
	 	

	 	
	

 	 	 	
 	 	 	 	 	 	 	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
	 	 	 	

 	 	 	 	 	 	

	
	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	
 	 	 	 	 	 	 	

 	 	 	 	 	 	 	
 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

		
	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
		

	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

21M.385 Lecture 	Notes

Week 4
MIDI
•	 See	 Attached MIDI slides
•	 Demonstration of FluidSynth – a	 free	 General MIDI synthesizer.

•	 See	 common/fluidsynth.py	 and common/synth.py to see the synth API:
•	 After creating Synth(), you can set the a program Synth.program(self, ch, bank,

preset). Bank is usually set to 0, but can be set to 128 for percussion sounds. See	
FluidR3_GM_programs.txt for bank/patch information

•	 The main	 functions to use on	 Synth() are:
•	 noteon()
•	 noteoff()
•	 cc()
•	 pitch_bend()

Wavetable Synthesizer
•	 The standard	 wavetable synthesizer is a fancier version of the NoteGenerator,	 WaveBuffer,	

Envelope,	 SpeedModulator,	and Mixer components	 we have built so far.
•	 A	 Sample generator creates looping audio waveform (could be a sine wave or a looping wave

buffer)
•	 Frequency	 is controlled	 using	 speed	 modulation
•	 An Envelope generator shapes the note profile, most commonly using ADSR	 (Attack, Decay,

Sustain Release)
•	 A	 Mixer combines all sounds together.
•	 Additional components of a synthesizer are typically:

•	 LFO modulators of parameters (to	 do	 pitch	 bend, or tremolo)
•	 Filters
•	 Wave table key mappings and velocity mappings
•	 Audio FX: Resonant Filters, Chorus, Flange, etc…

Clock and Tempo
•	 Clock is a simple time keeping class. It can be paused / unpaused.
•	 Tempo is a mapping	 of time vs ticks.	It 	can 	be 	graphed 	with 	time 	on 	the 	X-axis and ticks on the	 Y-

axis.
•	 Ticks are musical units of duration: 480 ticks = 1 quarter note.
•	 We will sometimes use quarter note and beat interchangeably.
•	 SimpleTempoMap is a class that keeps track of	 tempo and converts between time and ticks. To	

change the bpm, you must be	 careful to avoid a discontinuity in ticks.

Scheduler
•	 Scheduler is a class that manages a list of	 Commands	 (functions) to be executed in the future.
•	 Our scheduler keeps track of these commands sorted by tick.
•	 The Scheduler knows when	 to execute commands because it has a Clock – for keeping track of	

time, and a TempoMap for converting time to ticks.
•	 The Scheduler API is:

•	 cmd = post_at_tick(tick, func, args): This will cause func to get	 called at	 tick (which
should be in the future). The function func will be called as: func(tick, args).

http:common/synth.py

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

 	 	 	 	 	 	 	
		

	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	 	 	
		

 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	
	 	

 	 	 	 	 	 	
 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	
 	 	 	

 	 	 	 	
 	 	 	 	 	 	 	

•	 The cmd returned by post_at_tick is a reference to the command. You can hold on to this
cmd and use	 that to	 cancel the	 command before it gets	 executed.

•	 Use Scheduler.remove(cmd) to remove a pending function. You can also use cmd.execute()
to execute the command yourself. This can be useful if you cancel a future note-off command	
but want that command to still happen	 immediately.

•	 Scheduler also	 has get_time() and get_tick() for convenience.

Example - Metronome
•	 The Metronome is a simple example of a class that uses the Scheduler and Synth to play a steady

beat.
•	 _noteon and _noteoff functions are posted to occur at the right times (the right ticks!). Note the

importance of	 having a _noteoff for each _noteon.
•	 Changing	 the bpm of SimpleTempoMap is a good way to see the importance of	 keeping tick

continuity.
•	 See	 metro.py	 to	 see	 how this class	 works. It is	 important to pick a channel for this	 class	 – that	 is

the channel that	 will be used for	 playing notes. And it	 is important	 to set	 the correct	 program for	
the instrument	 type you want. In this case, we use a percussion bank (128, 0).

Precise Scheduling
•	 Unfortunatley, the simple Scheduler we built has a weakness – it is only as accurate as the calls to

on_update(). These have a fairly course resolution	 (~16ms) which can	 cause jitter in	 fast
musical passages.

•	 It	 is possible to improve this behavior by scheduling functions to execute at precise locations
within an audio buffer. We can use the audio system’s sample-processing mechanism (ie, calls to
generate())	 to measure the passage of time by counting samples.

•	 Audio generation then happens in	 sub-chunks. Instead of generating an entire buffer of audio in
one shot, that buffer can be processed	 in a	 few steps:
§ A	 sub-chunk of audio is	 generated that represents	 audio happening prior to the scheduled

event.
§ Then	 the event is executed (causing, say, a	 note-on to	 be generated)
§ The rest of the audio buffer is generated, now containing the audio related to the note-on

Example – NoteSequencer
•	 We can make a class that sequences a linear set of pitches. We pick a really simple data structure

– a	 list of	 (duration, pitch) pairs.
•	 For each	 note, there are three steps:

o	 Stop the	 previous note	 (if there	 is one)
o	 Play the current note.
o	 Post the next note to play duration ticks from now.

•	 Looping	 can be achieved	 by	 setting	 the play	 index	 to	 0	 after the end	 of the sequence
•	 Resets can be achieved by defining pitch==0 as a	 rest.

Responsive Interfaces
•	 Example: Harmonix’s	 first product - The Axe
•	 Automatic rhythm generation

•	 Pros: most people have bad	 rhythm. Automating rhythmic activity can	 lead	 to better

sounding interactive music	 systems.

•	 Cons: Automatic rhythm system can sometimes	 be less	 immediately responsive.
•	 Automatic pitch selection

•	 Pros: all notes can	 “sound	 good”
•	 Cons: takes control away from the user.

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

• The challenge is to make a system that is responsive, and gives as much control as possible,
while	 avoiding	 “bad sounding	 notes”

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

