MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780
Spring 2008
Lecture #3
"Process Variation – Physical Causes and Interpreting Data"

February 12, 2008

Agenda

- Process Definitions
 - Geometry Change Causality
- Taxonomy for Control
 - Classification of Change Methods
- "Mechanical" Examples
 - Turning
 - Bending
 - Molding
- Origins of Variation
 - States and Properties

Process Model for Control

$$\underline{Y} = \Phi(\underline{\alpha})$$

 $\underline{\alpha} \equiv \text{process } parameters$

What are the α 's?

Back to the Process: What Causes the Output Change?

 A Directed Energy Exchange with the Equipment

Modes of Geometry Change?

- Removal of Material
- Plastic **Deformation** of Material
- Addition of Material
- Formation of Material from a Gas or Liquid
- Any others???

What Controls the Geometry Change?

Location and Intensity of Energy Exchange

- Examples:
 - location of max. shear stress in turning

What Controls the Geometry Change?

Location and Intensity of Energy Exchange

- Examples:
 - heat transfer at the mold surface in injection molding

Control of Geometry Change?

Location and Intensity of Energy Exchange

Examples:

location of laser
 beam in laser cutting

Control of Geometry Change?

Location and Intensity of Energy Exchange

- reaction rate - time product on substrate surface in LPCVD

Control of Geometry Change?

Location and Intensity of Energy Exchange

• displacement field in sheet forming:

Two Extremes of Interactions

Area of E(t) << Total Area: Serial Process

Area of E(t) ~ Total Area: Parallel Process

Two Extremes of Interactions

- Concentrated, "Lumped" Energy Port
 - Small Area Wrt Total Part Geometry
- Distributed Energy Port
 - Area ~ Total Part Geometry

What Determines Part Geometry Change?

- For Lumped case:
 - time trajectory of the port location
 - · e.g. tool paths
- For Distributed Case:
 - Shape of the energy distribution
 - patterns
 - molds
 - masks

Examples

Serial (Lumped) Processes

– Machining– Tool Path

Laser Cutting - Beam path

BendingTool Depth

Stereolithography - Beam Path

Three D PrintingBinder Path

Examples

Parallel (Distributed) Processes

Draw FormingDie Shapes

Injection MoldingMold Shape

Chemical Etching - Mask Shape

– CMP– Tool Shape

PlatingSubstrate Shape

Toward a Process Taxonomy

- Classify by Change Mode
 - Why?
- Classify by Intera Sensitivity, resolution arallel)
 - So what?
- Classify by Energy Domain
 - Who cares??

Flexibility, controllability, rate

Rate, resolution

Process Taxonomy for Control

Transformation				REMOVAL					
Mode		SEF	RIAL	•	PARALLEL				
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical	
	Cutting	Laser Cutting	g	WIRE EDM	Die Stamping		ECM	EDM	
	Grinding "Flame" Cutting				CMP		Photolithograp	hy	
	Broaching	oaching Plasma Cutting					Chem Milling		
	Polishing		-				_		
	Water Jet								

Transformation				ADDITION/JOINING						
Mode		SER	IAL	•	PARALLEL					
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical		
	Ultrasonic	Laser	-	E-Beam Welding	HIP	Sintering	LPCVD			
·	Welding	Sintering		Arc Welding	Inertia Bonding		Plating			
	3D Printing			Resist. Welding	Phys. Depos.					

Transformation				FORMA	ΓΙΟΝ				
Mode		SERIA	AL	•	PARALLEL				
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical	
		Plasma Spray	Stereolithograp	hy		Casting	Diffusion		
		DBM				Molding	Bonding		

Transformation				DEFORM	ATION				
Mode		SERI	AL	*	PARALLEL				
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical	
	Bending	Line Heating			Drawing				
	Forging(open)				Forging(die)				
	Rolling								

Process Model for Control

$$\underline{Y} = \Phi(\underline{\alpha})$$

 $\underline{\alpha} \equiv \text{process } parameters$

What are the α 's?

Process Parameters

- Equipment Energy "States"
- Equipment Constitutive "Properties"
- Material Energy "States"
- Material Constitutive "Properties"

Energy States

Energy Domain

Energy or Power Variables

Mechanical

 $F, v; P, Q \text{ or } F, d; \sigma, \varepsilon$

Electrical

V,1

Thermal

T, ds/dt (or dq/dt)

Chemical

chemical potential, rate

Properties

- Extensive: GEOMETRY
- Intensive: Constitutive Properties
 - Modulus of Elasticity, damping, mass
 - Plastic Flow Properties
 - Viscosity
 - Resistance, Inductance, Capacitance
 - Chemical Reactivity
 - Heat Transfer Coefficient

A Model for Process Variations

- Recall: $\underline{Y} = \Phi(\underline{\alpha})$
- One or more α 's "qualify" as inputs : \underline{u} $\underline{Y} = \Phi(\underline{\alpha}, \underline{u}); \qquad \underline{u} = \text{vector of inputs}$
- The first order Variation ∆Y gives the "Variation Equation"

Parallels From Lecture 2

Image removed due to copyright restrictions. Please see Fig. 26 in Boning, D. S., et al. "A General Semiconductor Process Modeling Framework." *IEEE Transactions on Semiconductor Manufacturing* 5 (November 1992): 266-280.

The Variation Equation

Simple Machining

- Process Type?
- Equipment States and Properties?

 Material States and Properties?

Sources of Variation?

Simple Machining (Orthogonal Turning

CNC Data

Average Values

Average Values

Machining: Conclusions

- Geometry Transformation is (In General) well behaved
 - Not highly sensitive to material property variations
 - New Surface Where Tool is Located
- Dominant Sources of Variation:
 - Tool Positioning errors Equipment
 Properties and States
- Feedback control of Positions is a good idea
 - -> CNC control!

Brake Bending

Images removed due to copyright restrictions. Please see:

http://www.falconfab.com/MVC-016F.JPG

http://www.falconfab.com/MVC-007F.JPG

http://edevice.fujitsu.com/fj/DATASHEET/epk/fpt-100p-m20.pdf

Bending

Process Type?

Equipment States and Properties?

Material States and Properties?

Simple Model: Pure Moment Bending

Constant Radius Tool

Simple Bending Mechanics: Parameter Effects

- Tool Shape (R_{tool}) determines the shape under load
- Elastic Springback determines the final shape
- What determines the springback?

Simple Bending Model

K = curvature of the tooling h = thickness of the sheet $\varepsilon(y)$ = through thickness strain

What is M(K) (or K(M))?

Simple Beam Theory

$$M = \int_{-h/2}^{h/2} \sigma(y) y b dy$$
moment arm

$$\sigma(y) = ?$$

Elastic Perfectly Plastic Model

$$M = \frac{3}{2} M_y \left(1 - \frac{1}{3} \left(\frac{K_y}{K} \right)^2 \right)$$

$$K_Y = \varepsilon_Y / (h/2)$$

$$M_Y = EI K_Y$$

The M-K Curve

Final Shape: Springback

$$\Delta K = \frac{M_{\text{max}}}{EI} :: K_{part} = K_{tool} - \Delta K$$

K = shape of tool

E= material property

$$I = \frac{1}{12}bh^3$$
 cubic dependence on thickness

$$M_{\text{max}} = ?$$
 $M_{\text{max}} = \Phi (K_{\text{Y}}, EI)$

Strong Dependence on yield properties

Effect of Material Variations: Increase in Yield Stress

Bending Experiments

- Bend to 2 different depths
- Two different materials
 - 0.028" Steel
 - 0.032" Aluminum

Steel vs. Aluminum

M

Bending by Operating Point

Other Possible Variations

- Yield Stress (+ 10%reported)
 - Chemistry, working history
- Thickness
 - Rolling mill quality
 - Design vs. manufacturing specs
- Tooling Errors

Conclusions

- Some Variations Easily Explained
 - Deterministic parameter changes
 - Thickness and Material Selection
 ∆m_p (Material Parameter)
 - Intentional Input changes
 - Depth changes Δe_s (Equipment state)

- Other Variations ???
 - Property Variations within Material ∆m_p
 - Machine Errors Δe_p and Δe_s (e.g. deflection and position error)

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

Conclusions for Brake Bending

Equipment Errors have Strong Effect on Final Shape

Punch Penetration

 $-> \Delta e_s$ (Equipment state)

- Die Width

-> Δe_p (Equipment Parameter)

SO WHAT?

Large $\partial Y/\partial \alpha$ Large $\Delta \alpha$

Injection Molding

Injection Molding Process

Process Type?

Equipment States and Properties?

Material States and Properties?

Image courtesy Wikimedia Commons, http://commons.wikimedia.org

Geometry Determinants

- Mold Shape
- Material Shape Change upon Cooling
 - Residual Stress Effect
 - Thermal Expansion or contraction
- Extent of Mold Filling

Key Material Properties: Flow into Mold

$$P = R(v) Q$$

Effect of Temperature on Flow

Q = P/R R = resistance to flow
$$\alpha \nu$$

 ν (T) = Ae^{ER(To-T)}

where:

T = temperature

R = gas constant

E = activation energy for viscosity

Key Material Properties: Cooling

Е

Packing Phase

Heat Transfer: Filling

- T_{part} > T_{mold} therefore always cooling
- Interior hotter than surface
- If T_{part} on surface < T_g flow stops
 - Short Shot
- Viscosity is strong function of Temperature

Heat Transfer in the Mold

- $q = k A \partial T/\partial x$
 - Rate decreases as ∂T/∂x decreases
 - Mold heat & polymer cools
- $dT/dt = \alpha \partial T^2/\partial x^2$
 - $-\alpha = k/\rho C_p$
 - Polymers have low k and high Cp

Process Control Issues

- Control Change in Shape upon Cooling
 - Consistent Mold Filling
 - Consistent Mold Pressure
 - Consistent Residual Stresses
 - Consistent Thermal environment
 - Consistent Thermal Distortion

Typical Equipment Control Systems

- Injection Velocity or Injection Pressure
- Nozzle Temperature
- Mold Temperature
- Barrel Heater Temperature

Equipment States

Sources of Variation

- Material Properties
 - Flow Propertiesv(T) relationship (especially if moist)
 - Thermal properties (ditto)
 - Also effects of "regrind"

Example: Effect of Blending

Figure by MIT OpenCourseWare.

Lab Data

- Variable Hold Time
- Variable Injection Velocity

Manufacturing

Injection Molding Data

Injection Molding NTU

I.M. NTU (no Group 1)

Sources of Variation

- Equipment Properties
 - Heat Transfer Properties
 - Mold Flow Passages
- Equipment States
 - Barrel and Nozzle Temperatures
 - Mold Temperatures
 - Flow Rates
 - Packing Pressure

Conclusions

- I.M. is a Complex, Parallel Formation Process
- Strong Dependence on Material Properties
 - Viscosity sensitivity
 - Heat Transfer Sensitivity
- Thermal State Must be Well Controlled
 - Many opportunities on the equipment
 - Material State very hard to do
 - Distributed
 - Interference with Process

Conclusions: Variation

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

Disturbances

Equipment Property Changes
Material Property Changes
Material State Uncertainty
Equipment State Uncertainty

Control Inputs: Equipment States

Process Model for Control

$$\underline{Y} = \Phi(\underline{\alpha})$$

 $\underline{\alpha} \equiv \text{process } parameters$

What are the α 's?

What are the Process Parameters?

- Equipment Energy "States"
- Equipment Constitutive "Properties"
- Material Energy "States"
- Material Constitutive "Properties"

Energy States

Energy Domain

Energy or Power Variables

Mechanical

 $F, v; P, Q \text{ or } F, d; \sigma, \varepsilon$

Electrical

V,I

Thermal

T, ds/dt (or dq/dt)

Chemical

chemical potential, rate

Properties

- Extensive: GEOMETRY
- Intensive: Constitutive Properties
 - Modulus of Elasticity, damping, mass
 - Plastic Flow Properties
 - Viscosity
 - Resistance, Inductance, Capacitance
 - Chemical Reactivity
 - Heat Transfer Coefficient
- Which has the highest precision?

A Model for Process Variations

"controls"

Equipment

Material

Geometry &
Properties

- Recall: $\underline{Y} = \Phi(\underline{\alpha})$
- One or more α 's "qualify" as inputs : \underline{u}

$$\underline{Y} = \Phi(\underline{\alpha}, \underline{u});$$
 $\underline{u} = \text{vector of inputs}$

The first order Variation ∆Y gives the "Variation Equation"

The Variation Equation

Disturbances

Primary Process Control Goal: Minimize <u>\DeltaY</u>

How do we make $\Delta Y \rightarrow 0$

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

- hold *u* fixed ($\Delta \underline{u} = 0$)
 - operator training (SOP's)
 - good steady-state machine physics
- minimize disturbances

$$\Box \Delta \alpha \rightarrow \Delta \alpha_{\min}$$

This is the goal of Statistical Process Control (SPC)

OR

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u \qquad \Delta Y \to 0$$

- hold u fixed ($\Delta \underline{u} = 0$)
- minimize the term: $\frac{\partial Y}{\partial \alpha}$ the disturbance sensitivity

This is the goal of Process Optimization

•Assuming
$$\frac{\partial Y}{\partial \alpha} = \Phi(\underline{\alpha})$$
 $\underline{\alpha}$ = operating point

OR

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u \qquad \Delta Y \to 0$$

• manipulate $\Delta \underline{u}$ by measuring ΔY such that

$$\Delta u \frac{\partial Y}{\partial u} = -\frac{\partial Y}{\partial \alpha} \Delta \alpha$$

This is the goal of Process Feedback Control

Compensating for (not eliminating) disturbances

Statistical Process Control

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

Detect and Minimize

Process Optimization

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$
Empirically
Minimize

Output Feedback Control

$$\Delta Y = \frac{\partial Y}{\partial \alpha} \Delta \alpha + \frac{\partial Y}{\partial u} \Delta u$$

$$\frac{\partial Y}{\partial u} \Delta u = -\frac{\partial Y}{\partial \alpha} \Delta \alpha \qquad \qquad \text{Manipulate Actively Such that}$$

Compensate for Disturbances

Process Control Hierarchy

- Reduce Disturbances
 - Good Housekeeping
 - Standard Operations (SOP's)
 - Statistical Analysis and Identification of Sources (SPC)
 - Feedback Control of Machines
- Reduce Sensitivity (increase "Robustness")
 - Measure Sensitivities via Designed Experiments
 - Adjust "free" parameters to minimize
- Measure output and manipulate inputs
 - Feedback control of Output(s)

