ
β  (ohmic) 

  dominates at high 
1

p ∈
∼β  

 
Summary of the High β  Tokamak 
 

1. Ordering  
 
  1q ∼
 
 t ∈∼β  
 
 1p ∈∼β  

 
 1a aΔ ∼  
 
2. There is an equilibrium tβ  limit when the separatrix moves onto the plasma 

surface 
 
3. This will always occur at fixed I and tβ  increases 

 
Flux Conserving Tokamak  
 
 The Equilibrium β  Limit 
 

1. Is there really an equilibrium tβ  limit in a tokamak? 
 
2. A more realistic treatment shows that such a limit need not exist 

 
3. This corresponds to the flux conserving tokamak equilibrium (FCT) 

 
4. Paradoxically, the FCT is a special case of the HBT equilibrium just 

discussed 
 
 What is Flux Conservation? 
 

1. Consider a tokamak with a large external heating source (rf, neutral 
beams) 
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2. a. The plasma absorbs energy 
 
 b. The temperature rises  
 
 c. tβ  rises 
 

e. Poloidal currents are induced 
 

3. Assume the heating time is slow compared to the ideal MHD inertial time 
 
 MHD:    M ta vτ ∼ i  
      H Mτ τ�  
 
 Heating: ( )H T T tτ ∂  ∂∼
 
4. The plasma evolution can be thought of as a series of quasistatic 

equilibria, each one satisfying the Grad-Shafranov equation 
 

v
J B

d
p

dt
= × − ∇ρ   

 
 neglect when τ τ  H M�
 
5. Assume the heating time is fast compared to the resistive diffusion time 
 

 Resistive time 
2

0
D

a
τ

μ
η

 ∼

 
  D Hτ τ�
 
6. If we neglect resistive diffusion, then during the heating process the 

plasma behaves electrically, like a perfect conductor 
 
7. The FCT assumptions D H Mτ τ τ� �  imply that the free functions 

 must satisfy certain constraints ( ) ( ),p Fψ ψ

 
8. a. In general p, F are determined by the transport evolution 

 
b. For the FCT p, F are determined by the FCT “transport prescription” 
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 FCT Prescription for  ( )p ψ

 
1. Assume we start with an ohmically heated tokamak before auxiliary power 

is added 
 
 ( ) ( ), 0 Ωψ = = ψp t p  initial pressure distribution 

 
2. At any time later in the heating sequence  
 

a. ( ) ( ) ( ), , Ωψ = ψ ψp t W t p   

 
modeled from heating calculations 

 
b. Often ( ) ( ),W t W tψ = , corresponding to a slow increase in the 

magnitude of p due to heating 
 
 FCT Prescription for ( )F ψ  (The Critical Issue) 

 
1. Since the plasma acts like a perfect conductor, the toroidal and poloidal 

fluxes must be conserved. This is the FCT constraint 
     

 

 
 

 
2. Consider a given poloidal flux surface pψ  initially and at a later time 

 
3. For flux conservation, the toroidal flux contained within the surface     

 must remain the same as the plasma evolves. There is no 

diffusion of flux. This is the FCT constraint. We must choose 

constpψ =

( )F ψ  so this 

property is preserved. 
 

4. Calculate  ( ), , 2t t ptψ = ψ ψ ψ = πψ

 
 ( ),t B r rdrdψ = ∫ φ θ θ  

 
5. Let us write  as a function of tψ ( ),F tψ  
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6. Change variables 
 

a. ( )' ', ,r r→ ψ ',θ θ θ  

  
 'θ = θ  
 
 ( ),rψ = ψ θ  
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7. Then 
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b. ( )2 ,t q t
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8. If ( ),t tψ ψ  is to remain unchanged during the heating sequence 

 

0t

t
∂ψ

=
∂

 

 
 then ( ),q tψ  must be the same for each quasistatic equilibrium 

 
9. Thus, we must choose ( ),F tψ  so that  

 
 ( ) ( ), Ωψ = ψq t q  

 
 initial ohmic q profile 
 
 

 
10. We can now relate ( ),F tψ  to ( )Ω ψq  
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11. Solving for F we find that FCT Grad-Shafranov equation becomes 
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 This is an exact form, using no expansions 
 

12. It is a nonlinear partial-integro-differential equation 
 

13. In general, it must be solved numerically 
 

14. It can be solved approximately by variational techniques 
 

15. In class we shall calculate an “industrial strength” solution to the FCT 
equation 
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