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5 Dedekind extensions

In this lecture we prove that the integral closure of a Dedekind domain in a finite extension
of its fraction field is also a Dedekind domain; this implies, in particular, that the ring of
integers of a number field is a Dedekind domain. We then consider the factorization of
prime ideals in Dedekind extensions.

5.1 Dual modules, pairings, and lattices

In this section we work in a more general setting, where A is any commutative (unital) ring.

Definition 5.1. Let A be a commutative ring and M an A-module. The dual module M∨

is the A-module HomA(M,A) with scalar multiplication (af)(m) = af(m), where a ∈ A,
f ∈ HomA(M,A), and m ∈ M . If ϕ : M → N is an A-module homomorphism, the dual
homomorphism ϕ∨ : N∨ →M∨ is defined by ϕ∨(g)(m) = g(ϕ(m)), for g ∈ N∨ and m ∈M .

It is easy to check that taking duals preserves identity maps and is compatible with
composition: if ϕ1 : M → N and ϕ2 : N → P are A-module homomorphisms, then
(ϕ2ϕ1)

∨ = ϕ∨1ϕ
∨
2 . We thus have a contravariant functor from the category of A-modules to

itself. This functor is compatible with (finite) direct sums, (M ⊕N)∨ 'M∨ ⊕N∨.

Lemma 5.2. Let A be a commutative ring. For all A-modules M and N the A-modules
(M ⊕N)∨ and M∨ ⊕N∨ are canonically isomorphic.

Proof. We have inverse A-module homomorphisms ϕ 7→ (m 7→ ϕ(m, 0), n 7→ ϕ(0, n)) and
(φ, ψ) 7→ ((m,n) 7→ φ(m) + ψ(n)).

If A is a field and M is finitely generated, then M is a vector space of finite dimension,
M∨ is its dual space and we have M∨∨ 'M . In general not every A-module is isomorphic
to its double dual; those that are are said to be reflexive.

We have already seen examples of reflexive modules: every invertible fractional ideal is
isomorphic to the dual of its inverse, hence to its double dual, and is thus reflexive.

Proposition 5.3. Let A be an integral domain with fraction field K and let M be a nonzero
A-submodule of K. Then M∨ ' (A : M) := {x ∈ K : xM ⊆ A}; in particular, if M is an
invertible fractional ideal then M∨ 'M−1 and M∨∨ 'M .

Proof. For any x ∈ (A : M) the map m 7→ xm is an A-linear map from M to A, hence an
element of M∨, and this defines an A-module homomorphism ϕ : (A : M)→M∨, since the
map x 7→ (m 7→ xm) is itself A-linear. Since M ⊆ K is a nonzero A-module, it contains
some nonzero a ∈ A (if a/b ∈M , so is ba/b = a). If f ∈M∨ and m = b/c ∈M then

f(m) = f

(
b

c

)
=
ac

ac
f

(
b

c

)
=

b

ac
f
(ac
c

)
=

b

ac
f(a) =

f(a)

a
m,

where we have used the fact that a1f(a2/a3) = a2f(a1/a3) for any a1, a2, a3 ∈ A with
a1/a3, a2/a3 ∈ M , by the A-linearity of f . It follows that f corresponds to multiplication
by x = f(a)/a, which lies in (A : M) since xm = f(m) ∈ A for all m ∈ M . The map
f 7→ f(a)/a defines an A-module homomorphism M∨ → (A : M) inverse to ϕ, so ϕ is an
isomorphism. When M is an invertible fractional ideal we have M∨ ' (A : M) = M−1, by
Lemma 2.20, and M∨∨ ' (M−1)−1 = M follows.
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Example 5.4. As a Z-module, we have Q∨ = {0} because there are no non-trivial Z-linear
homomorphisms from Q to Z; indeed, Q is a divisible group and Z contains no non-trivial
divisible subgroups. It follows that Q∨∨ = {0} (but as Q-modules we have Q ' Q∨ ' Q∨∨).
Similarly, the dual of any finite Z-module (any finite abelian group) is the zero module, as
is the double dual. More generally, if A is an integral domain every dual (and double dual)
A-module must be torsion free, but not all A-modules are torsion free.

One situation where we can recover many of the standard results that hold for vector
spaces of finite dimension (with essentially the same proofs), is when M is a free module of
finite rank. In particular, not only is M reflexive, we have M 'M∨ (non-canonically) and
may explicitly construct a dual basis.

Theorem 5.5. Let A be a commutative ring and let M be a free A-module of rank n. Then
M∨ is also a free A-module of rank n, and each basis (e1, . . . , en) of M uniquely determines
a dual basis (e∨1 , . . . e

∨
n) of M∨ with the property

e∨i (ej) = δij :=

{
1 i = j,

0 i 6= j.

Proof. If n = 0 then M = M∨ = {0} and the theorem holds. Now assume n ≥ 1 and fix an
A-basis e := (e1, . . . , en) for M . For each a := (a1, . . . , an) ∈ An, define fa ∈M∨ by setting
fa(ei) = ai and extending A-linearly. The map a 7→ fa gives an A-module homomorphism
An → M∨ with inverse f 7→ (f(e1), . . . , f(en)) and is therefore an isomorphism. It follows
that M∨ ' An is a free A-module of rank n.

Now let e∨i := fι̂, where ι̂ := (0, . . . , 0, 1, 0, . . . , 0) ∈ An has a 1 in the ith position. Then
e∨ := (e∨1 , . . . , e

∨
n) is a basis for M∨, since (1̂, . . . , n̂) is a basis for An, and e∨i (ej) = δij .

The basis e∨ is uniquely determined by e: it must be the image of (1̂, . . . , n̂) under the
isomorphism a 7→ fa determined by e.

Definition 5.6. Let A be a commutative ring and M an A-module. A (bilinear) pairing
on M is an A-linear map 〈·, ·〉 : M ×M → A. Explicitly, this means that for all u, v, w ∈M
and λ ∈ A we have

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉,
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉,
〈λu, v〉 = 〈u, λv〉 = λ〈u, v〉.

If 〈v, w〉 = 〈w, v〉 then 〈·, ·〉 is symmetric, if 〈v, w〉 = −〈w, v〉 then 〈·, ·〉 is skew-symmetric,
and if 〈v, v〉 = 0 then 〈·, ·〉 is alternating (the last two are equivalent provided char(A) 6= 2).
The pairing 〈·, ·〉 induces an A-module homomorphism

ϕ : M →M∨

m 7→ (n 7→ 〈m,n〉)

If kerϕ = {0} then 〈·, ·〉 is nondegenerate, and if ϕ is an isomorphism then 〈·, ·〉 is perfect.

Every perfect pairing is necessarily nondegenerate. If M is a vector space of finite
dimension the converse holds, but this is not true in general, not even for free modules of
finite rank: consider the pairing 〈x, y〉 := 2xy on Z, which is non-degenerate but not perfect.
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If M is a free A-module with basis (e1, . . . , en) and 〈·, ·〉 is a perfect pairing, we can
apply the inverse of the isomorphism ϕ : M

∼−→ M∨ induced by the pairing to the dual
basis (e∨1 , . . . , e

∨
n) given by Theorem 5.5 to obtain a basis (e′1, . . . , e

′
n) for M that satisfies

〈e′i, ej〉 = δij .

When 〈·, ·〉 is symmetric we can similarly recover (e1, . . . , en) from (e′1, . . . , e
′
n) in the same

way. We record this fact in the following proposition.

Proposition 5.7. Let A be a commutative ring and let M be a free A-module of rank n with
a perfect pairing 〈·, ·〉. For each A-basis (e1, . . . , en) of M there is a unique basis (e′1, . . . , e

′
n)

for M such that 〈e′i, ej〉 = δij.

Proof. Existence follows from the discussion above: apply the inverse of the isomorphism
ϕ : V → V ∨ induced by 〈·, ·〉 to the dual basis (e∨1 , . . . , e

∨
n) given by Theorem 5.5 to obtain

a basis (e′1, . . . , e
′
n) for M with e′i = ϕ−1(e∨i ). We then have e∨i = ϕ(e′i) = m 7→ 〈e′i,m〉 and

〈e′i, ej〉 = ϕ(e′i)(ej) = e∨i (ej) = δij

for 1 ≤ i, j ≤ n. If (f ′1, . . . , f
′
n) is another basis for M with the same property then for

each i we have 〈e′i − f ′i , ej〉 = δij − δij = 0 for every ej , and therefore 〈e′i − f ′i ,m〉 = 0 for
all m ∈M , but then e′i − f ′i ∈ kerϕ = {0}, since the perfect pairing 〈·, ·〉 is nondegenerate,
and therefore f ′i = e′i for each i; uniqueness follows.

Remark 5.8. In what follows the commutative ring A in Proposition 5.7 will typically
be a field K and the free A-module M will be a K-vector space that we will denote V .
We may then use A to denote a subring of K and M to denote an A-submodule of V . A
perfect paring 〈·, ·〉 on the K-vector space V will typically not restrict to a perfect pairing
on the A-module M . For example, the perfect pairing 〈x, y〉 = xy on Q does not restrict
to a perfect pairing on the Z-module 2Z because the induced map ϕ : 2Z→ 2Z∨ defined by
ϕ(m) = (n 7→ mn) is not surjective: the map x 7→ x/2 lies in 2Z∨ = HomZ(2Z,Z) but it is
not in the image of ϕ.

We now introduce the notion of a lattice in a vector space.

Definition 5.9. Let A be an integral domain with fraction field K and let V be a K-vector
space of finite dimension. A (full) A-lattice in V is a finitely generated A-submodule M
of V that spans V as a K-vector space.

Remark 5.10. Some authors require A-lattices to be free A-modules. When A = Z (or any
PID) this is not a restriction because M is necessarily torsion-free (it lies in a vector space)
and any finitely generated torsion-free module over a PID is free (by the structure theorem
for finitely generated modules over a PID). But when A is not a PID, finitely generated
torsion-free A-modules will typically not be free. We do not want to exclude this case! In
particular if L/K is an extension of number fields the ring of integers OL will typically not
be a free OK-module (even though it is a free Z-module, as we shall shortly prove), but we
still want to treat OL as an OK-lattice in L (this will be important in later lectures when
we define the different ideal DL/K).

Definition 5.11. Let A be a noetherian domain with fraction field K, and let V be a
K-vector space of finite dimension with a perfect pairing 〈·, ·〉. If M is an A-lattice in V ,
its dual lattice (with respect to the perfect pairing 〈·, ·〉 on V ) is the A-module

M∗ := {x ∈ V : 〈x,m〉 ∈ A for all m ∈M}.
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It is clear that M∗ is an A-submodule of V , but it is not clear that it is an A-lattice in V
(it must be finitely generated and span V ), nor is it obvious that it is isomorphic to the
dual module M∨. In order to justify the term dual lattice, let us now prove both facts. We
will need to use the hypothesis that A is noetherian, since in general the dual of a finitely
generated A-module need not be finitely generated. Notice that 〈·, ·〉 is a perfect pairing on
the K-module V that need not restrict to a perfect pairing on the A-module M .

Theorem 5.12. Let A be a noetherian domain with fraction field K, let V be a K-vector
space with a perfect pairing 〈·, ·〉, and let M be an A-lattice in V . The dual lattice M∗ is
an A-lattice in V isomorphic to M∨.

Proof. Let e := (e1, . . . , en) be a K-basis for V that lies in M , and let e′ := (e′1, . . . , e
′
n) be

the unique K-basis for V given by Proposition 5.7 that satisfies 〈e′i, ej〉 = δij .
To show that M∗ spans V we write a finite set S of generators for M in terms of the

basis e with coefficients in K and let d be the product of all denominators that appear. We
claim that de′ lies in M∗: for each e′i and generator m ∈ S, if we put m =

∑
jmjej then

〈de′i,m〉 = d〈e′i,
∑

jmjej〉 = d
∑

jmj〈e′i, ej〉 = d
∑

jmjδij = dmi ∈ A,

by our choice of d, and this implies de′i ∈M∗. Thus M∗ contains a basis de′ for V .
We now show M∗ is finitely generated. Let

N := {a1e1 + · · ·+ anen : a1, . . . , an ∈ A} ' An

be the free A-submodule of M spanned by e. The A-module N contains a basis for V
and is finitely generated, so it is an A-lattice in V . The K-basis e′ for V lies in N∗, since
〈e′i, ej〉 = δij ∈ A, and we claim it is an A-basis for N∗. Given x ∈ N∗, if we write
x =

∑
i xie

′
i then 〈x, ei〉 = xi〈e′i, ei〉 = xi lies in A, since x ∈ N∗, so x lies in the A-

span of e′. It follows that N∗ is a free A-module of rank n, and in particular, a finitely
generated module over a noetherian ring and therefore a noetherian module (a module
whose submodules are all finitely generated); see [1, Thm. 16.19]. From the definition of the
dual lattice we have N ⊆ M ⇒ M∗ ⊆ N∗, so M∗ is a submodule of a noetherian module,
hence finitely generated.

We now show M∗ 'M∨. We have an obvious A-module homomorphism ϕ : M∗ →M∨

given by x 7→ (m 7→ 〈x,m〉), and the A-module homomorphism ψ : M∨ → M∗ defined by
f 7→

∑
i f(ei)e

′
i is the inverse of ϕ. Indeed, for any x =

∑
i xie

′
i ∈M∗ we have

ψ(ϕ(x)) =
∑
i

ϕ(x)(ei)e
′
i =

∑
i

〈x, ei〉e′i =
∑
i

∑
j

xj〈e′j , ei〉e′i =
∑
i

xie
′
i = x,

and for any f ∈M∨ and each generator mj =
∑
mjej for M we have

ϕ(ψ(f))(m) = ϕ(
∑

i f(ei)e
′
i)(m) =

∑
i ϕ(f(ei)e

′
i)(m) =

∑
i〈f(ei)e

′
i,
∑

jmjej〉 = f(m),

which implies ϕ(ψ(f)) = f and ϕ−1 = ψ; thus ϕ is an isomorphism from M∗ to M∨.

Corollary 5.13. Let A be a noetherian domain with fraction field K. If M1, M2 are A-
lattices in K-vector spaces V1, V2 with perfect pairings 〈·, ·〉1, 〈·, ·〉2 (resp.), then 〈·, ·〉1+〈·, ·〉2
defines a perfect pairing on V1 ⊕ V2 and (M ⊕N)∗ 'M∗ ⊕N∗.

Proof. This follows from Lemma 5.2 and Theorem 5.12.
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Corollary 5.14. Let A be a noetherian domain with fraction field K, let V be a K-vector
space with a perfect pairing 〈·, ·〉, and let M be a free A-lattice in V with A-basis (e1, . . . , en).
The dual lattice M∗ is a free A-lattice in V that has a unique A-basis (e∗1, . . . , e

∗
n) that

satisfies 〈e∗i , ej〉 = δij.

Proof. This follows from the proof of Theorem 5.12 with N = M and e∗i = e′i.

You might wonder whether M∗∗ = M for an A-lattice M in a vector space V . This
is false in general, but it is true when A is a Dedekind domain and we have a symmetric
perfect pairing on V . To prove this we first show that the dual lattice respects localization.

Lemma 5.15. Let A be a noetherian domain with fraction field K, let V be a K-vector
space of finite dimension with a perfect pairing 〈·, ·〉, let M be an A-lattice in V , and let S
be a multiplicative subset of A. Then S−1M and S−1M∗ are (S−1A)-lattices in V satisfying
(S−1M)∗ = S−1M∗.

Proof. It is clear that S−1M are S−1M∗ are both S−1A-lattices: each contains a basis for
V (since M and M∗ do), and both are finitely generated as S−1A-modules (since M and
M∗ are finitely generated as A-modules).

Let m1, . . .mn be A-module generators for M (and therefore S−1A-module generators
for S−1M). If x is an element of (S−1M)∗ then for each mi we have 〈x,mi〉 = ai/si for
some ai ∈ A and si ∈ S, and if we put s = s1 · · · sn then 〈sx,mi〉 ∈ A for every mi, hence for
all m ∈M ; thus sx ∈M∗ and x ∈ S−1M∗. Conversely, if x = y/s is an element of S−1M∗

with y ∈M∗ and s ∈ S, then 〈y,mi〉 ∈ A for every mi and 〈x,mi〉 = 〈y,mi〉/s ∈ S−1A for
every mi, hence for all m ∈ S−1M , and it follows that x ∈ (S−1M)∗.

Proposition 5.16. Let A be a Dedekind domain with fraction field K, let V be a K-vector
space of finite dimension with a symmetric perfect pairing 〈·, ·〉, and let M be an A-lattice
in V . Then M∗∗ = M .

Proof. By Proposition 2.6, it suffices to show (M∗∗)p = Mp for each maximal ideal p of A.
By Lemma 5.15 we have (M∗∗)p = M∗∗p , so it is enough to show that the proposition holds
when A is replaced by one of its localizations Ap (a DVR, since A is a Dedekind domain).

So let us assume A that is a DVR. Then A is a PID and M and M∗ are both torsion-free
modules over a PID, hence free A-modules. So let us choose an A-basis (e1, . . . , en) for M ,
and let (e∗1, . . . , e

∗
n) be the unique dual A-basis for M∗ that satisfies 〈e∗i , ej〉 = δij (given

by Corollary 5.14). If we now let (e∗∗1 , . . . , e
∗∗
n ) be the unique A-basis for M∗∗ that satisfies

〈e∗∗i , e∗j 〉 = δij and note that 〈ei, e∗j 〉 = δij (since 〈·, ·〉 is symmetric), by uniqueness, we must
have e∗∗i = ei for all i, and therefore M∗∗ = M .

5.2 Extensions of Dedekind domains

Let A be a Dedekind domain with fraction field K, let L/K be a finite extension, and let
B be the integral closure of A in L. We wish to prove that B is a Dedekind domain, which
we will do by showing that it is an A-lattice in L; this will imply, in particular, that B is
finitely generated, which is really the only difficult thing to show. Let us first show that B
spans L as a vector space (and in fact L is its fraction field).

Proposition 5.17. Let A be a Dedekind domain with fraction field K, let L/K be a finite
extension, and let B be the integral closure of A in L. Every element of L can be written
as b/a with a ∈ A and b ∈ B. In particular, B spans L as a K-vector space and L is the
fraction field of B.
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Proof. Let α ∈ L. By multiplying the minimal polynomial of α in K[x] by the product of
the denominators of its coefficients, we obtain a polynomial in A[x]:

g(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with an 6= 0, that has α as a root. We can make this polynomial monic by replacing x with
x/an and multiplying through by an−1n to obtain

an−1n g(x/an) = xn + an−1x
n−1 + anan−2x

n−2 · · ·+ an−2n a1x+ an−1n a0.

This is a monic polynomial with coefficients in A that has anα ∈ L as a root. Therefore
anα ∈ B, since B is the integral closure of A in L, and α = b/an for some b ∈ B and an ∈ A
as claimed. It follows that B generates L as a K-vector space (we have α = b · 1

an
with

1
an
∈ K), and B ⊆ L ⊆ FracB implies L = FracB (no smaller field can contain B).

Proposition 5.18. Let A be a Dedekind domain with fraction field K, let L/K be a finite
extension of fields, and let B be the integral closure of A in L. Then NL/K(b) ∈ A and
TL/K(b) ∈ A for all b ∈ B.

Proof. The minimal polynomial f =
∑d

i=0 aix
i ∈ K[x] of b has coefficients in A, by Propo-

sition 1.28, and it then follows from Proposition 4.51 that NL/K(b) = (−1)deae0 ∈ A and
TL/K(b) = −ead−1 ∈ A (where e = [L : K(b)] ∈ Z).

Definition 5.19. Let B/A be a ring extension with B a free A-module of finite rank. The
trace pairing on B is the map B ×B → A defined by

〈x, y〉B/A := TB/A(xy).

Theorem 5.20. Let L be a commutative K-algebra of finite dimension. The trace pairing
〈·, ·〉L/K is a symmetric bilinear pairing. It is a perfect pairing if and only if L is a finite
étale K-algebra.

Proof. Bilinearity follows from the K-linearity of the trace map TL/K , and symmetry is
immediate. The fact that L is a K-vector space implies that the trace pairing is perfect if
and only if it is nondegenerate.

If L is not reduced then the proposition holds, since it is not étale (by Theorem 4.40),
and the trace pairing is degenerate: for any nonzero nilpotent x the map y 7→ TL/K(xy)
must be the zero map, since every xy is also nilpotent and the trace of any nilpotent element
z is zero (the matrix of the multiplication-by-z map is nilpotent, so its trace is zero).

We now assume L is reduced, hence semisimple (by Lemma 4.42) and thus a product
of fields. It suffices to consider the case that L is a field, since the trace pairing on a
product of field extensions is nondegenerate if and only if the trace pairing on each factor is
nondegenerate, and a product of field extensions is ètale if and only if each factor is ètale.

As proved on Problem Set 2, TL/K is the zero map if and only if the field extension
L/K is inseparable. If TL/K is the zero map then the trace pairing is clearly degenerate,
and otherwise we may pick z ∈ L for which TL/K(z) 6= 0. Then for every x ∈ L× we have
〈x, z/x〉L/K = TL/K(z) 6= 0, so x 7→ 〈x, y〉L/K is not the zero map, and it follows that the
trace pairing is nondegenerate.

Remark 5.21. Theorem 5.20 gives another equivalent definition of a finite étale K-algebra
in addition to the six listed in Theorem 4.40: a finite étale K-algebra is a commutative
K-algebra of finite dimension for which the trace pairing is a perfect pairing.
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We now assume that L/K is separable. For the next several lectures we will be working
in the following setting: A is a Dedekind domain with fraction field K, the extension L/K
is finite separable, and B is the integral closure of A in L (which we will shortly prove is a
Dedekind domain). As a convenient shorthand, we will write “assume AKLB” to indicate
that we are using this setup.

Proposition 5.22. Assume AKLB. Then B is an A-lattice in L, and in particular, B is
finitely generated as an A-module.

Proof. By Proposition 5.17, B spans L as a K-vector space, so it contains a basis (e1, . . . , en)
for L as a K-vector space. Let M ⊆ B be the A-span of (e1, . . . , en). Then M is an A-lattice
in L contained in B, and it has a dual lattice M∗ that contains the A-module

B∗ := {x ∈ L : 〈x, b〉L/K ∈ A for all b ∈ B}.

Proposition 5.18 implies that B ⊆ B∗, and we thus have inclusions

M ⊆ B ⊆ B∗ ⊆M∗.

By Theorem 5.12, M∗ is an A-lattice in L, hence finitely generated, hence noetherian. It
follows that its A-submodule B is finitely generated and thus an A-lattice in L.

Remark 5.23. When L/K is inseparable, B need not be finitely generated as an A-module,
not even when A is a PID; see [2, Ex. 11, p. 205]. We used the separability hypothesis in
order to get a perfect pairing, which plays a crucial role in the proof of Theorem 5.12.

Lemma 5.24. Let B/A be an extension of domains with B integral over A, and let q0 ( q1
be primes of B. Then q0 ∩A ( q1 ∩A and dimA ≥ dimB.

Proof. We first replace B with B/q0 and replace A, q0, and q1 with their images in B/q0
(the new B is integral over the new A, since the image of a monic polynomial in A[x] is a
monic polynomial in (A/(q0 ∩ A))[x]). Then q0 = (0) and q1 is a nonzero prime ideal. Let
α ∈ q1 be nonzero. Its minimal polynomial xn+an−1x

n−1 + · · ·+a0 over K has coefficients
in A (since α ∈ q1 ⊆ B is integral over A), with a0 6= 0 (otherwise divide by x). We have
a0 = −a1α − · · · − αn ∈ q1, thus 0 6= a0 ∈ q1 ∩ A. So q1 ∩ A is not the zero ideal and
therefore properly contains q0 ∩A = {0}. We can apply this result repeatedly to any chain
of distinct prime ideals in B to get a corresponding chain of distinct prime ideals in A. It
follows that dimA ≥ dimB.

Theorem 5.25. Let A be a Dedekind domain with fraction field K, let L/K be a finite
separable extension, and let B be the integral closure of A in L. Then B is a Dedekind
domain.

Proof. Recall that we defined a Dedekind domain as an integrally closed noetherian domain
of dimension at most one. Let us verify that each of these conditions holds:

• B is an integrally closed domain (by definition);
• B is finitely generated over the noetherian ring A (by Prop. 5.22), hence noetherian;
• B has dimension at most 1, since dimB ≤ dimA ≤ 1, by Lemma 5.24.

Thus B is a Dedekind domain.

Remark 5.26. Theorem 5.25 holds without the assumption that L/K is separable. This
follows from the Krull-Akizuki Theorem, see [4, Thm. 11.7] or [3, §VII.2.5], which is used
to prove that B is noetherian even when it is not finitely generated as an A-module.

Corollary 5.27. The ring of integers of a number field is a Dedekind domain.
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5.3 Splitting primes in Dedekind extensions

We continue in the AKLB setup, in which A is a Dedekind domain, K is its fraction field,
L/K is a finite separable1 extension, and B is the integral closure of A, which we now know
is a Dedekind domain with fraction field L. As we proved in earlier lectures, every nonzero
ideal in a Dedekind domain can be uniquely factored into prime ideals. Understanding the
ideal structure of a Dedekind domain thus boils down to understanding its prime ideals. In
order to simplify the language, whenever we have a Dedekind domain A, by a prime of A
(or of its fraction field K), we always mean a nonzero prime ideal of A.

If A has dimension zero then so does B, in which case there are no primes to consider,
so we may as well assume dimA = 1, in which case dimB = 1 as well (if B is a field then
so is B ∩K = A). Henceforth our AKLB setup will include the assumption that A 6= K.

Given a prime p of A, we can consider the ideal pB it generates in B (its extension to B
under the inclusion map). The ideal pB need not be prime, but it can be uniquely factored
into nonzero prime ideals in the Dedekind domain B. We thus have

pB =
∏
q

qeq ,

where q ranges over primes of B and the exponents eq ≥ 0 are zero for all but finitely many
primes q. The primes q for which eq > 0 are said to lie over or above the prime ideal p.
As an abuse of notation, we will often write q|p to indicate this relationship (there is little
risk of confusion, the prime ideal p is maximal hence not divisible by any prime ideals of A
other than itself).

Lemma 5.28. Let A be a ring of dimension one contained in a Dedekind domain B. Let p
be a prime of A and let q be a prime of B. Then q|p if and only if q ∩A = p.

Proof. If q divides pB then it contains pB (to divide is to contain), and therefore q ∩ A
contains pB ∩ A which contains p; the ideal p is maximal and q ∩ A 6= A (since 1 6∈ q), so
q ∩ A = p. Conversely, if q ∩ A = p then q = qB certainly contains (q ∩ A)B = pB, and B
is a Dedekind domain, so q divides pB (in a Dedekind domain to contain is to divide).

Lemma 5.28 implies that contraction gives us a surjective map SpecB → SpecA defined
by q 7→ q ∩ A; to see why it is surjective, note that (0) ∩ A = (0), and if p is a nonzero
element of SpecA then pB is nonzero and not the unit ideal, and therefore divisible by at
least one q ∈ SpecB. The fibers of this map are finite; we use {q|p} to denote the fiber
above a prime p of A.

The primes p of A are all maximal ideals (since dimA = 1), so each has an associated
residue field A/p, and similarly for primes q of B. If q lies above p then we may regard
the residue field B/q as a field extension of A/p: the kernel of the map A ↪→ B → B/q is
p = A∩ q, and the induced map A/p = A/(q∩A)→ B/q is a ring homomorphism of fields,
hence injective.

Definition 5.29. Assume AKLB, and let p be a prime of A. The exponent eq in the
factorization pB =

∏
q|p q

eq is the ramification index of q, and the degree fq = [B/q : A/p]

1Most of our proofs will not actually use the separability hypothesis (and even when they do, there may
be another way to prove the same result, as with Theorem 5.25). In order to simplify the presentation we
will use the separability assumption whenever it would be awkward not to. The cases we are most interested
in (extensions of local and global fields) are going to be separable in any event.
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of the corresponding residue field extension is the residue degree (or inertia degree) of q. In
situations where more than one extension of Dedekind domains is under consideration, we
may write eq/p for eq and fq/p for fq.

Lemma 5.30. Let A be a Dedekind domain with fraction field K, let M/L/K be a tower
of finite separable extension, and let B and C be the integral closures of A in L and M
respectively. Then C is the integral closure of B in M , and if r is a prime of M lying above
a prime q of L lying above a prime p of K then er/p = er/qeq/p and fr/p = fr/qfq/p.

Proof. It follows from Proposition 1.20 that the integral closure of B in M lies in C, and it
contains C, since A ⊆ B. We thus have a tower of Dedekind extensions C/B/A. If r|q|p then
the factorization of pC in C refines the factorization of pB in B, so er/p = er/qeq/p, and the
residue field embedding A/p ↪→ C/r factors as A/p ↪→ B/q ↪→ C/r, so fr/p = fr/qfq/p.

Example 5.31. Let A := Z, with K := FracA = Q, and let L := Q(i) with [L : K] = 2.
The prime (5) factors in B = Z[i] into two distinct prime ideals:

5Z[i] = (2 + i)(2− i).

The prime (2 + i) has ramification index e(2+i) = 1, and e(2−i) = 1 as well. The residue
field Z/(5) is isomorphic to the finite field F5, and we also have Z[i]/(2 + i) ' F5 (this
can be determined by counting the Z[i]-lattice points in a fundamental parallelogram of the
sublattice (2 + i) in Z[i]), so f(2+i) = 1; we similarly have f(2−i) = 1.

The prime (7) remains prime in B = Z[i]; its prime factorization is simply

7Z[i] = (7),

where the (7) on the RHS denotes a principal ideal in B (this is clear from context). The
ramification index of (7) is thus e(7) = 1, but its residue field degree is f(7) = 2, because
Z/(7) ' F7, but Z[i]/(7) ' F49 has dimension 2 has an F7-vector space.

The prime (2) factors as
(2) = (1 + i)2,

since (1 + i)2 = (1 + 2i− 1) = (2i) = (2) (note that i is a unit). You might be thinking that
(2) = (1 + i)(1− i) factors into distinct primes, but note that (1 + i) = −i(1 + i) = (1− i).
Thus e(1+i) = 2, and f(1+i) = 1 because Z/(2) ' F2 ' Z[i]/(1 + i).

Let us now compute the sum
∑

q|p eqfq for each of the primes p we factored above:∑
q|(2)

eqfq = e(1+i)f(1+i) = 2 · 1 = 2,

∑
q|(5)

eqfq = e(2+i)f(2+i) + e(2−i)f(2−i) = 1 · 1 + 1 · 1 = 2,

∑
q|(7)

eqfq = e(7)f(7) = 2 · 1 = 2.

In all three cases we obtain 2 = [Q(i) : Q]; as we shall shortly prove, this is not an accident.

Example 5.32. Let A := R[x], with K := FracA = R(x), and let L := R(
√
x3 + 3x).

The integral closure of A in L is the Dedekind domain B = R[x, y]/(y2 − x3 − 3x). Then
[L : K] = 2.
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The prime (x− 1) factors in B into two distinct prime ideals:

(x− 1) = (x− 1, y − 2)(x− 1, y + 2) (since y2 − 4 = x3 + 3x− 4 ∈ (x− 1)).

We thus have e(x−1,y−2) = 1, and f(x−1,y−2) = [B/(x− 1, y − 2) : A/(x− 1)] = [R : R] = 1.
Similarly, e(x−1,y+2) = 1 and f(x−1,y+2) = 1.

The prime (x + 1) remains prime in B (because y2 = −1 has no solutions in R), thus
e(x+1) = 1, and f(x+1) = [B/(x+ 1) : A/(x+ 1)] ' [C : R] = 2.

The prime (x) factors in B as
(x) = (x, y)2,

and we have e(x,y) = 2 and f(x,y) = 1.
As in the previous example,

∑
q|p eqfq = [L : K] in every case:∑

q|(x−1)

eqfq = e(x−1,y−2)f(x−1,y+2) + e(x−1,y+2)f(x−1,y+2) = 1 · 1 + 1 · 1 = 2,

∑
q|(x+1)

eqfq = e(x+1)f(x+1) = 1 · 2 = 2.

∑
q|(x)

eqfq = e(x,y)f(x,y) = 2 · 1 = 2,

Before proving that
∑

q|p eqfq = [L : K] always holds, let us consider the quotient ring
B/pB. The ring B/pB is typically not a field, so it is not a field extension of A/p, but it
is an A/p-algebra. This follows from the fact that B contains A and pB contains p: given
ā ∈ A/p and x̄ ∈ B/pB, if we choose lifts a ∈ A of ā and x ∈ B of x̄ then āx̄ = ax ∈ B/pB
is the reduction of ax ∈ b and does not depend on the choice of a and x since any other
choices would be congruent modulo pB.

Lemma 5.33. Assume AKLB and let p be a prime of A. The dimension of B/pB as an
A/p-vector space is equal to the dimension of L as a K-vector space.

Proof. Let Ap := S−1A and Bp := S−1B be localizations of A and B (as A-modules), where
S = A−p. Then Ap/pAp = S−1A/(pS−1A) ' A/p and Bp/pBp ' S−1B/(pS−1B) ' B/pB.
It follows that if the lemma is true when A is a DVR then it is true in general, so we may
assume that A is a DVR, and in particular, a PID.

By Proposition 5.22, B is finitely generated as an A module, and as an integral domain
containing A, it must be torsion free. It follows from the structure theorem for finitely
generated modules over a PID that B is free of finite rank over A. By Proposition 5.17, B
spans L as a K-vector space, so any A-basis for B is a K-basis for L. It follows that B has
rank n := [L : K] as a free A-module, that is, B ' An. We then have pB ' pAn = (pA)n,
so B/pB ' An/(pA)n ' (A/p)n is a free A/p-module of dimension n.

Example 5.34. Let A = Z, B = Z[i], and consider p = (2). We have pB = 2Z[i] = (1+ i)2,
and B/pB = Z[i]/2Z[i] = Z[i]/(1 + i)2 is an F2-algebra of dimension 2 = [Q(i) : Q]. It
contains a nonzero nilpotent (the image of i+ 1), so it is not a finite étale F2-algebra. It is
a ring of cardinality 4 and characteristic 2 isomorphic to F2[x]/(x2).

Theorem 5.35. Assume AKLB. For each prime p of A we have∑
q|p

eqfq = [L : K].
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Proof. We have

B/pB '
∏
q|p

B/qeq

Applying the previous proposition gives

[L : K] = [B/pB : A/p]

=
∑
q|p

[B/qeq : A/p]

=
∑
q|p

eq[B/q : A/p]

=
∑
q|p

eqfq.

The second equality comes from the Chinese Remainder Theorem, and the third uses the
fact that B/qeq has dimension eq as a B/q-vector space. Indeed, we have

qeq = {x ∈ B : vq(x) ≥ eq},

and if π ∈ q is a uniformizer for Bq (a generator qBq that we can force to lie in q by clearing
denominators), the images of (π0, π1, . . . , πeq−1) in B/qeq are a B/q-basis for B/qeq .

For each prime p of A, let gp := #{q|p} denote the cardinality of the fiber above p.

Corollary 5.36. Assume AKLB and let p be a prime of A. Then gp is an integer in the
interval [1, n], where n = [L : K], as are eq and fq for each q|p.

We now define some standard terminology that we may use in the AKLB setting to
describe how a prime p of K splits in L (that is, for a nonzero prime ideal p of A, how the
ideal pB factors into nonzero prime ideals q of B).

Definition 5.37. Assume AKLB, let p be a prime of A.

• L/K is totally ramified at q if eq = [L : K] (equivalently, fq = 1 = gp = 1).

• L/K is unramified at q if eq = 1 and B/q is a separable extension of A/p.

• L/K is unramified above p if it is unramified at all q|p, equivalently, if B/pB is a finite
étale algebra over A/p.

When L/K is unramified above p we say that

• p remains inert in L if q = pB is prime (equivalently, eq = gp = 1, and fq = [L : K]).

• p splits completely in L if gp = [L : K] (equivalently, eq = fq = 1 for all q|p).

In Example 5.34 above for the extension Q(i)/Q, the prime p = (2) is ramified and the
quotient ring B/pB is not an étale A/p algebra, even though the residue field A/p ' F2 is
a perfect field (note that B/pB is not a field). But when A/p is a finite field (or any perfect
field), for any prime q|p the residue field B/q is necessarily a finite étale (A/p)-algebra, since
it must be a separable field extension, and in this case q is unramified whenever eq = 1.
This applies to our primary case of interest, where L/K is an extension of global fields.
However, we will occasionally want to consider Dedekind domains A whose residue fields
need not be perfect, in which case eq = 1 does not imply that q is unramified.
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