22.615, MHD Theory of Fusion Systems Prof. Freidberg **Lecture 10: The High Beta Tokamak Con'd and the High Flux Conserving Tokamak**

Properties of the High β **Tokamak**

1. Evaluate the MHD safety factor:

$$
\frac{\Psi_0}{a^2 B_0} = \frac{1}{2q_*} \left[\rho^2 - 1 + v \left(\rho^3 - \rho \right) \cos \theta \right]
$$

$$
\frac{B_\theta}{\epsilon B_0} = \frac{1}{q_*} \left[\rho + \frac{v}{2} \left(3\rho^2 - 1 \right) \cos \theta \right]
$$

2. The safety factor on axis is given by

a.
$$
q_0 = \Delta_0 B_\phi \left[\psi_{rr} \psi_{\theta\theta} \right]^{1/2}
$$
 (exact)

b.
$$
q_0 = q_* \left[\frac{3}{\eta (2 + \eta)} \right]^{1/2}
$$

$$
\eta = \left(1 + 3\nu^2 \right)^{1/2}
$$

c. Note
$$
q_0 < q_*
$$

3. The safety factor at the plasma edge is given by

a.
$$
q_a = \frac{1}{2\pi} \int \left(\frac{rB_\phi}{RB_\theta}\right)_S d\theta \approx \frac{1}{2\pi} \int \frac{dB_0}{RB_\theta(a,\theta)} d\theta = \frac{\epsilon B_0}{2\pi} \int_0^{2\pi} \frac{d\theta}{B_\theta(a,\theta)}
$$

\nb. $q_a = \frac{\epsilon B_0}{2\pi} \frac{q_*}{\epsilon B_0} \int_0^{2\pi} \frac{d\theta}{1 + v \cos \theta}$
\nc. $q_a = \frac{q_*}{(1 - v^2)^{1/2}}$

- 4. Note that
	- a. $q_{a} > q_{*}$
	- b. for $v \to 0$ $q_a \to q_* \sim \frac{1}{l}$
- c. as $v \rightarrow 1$ $q_a \rightarrow \infty$? d. as $v \rightarrow 1$ *q* $\alpha \propto \frac{1}{I}$ by definition: *q_a* $\neq 1/I$
- 5. What is the significance of $v \rightarrow 1$. Clearly $v \le 1$ for real solutions
- 6. As $v \rightarrow 1$
	- a. $\in \beta_p \rightarrow 1$

b.
$$
\frac{\beta_t}{\epsilon} \to \frac{1}{q_{\epsilon}^2} \left(\frac{\beta_t}{\epsilon} = \frac{v}{q_{\epsilon}^2} \right)
$$

c. $\frac{\Delta_a}{a} \to \frac{1}{3}$

7. In the high β tokamak there is an equilibrium β limit

$$
\frac{\beta_t}{\epsilon} < \frac{1}{q_*^2}
$$

- 8. The significance of $v \rightarrow 1$ can be understood by solving the Grad-Shafranov equation outside the plasma
- 9. Outside the plasma we solve

$$
\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial \hat{\psi}_0}{\partial r} + \frac{1}{r^2}\frac{\partial^2 \hat{\psi}_0}{\partial \theta^2} = 0
$$
 (no current, no pressure)
\n
$$
\hat{\psi}_0(a,\theta) = 0
$$
 (continuity of flux)
\n
$$
\hat{B}_{\theta}(a,\theta) = B_{\theta}(a,\theta) = (\epsilon B_0/q_*)[1 + v \cos \theta]
$$
 (no surface currents)

10. The solution is given by

$$
\hat{\psi} = c_1 + c_2 \ln r + c_3 r \cos \theta + \frac{c_4}{r} \cos \theta
$$

$$
\frac{\hat{\psi}(r, \theta)}{\hat{\sigma}^2 B_0} = \frac{1}{q_*} \left[\ln \rho + \frac{v}{2} \left(\rho - \frac{1}{\rho} \right) \cos \theta \right]
$$

$$
\frac{\hat{B}_\theta}{\epsilon B_0} = \frac{1}{q_*} \left[\frac{1}{\rho} + \frac{v}{2} \left(1 + \frac{1}{\rho^2} \right) \cos \theta \right]
$$

$$
\frac{\hat{B}_r}{\epsilon B_0} = \frac{1}{q_*} \frac{v}{2} \left(1 - \frac{1}{\rho^2} \right) \sin \theta
$$

11. The vacuum field has a separatrix: $\hat{B}_r (r_s, \theta_s) = \hat{B}_\theta (r_s, \theta_s) = 0$

- 12. Choose $\theta = \pi$ or 0. This makes $\hat{B}_r = 0$
	- a. Only $\theta = \pi$ has the possibility of a real solution for r_s , satisfying

 $\hat{B}_{\theta}\left(r_{s}, \theta_{s}\right) = 0$

b. At $\theta_s = \pi$

$$
\widehat{B}_{\theta}\left(r_{s},\theta_{s}\right)=\frac{1}{q_{*}}\left[\frac{1}{\rho_{s}}-\frac{v}{2}\left(1+\frac{1}{\rho_{s}^{2}}\right)\right]=0
$$

c. Solve for ρ_s

$$
\rho_s = \frac{1}{\nu} \left[1 + \left(1 - \nu^2 \right)^{1/2} \right]
$$
 radius of the separatrix X point

13. For low β $(v \ll 1)$, $\rho_s \approx 2/v$: the X point is far from the plasma

For $v \sim 1$, $\rho_s \sim 1$: the X point is near the plasma

For $v = 1$, $\rho_s = 1$: the X point moves onto the plasma surface

14. Physical picture of the separatrix and X point

22.615, MHD Theory of Fusion Systems Lecture 10 Prof. Freidberg Page 4 of 10

- 15. The equilibrium β limit corresponds to the situation where the separatrix moves onto the plasma surface
- 16. At fixed *I*, the β limit given by $\beta_t \leq \epsilon^2/q_*^2$
- 17.At fixed *I*, the only way to hold higher pressure is to increase the vertical field. Eventually, the separatrix moves onto the plasma surface
- 18.

- 19.Calculation of the vertical field
	- a. $\hat{B}_{\theta} = \frac{\epsilon B_0}{\sqrt{2\pi}}$ $\mu \mid \rho \mid 2 \mid \rho^2$ $\hat{B}_{\theta} = \frac{\epsilon B_0}{q_*} \left(\frac{1}{\rho} + \frac{v}{2} \left(1 + \frac{1}{\rho^2} \right) \cos \theta \right)$ $\in B_0 \begin{bmatrix} 1 & v \end{bmatrix}$ 1 \ $\in \mathbb{R}$ $=\frac{120}{2}$ $\left| -+\frac{1}{2} \right| 1 +\frac{1}{2} \left| \cos \theta \right|$ $\mathcal{B}_{\theta} = \frac{\epsilon B_0}{q_*} \left[\frac{1}{\rho} + \frac{V}{2} \left(1 + \frac{1}{\rho^2} \right) \cos \theta \right]$ ρ 2 ρ $\hat{B}_{n} = \frac{E_{n}D_{0}}{2}$ $4 \times 2 \frac{1}{2} \rho^2$ $=\frac{\epsilon B_0}{q_*}\frac{v}{2}\left(1-\frac{1}{\rho^2}\right)$ si $\hat{B}_r = \frac{\epsilon B_0}{q_*} \frac{v}{2} \left(1 - \frac{1}{\rho^2} \right) \sin \theta$ ρ
	- b. Far from the plasma

$$
\hat{B}_{\theta} = \frac{\epsilon B_0}{q_*} \frac{v}{2} \cos \theta
$$

$$
\hat{B}_r = \frac{\epsilon B_0}{q_*} \frac{v}{2} \sin \theta
$$

- c. $B_v = \hat{B}_\theta \cos \theta + \hat{B}_r \sin \theta = \frac{\epsilon B_0}{\epsilon}$ * $B_v = \hat{B}_\theta \cos \theta + \hat{B}_r \sin \theta = \frac{\epsilon B_0}{2q}$ $= \hat{B}_{\theta} \cos \theta + \hat{B}_{r} \sin \theta = \frac{\epsilon B_0 v}{2}$
- d. Note: B_v increases with ν

$$
B_{v} = \frac{\mu_0 I}{4\pi R_0} \beta_p
$$
 (high β)

$$
B_{v} = \frac{\mu_{0} I}{4\pi R_{0}} \left[\beta_{p} + \frac{I_{i} - 3}{2} + \ln \frac{8R_{0}}{a} \right]
$$
 (ohmic)

dominates at high $\beta_\rho \sim \frac{1}{\epsilon}$

Summary of the High β **Tokamak**

- 1. Ordering
	- *q* ∼ 1 $β_t$ ∼∈ $\beta_p \sim 1/\epsilon$ Δ _a $/a$ ~ 1
- 2. There is an equilibrium β_t limit when the separatrix moves onto the plasma surface
- 3. This will always occur at fixed *I* and $β_t$ increases

Flux Conserving Tokamak

The Equilibrium β **Limit**

- 1. Is there really an equilibrium β_t limit in a tokamak?
- 2. A more realistic treatment shows that such a limit need not exist
- 3. This corresponds to the flux conserving tokamak equilibrium (FCT)
- 4. Paradoxically, the FCT is a special case of the HBT equilibrium just discussed

What is Flux Conservation?

1. Consider a tokamak with a large external heating source (rf, neutral beams)

- 2. a. The plasma absorbs energy
	- b. The temperature rises
	- c. β_t rises
	- e. Poloidal currents are induced
- 3. Assume the heating time is slow compared to the ideal MHD inertial time

MHD:
$$
\tau_M \sim a/v_{ti}
$$

\nHeating: $\tau_H \sim T/(\partial T/\partial t)$ $\tau_H \gg \tau_M$

4. The plasma evolution can be thought of as a series of quasistatic equilibria, each one satisfying the Grad-Shafranov equation

$$
\rho \frac{dV}{dt} = J \times B - \nabla p
$$

neglect when $\tau_H \gg \tau_M$

5. Assume the heating time is fast compared to the resistive diffusion time

Resistive time
$$
\tau_D \sim \frac{a^2 \mu_0}{\eta}
$$

$$
\tau_D \gg \tau_H
$$

- 6. If we neglect resistive diffusion, then during the heating process the plasma behaves electrically, like a perfect conductor
- 7. The FCT assumptions $\tau_D \gg \tau_H \gg \tau_M$ imply that the free functions $p(\psi)$, $F(\psi)$ must satisfy certain constraints
- 8. a. In general *p, F* are determined by the transport evolution
	- b. For the FCT *p, F* are determined by the FCT "transport prescription"

FCT Prescription for $p(\psi)$

1. Assume we start with an ohmically heated tokamak before auxiliary power is added

 $p(\psi, t = 0) = p_0(\psi)$ initial pressure distribution

- 2. At any time later in the heating sequence
	- a. $p(\psi, t) = W(\psi, t) p_{\Omega}(\psi)$ modeled from heating calculations
	- b. Often $W(\psi, t) = W(t)$, corresponding to a slow increase in the magnitude of *p* due to heating

FCT Prescription for *F* (ψ) **(The Critical Issue)**

1. Since the plasma acts like a perfect conductor, the toroidal and poloidal fluxes must be conserved. This is the FCT constraint

- 2. Consider a given poloidal flux surface ψ_p initially and at a later time
- 3. For flux conservation, the toroidal flux contained within the surface ψ_p = const must remain the same as the plasma evolves. There is no diffusion of flux. This is the FCT constraint. We must choose $F(\psi)$ so this property is preserved.
- 4. Calculate $\psi_t = \psi_t(\psi, t)$, $\psi_p = 2\pi\psi$

$$
\Psi_t = \int B_\phi(r,\theta) r dr d\theta
$$

5. Let us write ψ_t as a function of $F(\psi, t)$

6. Change variables

a.
$$
r, \theta \rightarrow \psi'(r, \theta'), \theta'
$$

\n $\theta' = \theta$
\n $\psi = \psi(r, \theta)$
\nb. $d\psi d\theta' = \begin{vmatrix} \frac{\partial \psi}{\partial r} & \frac{\partial \psi}{\partial \theta} \\ \frac{\partial \theta'}{\partial r} & \frac{\partial \theta}{\partial \theta} \end{vmatrix} dr d\theta = \frac{\partial \psi}{\partial r} dr d\theta = RB_{\theta} dr d\theta$

7. Then

a.
$$
\psi_t(\psi, t) = \int_0^{\psi} d\psi \int_0^{2\pi} d\theta \left(\frac{r B_\phi}{RB_\theta} \right)_{\psi', \theta'}
$$

\n
$$
= 2\pi \int_0^{\psi} d\psi q(\psi', t)
$$
\nb. $\frac{\partial \psi_t}{\partial \psi} = 2\pi q(\psi, t)$

8. If $\psi_t(\psi, t)$ is to remain unchanged during the heating sequence

$$
\frac{\partial \psi_t}{\partial t} = 0
$$

then $q(\psi, t)$ must be the same for each quasistatic equilibrium

9. Thus, we must choose $F(\psi, t)$ so that

 $q(\psi, t) = q_{\Omega} (\psi)$

initial ohmic *q* profile

10. We can now relate $F(\psi, t)$ to $q_{\Omega}(\psi)$

$$
q(\psi, t) = q_{\Omega}(\psi) = \frac{1}{2\pi} \int d\theta \left(\frac{rB_{\phi}}{RB_{\theta}}\right)_{S} = \frac{F(\psi, t)}{2\pi} \int_{0}^{2\pi} \frac{r d\theta}{R(\partial \psi/\partial r)}
$$

11.Solving for F we find that FCT Grad-Shafranov equation becomes

$$
\Delta^{\star}\psi = -R^2 \frac{d}{d\psi} \left(\mu_0 W p_{\Omega}\right) - \frac{1}{2} \frac{d}{d\psi} \left[\frac{q_{\Omega}}{\frac{1}{2\pi} \int \frac{r d\theta}{R(\partial \psi/\partial R)}}\right]^2
$$

This is an exact form, using no expansions

- 12. It is a nonlinear partial-integro-differential equation
- 13. In general, it must be solved numerically
- 14. It can be solved approximately by variational techniques
- 15. In class we shall calculate an "industrial strength" solution to the FCT equation