Diesel Emissions and Control

Diesel emissions
Regulatory requirements
Diesel emissions reduction

Diesel exhaust gas after-treatment
systems

Clean diesel fuels

Diesel Emissions

CO - not significant until smoke-limit is reached
» Overall fuel lean
> higher CR favors oxidation
HC — not significant in terms of mass emission
» Crevice gas mostly air
— Significant effects:
» Odor
» Toxics (HC absorbed in fine PM)
— Mechanisms:
» Over-mixing, especially during light load
» Sag volume effect
NOXx — very important
> No attractive lean NOx exhaust treatment yet
PM — very important
» submicron particles health effects




Demonstration of over-mixing effect

Diesel HC 2400
emission 200 K /
mechanisms o

12001

800}

Exhaust HC, ppm C

4001

U S S R L
4 8 12 16 20 24 28
Ignition delay. deg Fig. 11-35

Stundard sac. volume = 1,35 mm?
Effect of nozzle sac vol. on HC emissions

600

g

Valve covers orifice

400

300

Fxhaust HC, ppm C

200+

100 Approximate volume of nozzle holes

1 ] 1 L 1 1 j
-02 0 02 04 05 08 10 T3 14 3

Nozzle sac volume, mm?

FIGURE 11-36

© McGraw-Hill Education. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

NOx mechanisms

* NO: Extended Zeldovich mechanism
N, + O« NO+N
N+0O,<NO+O
N+ OH< NO + H
— Very temperature sensitive: favored at high temperature
— Diffusion flame: locally high temperature
— More severe than Sl case because of higher CR

* NO, : high temperature equilibrium favors NO, but NO2 is
formed due to quenching of the formation of NO by mixing
with the excess air

NO + HO, <> NO, + OH
NO, + O <> NO + O,
— Gets 10-20% of NO, in NO,




NOx formation in Diesel engines
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Diesel combustion

Fuel rich Diffusion flame:
Temperatures combustion Oxidation of
950 K ~1600 K ~2700 K fuel, fuel rich

products and
350K 825K / particulates

(2]

Cold Rich Fuel/Air
Fuel Mix phi = 4 . co? &
Warm Products of Rich H20
Air Combustion
CO, UHC & Particulates

Chemistry -

Particles grow and agglomerate

Flynn et al, SAE990509 into bigger particles 6
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Particulate Matter (PM)

+ As exhaust emission:
— visible smoke
— collector of organic and inorganic materials
from engine

»Partially oxidized fuel; e.g. Polycyclic Aromatic
Hydrocarbons (PAH)

»Lubrication oil (has Zn, P, Cu etc. in it)
— Sulfates (fuel sulfur oxidized to SO2, and
then in atmosphere to SO3 which hydrates
to sulfuric acid (acid rain)

Particulate Matter

* In the combustion process, PM formed
initially as soot (mostly carbon)
— partially oxidized fuel and lub oil condense
on the particulates in the expansion,
exhaust processes and outside the engine

»PM has effective absorption surface area of
200 m?/g

— Soluble Organic Fraction (SOF) 10-30%

» (use dichloromethane as solvent)




Elementary soot particle structure
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(See Fig. 11-38 and 11-40 for micro-image of soot particles)
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PM formation processes
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US HD diesel regulation history
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TYPICAL US EPA TRANSIENT CYCLE, HD TRUCKS
(Test based on % (rated-idle speed) and % lug torque)
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European Stationary Cycle (ESC)
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EU HD Diesel emissions regulation
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Diesel Emissions Reduction

1. Fuel injection: higher injection pressure; multiple
pulses per cycle, injection rate shaping; improved
injection timing control
2. Combustion chamber geometry and air motion
optimization well matched to fuel injection system
3. Exhaust Gas Recycle (EGR) for NOx control
» Cooled for impact
4. Reduced oil consumption to reduce HC contribution
to particulates
5. Exhaust treatment technology: NOx, PM
6. Cleaner fuels
17
—O— EGR Ratio 0%
- A~ EGR Ratio 10%
1500
rPm —0O— EGR Ratio 20% EffeCt Of EGR
sol —<~— EGR l;(atio 3%
- 1.35 L single cylinder engine,
Direct Injection, 4-stroke
50 mg fuell/cycle
- Intake Temperature : 35°C
1500 |so; 50 ~ Boost Pressure : 39.2 kPa gage
109 00 Replaced EGR, Experimental Pump
et W:" ﬁ _ }:u S _ 40 [injecion Timing —O— EGR Ratio 0%
Cidnk Angle tha A s 2 sl °ca BTOC - A~ EGR Ratio 10%
g 12 —DO— EGR Ratio 20%
8 8 x 20| < EGR Ratio 33%
o]
. [ e 2 -
-s- v f 10 b A
34 s . 12<><§~ —oh R
A i 1 1 1 1 I
/(. .“:/( 300 340 380 420 460 500
2 e g BSFC' g/kWh
5o £

=20-10 7

)C 1020 30 1
Crank Angle “CA Crank Angle *CA

! .
i =

= o . . .
¢ S0 80" -20-70 106 1o 20 30 4050 6"

SAE Paper 930601
18

© Society of Automotive Engineers. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.



https://ocw.mit.edu/help/faq-fair-use

u,_J. 1.0 Effect of EGR
= 0.9 —o— 75% Load at different loads
: 0.8 ] —O— 25% Load
i —— 7% Load
o 07T 1800 rpm
< €1
- 0.6
5 05 T
> 04 +
— 0.3 +
~
6 0.2 -+

01 +
Z 1 1 1 1 |

0.0 1 T T T 1

0 10 20 30 40 50 60
EGR [%)]

SAE Paper 980174 9

© Society of Automotive Engineers. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Combustion control of diesel emissions
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Combustion control of diesel emissions
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Diesel particulate filters use porous ceramics
and catalyst to collect and burn the soot

Trapped soot on inlet wall surface

Cell Plugs

Place a catalyst in
front of or within filter
to oxidize NO to NO,

Out

I. I Exhaust (CO,, H,0)

Exhaust

(Soot, CO, HC)
Enter Self regenerating
Overall effect
neutral to NOx

* Need low sulfur

Ceramic Honeycomb fuel

Wall with Supported

Catalyst 2
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Post injection filter regeneration
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Figure 8. Example of exhaust gas temperature
increase and particulate filter regeneration
under steady state conditions

Peugeot SAE 2000-01-0473

Increase exhaust gas temperature by injection of
additional fuel pulse late in cycle.
23
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Sulfur effect on PM filter performance

PM Components, OICA Cycle
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CR-DPF: Catalyzed regenerating diesel particulate filter SAE Paper 2000-01-1879
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Ash build up

Heavy ash build up

- 1

.—— Soot

— Ash

From SAE 2008-01-1549 2°
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Ash cleaning from DPF

Regeneration

Cooling
Washing
ﬂ (@ oning ca, 15- 30 min
Valves. (A\ Pump
| Heat Exchanger
* Water bath
ca. Smin  ca. 10 min ca. 15 - 30 min
d |
| sumer DPF R DPF
afler and : dp-Measurement Valves —
Zeuna Starker, SAE 2001-01-3199
Picture as per ADAC Al fuel delivery trucks in the ARCO (BP) ECD

bsite, Aug.28, 01 ) )
webstie, Aug retrofit program went 150K miles before ash

build-up became an issue. Some trucks went
250,000 miles.

BP SAE 2002-01-0433

Cleaning process:
1. Burn-off of soot with hot air

2. Cleaning with water and air under “high” pressure.
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Slide courtesy of Tim Johnson, Corning
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State-of-the Art SCR system has NO2 generation and
oxidation catalyst to eliminate ammonia slip

SCR Catalyst (S)
4NH, + 4NO + O, — 4N, + 6H,0
Urea 2NH; + NO + NO, — 2N, + 3H,0
(NH,),CO 8NH, + 6NO, — 7N, + 12H,0

o ) Hi s ol [ ]5

Oxidation Catalyst (V)
2NO + O, — 2NO, Oxidation Catalyst (O)
4HC + 30, —» 2CO, + 2H,0 4NH; + 30, — 2N, + 6H,0
2CO + 0, —» 2CO,

Hydrolysis Catalyst (H

Schaefer-Sindlinger, (NH,),CO + H,0 — 2NH, + CO, 27
Degussa, 9-99
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NOx absorber

Lean Condition Rich Condition

e - vo.

Lean condition: Store NOx as nitrate Rich condition: Store NOx as nitrate

2NO, + BaO + 1/20, = Ba(NO;), Dissociate nitrate to NO,, which is
converted by the CO and H,

28
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Integrated DPF and NOx trap

Lean . Rich
NO o ﬁ HC g” H20 [NO+1/2 0, > NO,
o N co~y /7 . |Bao+2no0,+1/2 0, ¢>BaNO,),
o) NOxX storage _ NO+0
NOx Pt
w—— Substrate Better than 80% simultaneous
reduction in PM and NOx
Reduction of NOx
PM
Continuous oxidation of PM Continucus oxidation of PM
by active oxygen & Oz by active oxygen
From Toyota SAE Paper 2002-01-0957 29
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Clean Diesel Fuels

ok wnN

Lower sulfur levels

» 350 ppm — 15 ppm (to enable SCR
technology; enforced since 2006)

Lower percentage aromatics
Oxygenated fuels

Higher cetane number
Narrower distillation range

30
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Effects of Oxygenates on PM emission
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AVL Publication (by Wofgang Cartellieri in JSME 1998 Conference in Toykyoe)l
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Diesel Emission Control

Summary

« Emission regulations present substantial
challenge to Diesel engine system

» lIssues are:
— performance and sfc penalty
— cost
— reliability
— infra-structure support

32



https://ocw.mit.edu/help/faq-fair-use

MIT OpenCourseWare
https://ocw.mit.edu

2.61 Internal Combustion Engines
Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu
https://ocw.mit.edu/terms



