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CHAPTER SIX 

FORCED DISPERSIVE WAVES ALONG A NARROW CHANNEL 

Linear surfa
e gravity w aves propagating along a narrow 
 hannel display i n teresting 

phenomena. At f r s t w e 
onsider free waves propagating along an infnite narrow 
 hannel. 

\e g i v e the solution for this problem as a superposition of wave modes and we illustrate 


on
epts like the notion of 
ut-of frequen
y. Se
ond, we 
onsider a semi-infnite 
hannel 

with for
ed waves ex
ited by a wave maker lo
ated at one end of the 
hannel. As in 

the previous 
ase, the wave feld generated by the wave maker 
an b e des
ribed as a 

superposition of wave modes. As the wave maker starts ex
iting the fuid, a w ave front 

develop and starts propagating along the 
hannel if the ex
itation frequen
y is above t h e 


ut-of frequen
y for the frst 
hannel wave mode. If the ex
itation frequen
y is below 

the 
ut-of frequen
y for the frst 
hannel mode, the wave disturban
e stays lo
alized 


lose to the wave maker, and for the parti
ular 
ase where the ex
itation frequen
y 

mat
hes the natural frequen
y of a parti
ular 
hannel wave modes, there is resonan
e 

b e t ween this parti
ular wave mode and the wave m a k er, and the wave amplitude at the 

wave maker grows with time. 

Efe
ts of non-linearity and dissipation are not taken into a

ount. In this 
hapter 

we obtain and illustrate through animations the free-surfa
e displa
ement evolution in 

time along a semi-infnite narrow 
 hannel ex
ited by a w ave maker at one of its ends. 

1	 Free Wave Propagation Along a Narrow Waveg­

uide. 

\e 
onsider free waves propagating along an infnite 
hannel of depth h and width 2b. 

\e adopt a 
oordinate system x, y, z, where x and z are in the horizontal plane and y is 

the verti
al 
oordinate. The x axis is along the 
hannel, the lateral walls are lo
ated at 



  

2 

z = ±b and the bottom is the plane y = -h. The free surfa
e is lo
ated at y = r(x, z, t), 

whi
h is unknown. \e assume irrotational fow and in
ompressible fuid su
h that the 

velo
ity feld 
an be given as the gradient o f a p o t e n tial fun
tion <(x, y, z, t), where t is 

the time parameterization. The linearized boundary value problem for propagation of 

free waves is given by the set of equations 

V2<(x , y , z, t ) =0 for -o x  o, -h  y  0 and - b z  b,  (1.1) 

�2 < �< 

2 

+ g =0 at y = 0 , (1.2)
�t �y 

�< 

=0 at y = -h, (1.3)
�y
 

�<


=0 at z = ±b, (1..)
�z 

and appropriate radiation 
onditions. This is an homogeneous boundary value problem 

that 
an be solved by the te
hnique of separation of variables. First we assume that the 

free waves propagating along the 
hannel are given as a superposition of plane mono-


hromati
 waves. Due to the linearity of the boundary value problem, we need only 

to solve it for a single nono-
hromati
 plane wave with wave frequen
y w. The time 

dependen
e is 

exp(-iwt), 

and now w e 
an write the potential fun
tion <(x , y , z, t ) and the free-surfa
e displa
ement 

r(x, z, t) in the form 

<(x, y, z, t) = <(x, y, z) exp(-iwt), (1.5) 

r(x, z, t) = r(x, z) exp(-iwt). (1.6) 

Now the boundary value problem given by equations (1.1) to (1..) assume the form 
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V2<(x, y, z) =0 for -o  x o, -h y 0 a n d - b z  b , (1.7) 

-w 

2< + g 

� < 

� y 

=0 at y = 0 , (1.8) 

�< 

=0 at y = -h, (1.9)
�y
 

�<
 

=0 at z = ±b, (1.10)
�z 

where we eliminated the free surfa
e displa
ement r(x, z) and redu
ed the boundary 

value problem to a boundary value problem in one dependent v ariable, <(x, y, z). Next, 

we apply the te
hnique of separation of variables to solve the boundary value problem 

given by equations (1.7) to (1.10). \e assume the potential fun
tion <(x, y, z) given as 

� �
sin(kzz) � ) H(y),<(x, y, z) r exp(±ikx) (1.11) 


os(kzz) 

where the possible values kz 

is determined by the boundary 
ondition at the 
hannel 

walls lo
ated at z = ±b, and the possible values of the 
onstant k are dis
ussed below. If 

we substitute the expression given by equation (1.11) into the boundary value problem 

given by equations (1.7) to (1.10), we obtain a Sturm-Liouville problem (one-dimensional 

boundary value problem with a se
ond order diferential equation) for the fun
tion H(y), 

whi
h is given by the equations 

Hyy 

+ A H(y) = 0 , (1.12) 

-w 

2H(y) + gH y 

= 0 at y = 0 , (1.13) 

Hy 

= 0 at y = -h, (1.1.) 

where A2 = -kz
2+k2 . The 
onstant A represents a set of eigenvalues, whi
h are fun
tions 

of the wave frequen
y w, o f t h e gravity a

eleration g and of the depth h. 

If we apply the boundary 
onditions given by equation (1.10) to the potential fun
tion 

<(x, y, z), we realize that we 
an use either 
os(kzz) or sin(kz 

z) in the expression for 

<(x, y, z) given by equation (1.11), but with diferent set of possible values for the 



. 


onstant kz 

. The set of values for kz 

are determined by the boundary 
ondition (1.10) 

and the 
hoi
e b e t ween 
os(kzz) and sin(kzz). If we 
onsider the z dependen
e of the 

potential <(x, y, z) given in terms of 
os(kzz), the 
onstant kz 

has to assume the values 

t nt
kz = ± with n as a natural number. (1.15)

2b b 

If we 
onsider the z dependen
e of the potential <(x, y, z) g iv en in terms of sin(kz 

z), the 


onstant kz 

has to assume the values 

mt
kz = ± with m as a natural number. (1.16)

b 

The general form of the solution for the equation (1.12) is 

H(y) = A 
osh(A(y + h)) + B sinh(A(y + h)), (1.17) 

but the boundary 
ondition on the bottom given by the equation (1.1.) implies that 

B = 0 . The boundary 
ondition at the free-surfa
e (y = 0 ) g i v es the eigenvalue equation 

or dispersion relation 

w 

2 = gA tanh(Ah) (1.18) 

for the 
onstant A. This impli
it eigenvalue equation has one real solutions A0 

and an 

infnite 
ountable set of pure imaginary eigenvalues iA1, l = 1, 2, . . . . Asso
iated with 

these eigenvalues we have the eigenfun
tions 


osh(A0(y + h))
H0(y) = , (1.19)


osh(A0h) 


os(A1(y + h))
H1(y) = , with l = 1 , 2, . . . (1.20)


os(A1h) 

The term exp(ikx)(exp(-ikx)) in the equation (1.11) above for <(x, y, z) represents a 

wave propagating to the right (left) if the 
onstant k is real, or a right (left) evanes
ent 
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wave if k is a pure imaginary number, or a 
ombination of both if k is 
omplex. \e 

label the 
onstant k as the wavenumber. Sin
e, we are interested in free propagating 

waves, we need the 
onstant k to be a real number. The value of this 
onstant is given 

in terms of the 
onstants A and kz, a

ording to the equation 

k2 2 = A - kz 

2 , (1.21) 

where the possible values of kz 

are given by the equations (1.15) and (1.16). The possible 

values of A are solutions of the dispersion relation given by the equation (1.18). Sin
e 

we w ant k as a real number, this ex
ludes the imaginary solutions of the equation (1.18), 

so we 
an write the equation above in the form 

k =A0

2 - kz 
2 , (1.22) 

k =A0

2 - kz 
2 , (1.23) 

where we appended the indexes n and m to the 
onstant k to make 
lear its dependen
e 

on the eigenvalues kz and kz . 

Now we 
an write the potential fun
tion <(x, y, z) in th e form 

  �  
osh(A0(y + h))
<(x, y, z) = [A exp(ik x) + B exp(-ik x)] sin(kz z)


osh(A0h)
�  


 


   
osh(A0(y + h))
+ [A exp(ik x) + B exp(-ik x)] 
os(kz z) ,


osh(A0h)
�  

(1.2.) 

and the free-surfa
e displa
ement r(x, z) is given by the equation 

 
�   
  iw 
osh(A0(y + h)) 

r(x, z) = - (A exp(ik x) + B exp(-ik x)) sin(kz z)
g 
osh(A0h)

�     
  
osh(A0(y + h))

+ (A exp(ik x) + B exp(-ik x)) 
os(kz z) ,

osh(A0h)

�  

(1.25) 
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where the value of the 
onstants A , A , B and B are spe
ifed by the appropriate 

radiation 
onditions. 

A

A

ording to the value of kz or kz , the 
onstants k and k in the equations (1.2.) 

and (1.25) may be real (propagating wave mode) or pure imaginary numbers (evanes
ent 

wave m ode). If we fx the value of kz or kz (fx the value of m or n), for a given depth 

h, we 
an vary the wave frequen
y w su
h that A0 

> k z (kz ) or A0  k z (kz ). \hen 

0 

> kz (kz ), k (k ) is a real numb e r and we have a propagating wave mode, but 

when A0 

kz (kz ) we have that k (k ) is a pure imaginary numb e r and the wave 

mode asso
iated with this value of k is evanes
ent. So, the wave frequen
y value where 

kz = A 0(kz = A 0) is 
alled the 
ut-of frequen
y for the mth (nth) wave mode. 

Next, we plot the dispersion relation given by equation (1.18) as a fun
tion of the 

wavenumb e r k and the depth h for various values of the eigenvalues kz (sine wave 

modes in the z 
oordinate) in the fgures 1 and 2. As the value of kz in
reases (value 

of m in
reases), the wave frequen
y assume larger values for the 
onsidered range of the 

wavenumb e r k. The wave frequen
y value at k = 0 for a given kz (given m) is the 
ut-

of frequen
y for the wave mode asso
iated with the eigenvalue kz . For a fxed value 

of kz , frequen
ies below t h e 
ut-of frequen
y implies in pure imaginary wave n umb e r s 

and the asso
iated wave mode is exponentially de
reasing (evanes
ent) or exponentially 

growing. \ave modes asso
iated with pure imaginary wave n umbers do not parti
ipate 

in the superposition leading to free waves solutions. A

ording to fgures 1 and 2, the 

higher the wave frequen
y, the higher the numb e r of wave modes parti
ipating in the 

superposition leading to free waves solutions. 

Another way to see that the wave modes asso
iated with imaginary wave numb e r s 

(wave b e lo w the wave mode 
ut-of frequen
y) do not propagate is through the wave 

mode group velo
ity. In fgures 3 and ., we plot the group velo
ity for the frst 10 

wave modes asso
iated with the eigenvalues kz (m from 0 to 9). For wave frequen
ies 

above the 
ut-of frequen
y, the 
onsidered wave mode (fxed value of kz ) has a real 

wavenumb e r k and non-zero group velo
ity, a s w e 
an see through fgures 3 and .. As the 

wave frequen
y approa
hes the 
ut-of frequen
y, the group velo
ity of the 
onsidered 

wave mode approa
hes zero, a

ording to fgures 3 and .. At the 
ut-of frequen
y of 

the 
onsidered wave mode, its group velo
ity is zero and no energy is transported by 
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Figure 1: \ave frequen
y as a fun
tion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 100 meters. 
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Figure 2: \ave frequen
y as a fun
tion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 0 .1 meters. 
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this wave mode for wave frequen
ies at or b e l o w the wave mode 
ut-of frequen
y. 

A

ording to fgures 3 and ., the group velo
ity f o r e a 
 h w ave mode has a maximum 

value, whi
h de
ays as the value of kz in
reases (value of m in
reases). The frst wave 

mode (sine wave mode with kz 

= 0) has the largest maximum group velo
ity, and sin
e 

its 
ut-of frequen
y is zero, we 
 a n h a ve free propagating waves for any w ave frequen
y 

for the 
hannel spe
ifed by its depth h, its width 2b and the gravity a

eleration g. 

Above, we l o o k ed at the wave modes with sine dependen
e in the z 
oordinate. For the 

wave modes with 
osine dependen
e in the z 
oordinate, the minimum absolute value 

of the eigenvalue kz is larger than the minimum absolute value for the eigenvalues 

kz , whi
h is zero. Therefore, for any wave frequen
y we have free waves propagating 

along the 
hannel. For the 
osine wave modes there is a minimum 
ut-of frequen
y. 

Propagation of this type of wave mode is possible only for wave frequen
ies above their 

minimum 
ut-of frequen
y. 

2	 For
ed Wave Propagation Along a Narrow Waveg­

uide. 

Now we 
onsider for
ed waves propagating along a semi-infnite 
hannel with the same 

depth h and width 2b as the 
hannel in the previous se
tion. The semi-infnite 
hannel 

has a wave maker at one edge of the 
hannel, whi
h generates wave disturban
es that 

may o r m a y not propagate along the 
hannel. The solution for the for
ed waves is given 

as a superposition of wave modes. The same wave modes we obtained in the previous 

se
tion. Evanes
ent wave modes are also part of the solution in this 
ase. They stay lo-


alized 
lose to the wave m a k er and des
ribe the lo
al wave f e l d . For a mono-
hromati
 

ex
itation, the wave modes with 
ut-of frequen
y b e l o w the ex
itation frequen
y 
on-

stitute the propagating wave feld, and the wave modes with 
ut-of frequen
y above th e 

ex
itation frequen
y are evanes
ent and stay lo
alized 
lose to the wave maker. Their 

superposition gives the evanes
ent wave feld. 
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Figure 3: Group velo
ity as a fun
tion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 100 meters. 
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3 Initial Boundary Value Problem. 

\e 
onsider the same 
oordinate system used in the previous se
tion. The wave maker is 

lo
ated at x = 0 and the 
hannel lays at x > 0. The linearized boundary value problem 

for the for
ed waves is similar to the boundary value problem for the free waves problem. 

The diferen
e is the boundary 
ondition des
ribing the efe
t of the wave maker and 

the fa
t that the 
hannel is now semi-infnite. The linear boundary value problem for 

for
ed waves is given by the set of equations 

V2<(x, y, z, t) = 0 for 0  x o, -h y 0 and - b z  b, (3.26) 

�2< �	< 

+ g	 =0 at y = 0 , (3.27)
�t 

2	 �y
 

�<
 

=0 at y = -h,	 (3.28)
�y
 

�<
 

=0 at z = ±b,	 (3.29)
�z 

�< wA 

= F (z)G(y)f(t) on x = 0 ,	 (3.30)
�x b 

and the free surfa
e displa
ement r(x, z, t) is related to the potential fun
tion <(x , y , z, t ) 

a

ording to the equation 

1 �< 

r(x, z, t) = - (x, 0, z, t ).	 (3.31) 

g � t 

The fun
tion f(t) is a known fun
tion of time. A
tually, we 
hose an harmoni
 ex
ita-

tion, so we have 

f(t) = 
os(wt ),	 (3.32) 

where w is the ex
itation frequen
y. \e need also to 
onsider initial 
onditions for the 

boundary value problem above. They are given by the equations 

<(x, y, z, 0) =0, (3.33) 

<t(x, y, z, 0) =0, (3.3.) 
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where the initial 
ondition (3.3.) is equivalent to have a still free surfa
e at t = 

0 (r(x, z, 0) = 0). Next, we solve the initial boundary value problem, whi
h is dis-


ussed in the next se
tion. 

3.1 Solution of the Initial Boundary Value Problem. 

The frst step to solve the initial b o u n d a r y value problem given by equations (3.26) 

to (3.30) is to apply the 
osine transform in the x variable. This results in a non-

homogeneous Helmholtz-like equation for the potential fun
tion under homogeneous 

boundary 
onditions. Sin
e the resulting equation is non-homogeneous, the solution 

is given as the superposition of the solution for the homogeneous part of the problem 

plus a parti
ular solution that handles the non-homogeneity. To solve the asso
iated 

homogeneous problem, we use the method of separation of variables as in the previ-

ous se
tion. The solution of the homogeneous problem is given as a superposition of 

modes in the y and z variables. The parti
ular solution is obtained using the homo-

geneous solution through the method of variation of the parameters. The 
onstants of 

the homogeneous solution are obtained by applying the boundary 
onditions to the full 

solution (homogeneous plus parti
ular solutions). Next, we dis
uss in detail the steps 

outlined above. 

\e 
onsider the 
osine transform pair 

 
]f (k) = f (x) 
 o s ( k x )dx (3.35) 

0 

and  
1 ]f (x) = f (k) 
os(kx )dk. (3.36)
2t 0 

If we apply the 
osine transform (3.36) to the se
ond partial derivative o f t h e potential 

fun
tion <(x , y , z, t ) w i t h respe
t to the x variable, we have that

 
<xx 


os(kx )dx = -<x(0, y , z, t ) - k2<](k , y , z, t ), (3.37) 

0 



�  
 �  

    

�  
 �  

    

1.
 

sin
e we assumed that <x 

- 0 and < - 0 as x -o . The term <x(0, y , z, t ) is spe
ifed 

by the boundary 
ondition at x = 0 and given by equation (3.30). Next, we apply 

the 
osine transform to the initial boundary value problem given by equations (3.26) to 

(3.30). This results in the set of equations 

<]yy 

+ <]zz 

- k2<] = <x(0, y , z, t ) = 

Aw 

F (z)G(y) 
os(wt ), (3.38)
b 

]<tt 

+ g< y 

=0 on y = 0 , (3.39) 

]<y 

=0 on y = -h, (3..0) 

]<z 

=0 on z = ±b, (3..1) 

with the initial 
onditions given by equations (3.33) and (3.3.) written in the form 

]<(k , y , z, 0) =0, (3..2) 

]<t(k , y , z, 0) =0. (3..3) 

This is a non-homogeneous initial boundary value problem for the fun
tion <](k , y , z, t ) 

(
osine transform of <(x, y, z, t)). Our strategy to solve this initial boundary value 

problem is to fnd the general form of the solution of the homogeneous part of the 

initial boundary value problem given by equations (3.38) to (3..1) plus a parti
ular 

solution for the non-homogeneous part of this initial boundary value problem. To fnd 

the value of the 
onstants of the homogeneous part of the solution, we apply the initial 

and boundary 
onditions to the full solution (homogeneous plus parti
ular). Next, we 


onsider the homogeneous part of the initial b o u n d a r y value problem for <], whi
h is 

given as the superposition of wave modes obtained in the previous se
tion. So, the 

solution of the homogeneous problem is similar to the one given by equation (1.2.). 

The solution for the homogeneous problem is 

]<H 

= {[A (k , t ) 
osh(A (y + h)) + B (k , t ) sinh(A (y + h))] 
os(kz z)} 

+ {[C (k , t ) 
osh(A (y + h)) + D (k , t ) sinh(A (y + h))] sin(kz z)} , 



  

�  
 �  

    

�  
 �  

    

�  
 �  

     

�  
 �  
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where A2 = k2 +kz 
2 , A2 = k2 +kz 

2 , and kz and kz are given respe
tively, in equations 

(1.16) and (1.15). As we mentioned before, the general solution is given as a superpo-

sition of the homogeneous solution <]H 

plus a parti
ular solution. \e assume that the 

parti
ular solution has the form 

]
{[  

D
] }

<p 

= A (k , y , t ) 
osh(A (y + h)) + 

D k , y , t ) sinh(A (y + h)) 
os(kzB ( z)

{[
D

] }
+ C (k , y , t ) 
osh(A (y + h)) + 

DD (k , y , t ) sinh(A (y + h)) sin(kz z) . 

\e substitute the potential <]p 

in the non-homogeneous Helmholtz equation (3.38) in 

the y and z variables. \e also impose that 

{ [ ] }�<]p D= A A sinh(A (y + h)) + 

D 
osh(A (y + h)) 
os(kz z)B 

�y 

(3...)
 { [ ] } 

+ A CD sinh(A (y + h)) + 

DD 
osh(A (y + h)) sin(kz z) . 

The pro
edure above results in the set of equations for the amplitudes 

D , 

D , CD andA B 

DD . 

(AD )y 


osh(A (y + h)) + (BD )y 

sinh(A (y + h)) =0, (3..5) 

(CD )y 


osh(A (y + h)) + (DD )y 

sinh(A (y + h)) =0, (3..6) { } Aw
 

A (AD )y 

sinh(A (y + h)) + (BD )y 


osh(A (y + h)) = 

b2 

G(y) 
os( wt )F , (3..7)
 { } Aw
 

A (CD )y 

sinh(A (y + h)) + ( DD )y 


osh(A (y + h)) = 

b2 

G(y) 
os( wt )F , (3..8)
 

where 

F 

F 

= 

= 

:

: 

F (z) s i n (kz 

: 

: 

F (z) 
os(kz 

z)dz, 

z)dz. 

(3..9) 

(3.50) 
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If we solve the set of equations above and integrate with respe
t to the y variable 

D D Dfrom -h to 0, we obtain the following expressions for the amplitudes A , B , C and 

DD , w h i
h follows: 

AwDA = - 
os(wt )F G (y), (3.51)
b2A 

BD = 

Aw 


os(wt )F H (y), (3.52)
b2A 

AwDC = - 
os(wt )F G (y), (3.53)
b2A 

AwDD = 
os(wt )F H (y), (3.5.)
b2A 

where the fun
tions G (y), H (y), G (y) and H (y) are given by the equations 

y 

G (y) = G(p) sinh(A (p + h))dp, (3.55) 

: 

y

H (y) = G(p) 
osh(A (p + h))dp, (3.56)
: 

y

G (y) = G(p) sinh(A (p + h))dp, (3.57)
: 

y

H (y) = G(p) 
osh(A (p + h))dp. (3.58)
: 

Now, the total solution <](k , y , z ) 
 a n written in the form 

  
Aw]< = A - 
os(wt )F G (y) 
osh(A (y + h))
b2A   

Aw 

+ B + 
os(wt )F H (y) sinh(A (y + h)) 
os(kz z)
b2A   (3.59) 

Aw 

+ C - 
os(wt )F G (y) 
osh(A (y + h))
b2A   

Aw 

+ D + 
os(wt )F H (y) sinh(A (y + h)) sin(kz z) . 

b2A 

In the expression above w e still need to obtain the 
onstants A , B , C and D of the 

homogeneous part of the solution. To do so, we apply the boundary 
onditions (3.39) 
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at y = 0 and (3..0) at y = -h. The boundary 
ondition at y = -h, given by the 

equation (3..0), implies that D = 0( B = 0). The boundary 
ondition at y = 0 gives 

the equation 

(A )tt 

+ gA tanh(A h)A = 

A 

b2 

F 

A 

{
w3 
os(w t ) [ H (0) tanh(A h) -G (0)] 

(3.60) 

+gA w 
os(w t ) [ G (0) tanh(A h) -H (0)]} . 

\e also obtain a similar equation for C . This is a non-homogeneous se
ond order dif-

ferential equation in time for the amplitude A . Its solution is given as the superposition 

of the solution of the homogeneous part of the equation plus a parti
ular solution whi
h 

satisfes the non-homogeneous term in the equation (3.60). The homogeneous solution 

is given as 

] ](A (t))H 

= A 
os(n t) + B sin(n t) (3.61) 

with n2 = gA tanh(A h). \e assume the parti
ular solution given in the form 

] ](A (t))p 

= A(t)p 


os(nt) + B(t)p 

sin(nt). (3.62) 

\e impose that 

d 

{ }
] ](A (t))p 

= n -A(t)p 

sin(nt) + B(t)p 


os(nt) . (3.63)
dt 

If we substitute the form of the parti
ular solution, given by equation (3.62) into the 

governing equation (3.61) and take i n to a

ount the assumed form for 

f (A (t))p 

, given
ft 

by equation (3.63), we obtain for the amplitudes A](t)p 

and B](t)p 

the expressions 

1 1(w, n , h ) 
os[(n - w)t] 
os[(n + w)t]]A(t)p 

= + , (3.6.)
2 n n - w n + w 

1 1(w, n , h ) sin[(n - w)t] sin[(n + w)t]]B(t)p 

= + , (3.65)
2 n n - w n + w 
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where 

A F 

{
1(w, n , h ) = w 

3 [H (0) tanh(A h) -G (0)]
b2 A (3.66) 

+gA w [G (0) tanh(A h) -H (0)]} 

If we substitute these expressions for the amplitudes A](t)p 

and B](t)p 

in the assumed 

form of the parti
ular solution, we obtain 

1(w, n , h )
(A (t))p 

= - 
os(wt ). (3.67) 

w2 - n2 

As a result, we obtain for A (t) the following expression: 

1(w, A, h )] ]A (t) = A 
os(n t) + B sin(n t) - 
os(wt ) (3.68)
(w2 - n2) 

For the amplitude C we obtain the same expression as above for A (t), but with 

the index m instead of the index n. Now the potential fun
tion 
an b e written in the 

form 

1(w, A , h )] ] ]< = A 
os(n t) + B sin(n t) - 
os(wt )
(w2 - n2) 

A F A F 

-
b2 

w 
os(w t )
A 

G (y) 
osh(A (y + h)) + 

b2 

w 
os(w t )
A 

H (y) sinh(A (y + h)) 
os(kz z) 

1(w, A , h )] ]+ C 
os(n t) + D sin(n t) - 
os(wt )
2 - n2(w ) 

A F A F 

- w 
os(wt ) G (y) 
osh(A (y + h)) + w 
os(wt ) H (y) sinh(A (y + h)) sin(kz z) , 

b2 A b2 A 

(3.69) 

] ] ] ]whi
h is a fun
tion of the unknown 
onstants A , B , C and D . To obtain these 

]
onstants we use the initial 
onditions for <(k , y , z, t ) given by equations (3..2) and 

(3..3). \e obtain 
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1(w, A , h ) A wF A wF]A = + G (0) - H (0) tanh(A h), (3.70) 

w2 - n2 b2 A b2 A
 

]
B =0, (3.71) 

1(w, A , h ) A wF A wF]C = + G (0) - H (0) tanh(A h), (3.72) 

w2 - n2 b2 A b2 A
 

]
D =0. (3.73) 

The fnal form of the potential fun
tion <](k , y , z, t ) is g iv en by the equation 

AF w3 
os(n t) - 
os(wt ) 
osh(A h)]< = - + w (
os(n t) - 
os(wt ))
b2 ,2 (w2 - n2 ) 
osh(A h) A2
 

w sinh2(A h) A sinh2(A (y + h))
 

- 
os(n t) 
osh(A (y + h)) + wF 
os(wt ) 
os(kz z)
A2 
osh(A h) b2 A2
 

AF w3 
os(n t) - 
os(wt ) 
osh(A h)


+ - + w (
os(n t) - 
os(wt ))
b2 ,2 2 - n2 A2(w ) 
osh(A h)
 

w sinh2(A h) A sinh2(A (y + h))
 

- 
os(n t) 
osh(A (y + h)) + wF 
os(wt ) sin(kz z). 

A2 
osh(A h) b2 A2
 

(3.7.)
 

\e are interested in the displa
ement of the free-surfa
e r(k , z, t ), whi
h is given 

in terms of the p o t e n tial fun
tion <(k , y , z, t ) a

ording to the equation (3.31). Then 

the 
osine transform of the free-surfa
e displa
ement is given in terms of the Fourier 

transform of the potential a

ording to the equation 

1 �<]
r](k , z, t ) = - (x, 0, z, t ). (3.75) 

g � t 

If we apply this equation to the expression for <](k , y , z, t ) given by equation (3.7.), 

we obtain 
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AF wn 

r](k , z, t ) = (w sin(wt ) - n sin(n t)) 
os(kz z)2 A2 (w2 - n2 )gb 

AF wn 

+ (w sin(wt ) - n sin(n t)) 
os(kz z) . 

gb 

2 A2 (w2 - n2 ) 

(3.76) 

3.2 Fourier Integral Solution. 

Here we apply the inverse 
osine transform to the expression above for the 
osine trans-

form of the free-surfa
e displa
ement. The inverse 
osine transform is given by equation 

(3.36), and we apply it to the equation (3.76) to obtain the free-surfa
e displa
ement 

AF 1 wn 

r(x, z, t) = (w sin(wt ) - n sin(n t)) 
os(kx )dk 
os(kz z)2 A2 (w2 - n2 )gb 2t 0 

AF 1 wn 

+ (w sin(wt ) - n sin(n t)) 
os(kx )dk sin(kz z)2 A2gb 2t 0 

(w2 - n2 ) 

(3.77) 

The integrands in the integrals above apparently have p o l e s i n t h e 
omplex k plane 

for wave numbers solutions of w2 - n2 (k) = 0. As n (k) approa
hes ±w, we have that 

n (k) sin(wt ) approa
hes w sin(wt ) in the same fashion, so there is no singularity in 

the integrand and the integral is well behaved. To obtain the free-surfa
e displa
ement 

we evaluated numeri
ally the inverse 
osine transforms appearing in equation (3.77). 

Results from these simulations were used to generate animations of the evolution of the 

free-surfa
e displa
ement due to the a
tion of the wave maker over the fuid. These 

animations are dis
ussed in the next se
tion. 

3.3 Numeri
al Results. 

Here we s h o w results from the numeri
al evaluation of the inverse 
osine transforms ap-

pearing in the equation (3.77) for the free-surfa
e displa
ement. \e d i s p l a y t h e e v olution 

of the free-surfa
e displa
ement in time through the numeri
al evaluation of equation 

(3.77). \e generated animations for the evolution of the free-surfa
e displa
ement due 
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to the a
tion of the wave maker at x = 0. Here we dis
uss the examples and we give 

links for the movies asso
iated with these examples. 

•	 \e 
onsider that the displa
ement of the wave maker 
oin
ides with the frst 


osine wave mode in the z dire
tion. The ex
itation frequen
y is above the 
ut-

of frequen
y for the frst 
osine wave mode. \ith this type of ex
itation, the 

only wave mode taking part in the solution is the frst 
osine wave mode. Sin
e 

the wave maker starts from rest to the harmoni
 motion, it ex
ites initially all 

wave frequen
ies and generates a transient whi
h propagates along the 
hannel 

and is followed by a nono-
hromati
 wave train (the 
osine wave mode) with 

frequen
y equals to the ex
itation frequen
y. The transient h a s a w ave f r o n t whi
h 

propagates with the maximum group velo
ity possible for this 
osine wave mode. 

For the depth h = 0 .1 meters, fgure 5 illustrates the maximum group velo
ity f o r 

the 
osine wave modes. The maximum group velo
ity possible Cg, ax 

is the group 

;velo
ity of the 
osine wave mode with kz = (n = 0). Then, for a given time 

2: 

instant t, there is no wave disturban
e at positions x > Cg, axt. The transient 

for a given instant t stays in the region Cg, axt > x > C g(w)t, where Cg(w) is the 

group velo
ity of the ex
ited 
osine wave mode at the ex
itation frequen
y w. 

•	 \e 
onsider that the displa
ement of the wave maker 
oin
ides with the se
ond 


osine wave mode in the z dire
tion. The ex
itation frequen
y is above t h e 
ut-of 

frequen
y for the frst 
osine mode but below the 
ut-of frequen
y for the se
ond 


osine mode. Again, the wave maker starts from rest to the harmoni
 motion. 

All wave frequen
ies are ex
ited initially and a transient develops. The transient 

propagates along the 
hannel, and behind it we are left with only the se
ond 
osine 

wave m ode, w hi
h de
ays exponentially as we go away from the wave m aker, sin
e 

at this ex
itation frequen
y the se
ond 
osine wave mode is evanes
ent. Again, 

the transient has a wave front w h i 
 h propagates with the maximum group velo
ity 

possible for the se
ond 
osine wave mode. 

•	 \e 
onsider that the displa
ement of the wave maker 
oin
ides with the frst 
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Figure 5: Group velo
ity as a fun
tion of the wavenumb e r k for various values of the 

eigenvalue kz and water depth h = 0.1 meters. The maximum group velo
ity for the 

frst 
osine wave mode (Cg, ax) is indi
ated in the fgure. Maximum group velo
ity for 

the se
ond 
osine mode also indi
ated in the fgure. 
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osine mode in the z dire
tion. The ex
itation frequen
y is exa
tly at the 
ut-of 

frequen
y. Again, the wave maker starts from rest to the harmoni
 motion, and 

initially all wave frequen
ies are ex
ited. A transient develops and propagates 

along the 
hannel. The transient has a wave front whi
h propagates with the 

maximum group velo
ity possible Cg, ax 

for the frst 
osine wave mode. Behind 

the transient w e are left with the frst 
osine wave mode, sin
e it is the only wave 

mode ex
ited by the wave maker. The group velo
ity of this wave mode at its 


ut-of frequen
y is zero, so there is no energy propagation along the 
hannel after 

the transient part of the solution is already far from the wave maker. Sin
e the 

energy 
annot be radiated away from the wave maker, we see the wave amplitude 

growing with time 
lose to the wave maker. The 
osine wave mode resonates with 

the wave maker in this 
ase. 

•	 Now the wave m a k er is a liner fun
tion in the z dire
tion (F (z) = z). \e show the 

evolution of the disturban
e due to the a
tion of the wave maker. \e 
onsider all 

modes that take part in the solution. \e a
tually 
onsider only a fnite numb e r 

of sine and 
osine wave modes. As the wavenumb e r kz or kz asso
iated with 

a wave mode in
reases, its amplitude de
reases, so only a fnite numb e r of wave 

modes are signif
ant. Again, the wave maker starts from rest to the harmoni
 

motion. \e h a ve initially a transient w h i 
 h propagates along the 
hannel. It has a 

wave front whi
h propagates with the maximum possible group velo
ity, whi
h is 

the maximum group velo
ity for the frst sine wave m o d e . Ahead of the wave front 

(x > Cg, axt for a given instant t, where Cg, ax 

is the maximum group velo
ity 

for the frst sine wave mode) we h a ve n o w aves disturban
e. For a given instant t, 

the transient stays in the region Cg, axt > x > C g(w)t, where Cg(w) is the group 

velo
ity of the frst sine wave mode at the ex
itation frequen
y w. Behind this 

region we have the steady state solution. 
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