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26 The idele group, profinite groups, infinite Galois theory

26.1 The idele group

Let K be a global field. Having introduced the ring of adeles AK in the previous lecture, it
is natural to ask about its unit group

A×K = {(av) ∈ AK : av ∈ K×v for all v ∈MK , and av ∈ O×v for almost all v ∈MK}.

Here O×v := K×v ∩Ov is the unit group of the valuation ring of Kv when v is nonarchimedean
and isomorphic to R× or C× when v is archimedean. As noted in Lecture 25, the definition
of AK does not actually depend on our choice of Ov at the finitely many archimedean places
of K, but the choice we made ensures that every O×v is a topological group.

However, as a subspace of AK , the unit group A×K is not a topological group. Indeed,
the inversion map a 7→ a−1 is not continuous.

Example 26.1. Consider K = Q and for each prime p let a(p) = (1, . . . , 1, p, 1, . . .) ∈ AQ
be the adele with a(p)p = p and a(p)q = 1 for q 6= p. Every basic open set U about 1 in AQ
has the form

U =
∏
v∈S

Uv ×
∏
V 6∈S
Ov,

with S ⊆ MQ finite and 1v ∈ Uv, and it is clear that U contains a(p) for all sufficiently
large p. It follows that limp→∞ a(p) = 1 in the topology of AQ. But notice that U does
not contain a(p)−1 for any sufficiently large p, so limp→∞ a(p)−1 6= 1−1 in AQ. Thus the
function a→ a−1 is not continuous in the subspace topology for A×K .

This problem is not specific to rings of adeles. For a topological ring R there is in
general no reason to expect its unit group R× ⊆ R to be a topological group in the subspace
topology. One notable exception is when R is a subring of a topological field (the definition
of which requires inversion to be continuous), as is the case for the unit group O×K ; this
explains why we have not encountered this problem before now. But the ring of adeles is
not naturally contained in any topological field (note that it is not an integral domain).

There is a standard solution to this problem: give the group R× the weakest topology
that makes it a topological group. This is done by embedding R× in R×R via the map

φ : R× → R×R
r 7→ (r, r−1).

We now declare φ to be a homeomorphism; that is, we endow R× with the topology matching
the subspace topology of φ(R×) ⊂ R×R. The inversion map r 7→ r−1 is continuous in this
topology because it is equal to composition of φ with the projection map R×R→ R onto
its second coordinate, both of which are continuous maps.

We now consider this construction in the case of A×K . The implied topology on A×K has
a basis of open sets of the form

U ′ =
∏
v∈S

Uv ×
∏
v 6∈S
O×v

where Uv ⊆ K×v and S ⊆ MK is finite. To see this, note that in terms of the embedding
φ : A×K → AK × AK defined above, each φ(a) = (a, a−1) lies in a product U × V of basic
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open sets U, V ⊆ AK , and this forces both a and a−1 to lie in Ov, hence in O×v , for almost
all v. The open sets U ′ are precisely the open sets in the restricted product

∐∏
(K×v ,O×v ).

This leads to the following definition.

Definition 26.2. Let K be a global field. The idele group of K is the topological group

IK :=
∐∏

v
(K×v ,O×v )

with multiplication defined component-wise, which we view as the subgroup A×K of AK
endowed with the restricted product topology rather than the subspace topology. The
canonical embedding K ↪→ AK restricts to a canonical embedding K× ↪→ IK , and we define
the idele class group CK := IK/K×, a topological group.

Remark 26.3. In the literature one finds the notations IK and A×K used interchangeably;
they both denote the idele group defined above. But in this lecture we will temporarily use
the notation A×K to denote the unit group of the ring AK in the subspace topology (which
is not a topological group).

Example 26.4. Let us again consider the sequence (a(p)) defined in Example 26.1. This
sequence lies in A×Q and converges to 1 ∈ A×Q under the subspace topology. But this
sequence does not converge to 1 in the topology of IQ. Indeed, consider the basic open
set

∏
vO×v =

∏
p Z×p × R× of IQ. None of the a(p) = (1, . . . , 1, p, 1, . . .) lie in this open

neighborhood of 1, so the sequence (a(p)) cannot converge to 1 in IQ (which means it
cannot converge at all: if it converged to x 6= 1 in IQ it would converge to x 6= 1 in
A×Q ⊆ AQ, which we know is not the case). The counterexample to the continuity of the

inversion map x 7→ x−1 in A×Q is removed in IQ by adding more open sets to the topology;
this makes it easier for maps to be continuous and harder for sequences to converge.

We now define a surjective homomorphism

IK → IK
a 7→

∏
pvp(a)

where the product ranges over primes p of K and vp(a) := vp(av), where v is the equivalence
class of the p-adic absolute value ‖ ‖p. The composition

K× ↪→ IK � IK

has image PK , the subgroup of principal fractional ideals; we thus have a surjective homo-
morphism of the idele class group CK = IK/K× onto the ideal class group ClK = IK/PK
and a commutative diagram of exact sequences:

1 K× IK CK 1

1 PK IK ClK 1

←→ ←→

←�

←→

←�

←→

←�

←→ ←→ ←→ ←→

Proposition 26.5. Let K be a global field. The idele group IK is a locally compact group.

Proof. It is clear that IK is Hausdorff, since its topology is finer than the topology of
A×K ⊆ AK , which is Hausdorff by Proposition 25.9. For each nonarchimedean place v, the
set O×v = {x ∈ K×v : ‖x‖v = 1} is a closed subset of the compact set Ov, hence compact.
This applies to almost all v ∈ MK , and the K×v are all locally compact, so the restricted
product

∐∏
(K×v ,O×v ) = IK is locally compact, by Proposition 25.6.
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Proposition 26.6. Let K be a global field. Then K× is a discrete subgroup of IK .

Proof. We have K× ↪→ K × K ⊆ AK × AK . By Theorem 25.12, K is a discrete subset
of AK , and it follows that K × K is a discrete subset of AK × AK . The image of K× in
AK ×AK lies in the image of A×K ↪→ AK ×AK and in the discrete image of K ↪→ AK ×AK ,
and it follows that K× is discrete in A×K and therefore in IK , since having a finer topology
only makes it easier for a set to be discrete.

We proved last time that K is a discrete cocompact subgroup of AK , so it is natural to
ask whether K× is a cocompact in A×K or IK . The answer is no, K× is not a cocompact
subgroup of IK , thus the idele class group CK , while locally compact, is not compact.

Recall that for a number field K, the unit group O×K is not a cocompact subgroup of
K×R because Log(O×K) is not a (full) lattice in Rr+s ' Log(K×R ); it lies in the trace zero
hyperplane Rr+s0 (see Proposition 15.11). In order to get a cocompact subgroup we need to
restrict IK to a subgroup that corresponds to the trace zero hyperplane.

We have a continuous homomorphism of topological groups

‖ ‖ : IK → R×>0

a 7→ ‖a‖

where ‖a‖ :=
∏
v ‖a‖v is the adelic norm defined in the previous lecture. We have ‖a‖ > 0

for a ∈ IK , since av ∈ O×v for almost all v: this implies that ‖a‖v = 1 for almost all v and
the product

∏
v ‖a‖v is effectively a finite product, and it is nonzero because av ∈ K×v is

nonzero for all v ∈MK .

Definition 26.7. Let K be a global field. The group of 1-ideles is the topological group

I1K := ker ‖ ‖ = {a ∈ IK : ‖a‖ = 1},

which we note contains K×, by the product formula (Theorem 13.21).

A useful feature of the group of 1-ideles is that, unlike the group of ideles, its topology
is the same as the subspace topology it inherits from AK .

Lemma 26.8. The group of 1-ideles I1K is a closed subset of AK and IK , and the two
subspace topologies on I1K coincide.

Proof. We first show that I1K is closed in AK , and therefore also in IK , since it has a finer
topology. Consider any x ∈ AK− I1K . We will construct an open neighborhood Ux of x that
is disjoint from I1K . The union of the Ux is then the open complement of the closed set I1K .
For each ε > 0, finite S ⊆MK , and x ∈ AK we define

Uε(x, S) := {u ∈ AK : ‖u− x‖v < ε for v ∈ S and ‖u‖v ≤ 1 for v 6∈ S},

which is a basic open set of AK (a product of open sets Uv for v ∈ S and Ov for v 6∈ S).
The case ‖x‖ < 1. Let S be a finite set containing the archimedean places v ∈ MK

and all v for which ‖x‖v > 1, such that
∏
v∈S ‖x‖v < 1: such an S exists since ‖x‖ < 1 and

‖x‖v ≤ 1 for almost all v. For all sufficiently small ε > 0 the set Ux := Uε(x, S) is an open
neighborhood of x disjoint from I1K because every y ∈ Ux must satisfy ‖y‖ < 1.

The case ‖x‖ > 1. Let B be twice the product of all the ‖x‖v greater than 1. Let S
be the finite set containing the archimedean places v ∈ MK , all nonarchimedean v with
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residue field cardinality less than 2B, and all v for which ‖x‖v > 1. For all sufficiently small
ε > 0 the set Ux := Uε(x, S) is an open neighborhood of x disjoint from I1K because for
every y ∈ Ux, either ‖y‖v = 1 for all v 6∈ S, in which case ‖y‖ > 1, or ‖y‖v < 1 for some
v 6∈ S, in which case ‖y‖v < 1/(2B) and ‖y‖ < 1.

This proves that I1K is closed in AK , and therefore also in IK . To prove that the subspace
topologies coincide, it suffices to show that for every x ∈ I1K and open U ⊆ IK containing x
there exists open sets V ⊆ IK and W ⊆ AK such that x ∈ V ⊆ U and V ∩I1K = W ∩I1K ; this
implies that every neighborhood basis in the subspace topology of I1K ⊆ IK is a neighborhood
basis in the subspace topology of I1K ⊆ AK (the latter is a priori coarser than the former).

So consider any x ∈ I1K and open neighborhood U ⊆ IK of x. Then U contains a basic
open set

V = {u ∈ AK : ‖u− x‖v < ε for v ∈ S and ‖u‖v = 1 for v 6∈ S},
for some ε > 0 and finite S ⊆MK (take S = {v ∈MK : ‖x‖ 6= 1} and ε > 0 small enough).
If we now put W := Uε(x, S) then x ∈ V ⊆ U and V ∩ I1K = W ∩ I1K as desired.

Theorem 26.9. For any global field K, the group K× is a discrete cocompact subgroup of
the group of 1-ideles I1K .

Proof. By Proposition 26.6, K× is discrete in IK , and therefore discrete in the subspace I1K .
As in the proof of Theorem 25.12, to prove that K× is cocompact in I1K it suffices to

exhibit a compact set W ⊆ AK for which W ∩ I1K surjects onto I1K/K× under the quotient
map (here we are using Lemma 26.8: I1K is closed so W ∩ I1K is compact).

To construct W we first choose a ∈ AK such that ‖a‖ > BK , where BK is the Blichfeldt-
Minkowski constant in Lemma 25.14, and let

W := L(a) = {x ∈ AK : ‖x‖v ≤ ‖a‖v for all v ∈MK}.

Now consider any u ∈ I1K . We have ‖u‖ = 1, so ‖ au‖ = ‖a‖ > BK , and by Lemma 25.14
there is a z ∈ K× for which ‖z‖v ≤

∥∥ a
u

∥∥
v

for all v ∈ MK . Therefore zu ∈ W . Thus every
u ∈ I1K can be written as u = z−1 · zu with z−1 ∈ K× and zu ∈ W ∩ I1K . Thus W ∩ I1K
surjects onto I1K/K× under the quotient map I1K → I1K/K×, which is continuous, and it
follows that I1K/K× is compact.

Definition 26.10. For a global field K the compact group C1
K := I1K/K× is the norm-1

idele class group.

Remark 26.11. When K is a function field the norm-1 idele class group C1
K is totally

disconnected, in addition to being a compact group, and thus a profinite group.

26.2 Profinite groups

In order to state the main theorems of class field theory in our adelic/idelic setup, rather
than considering each finite abelian extension L of a global field K individually, we prefer
to work in Kab, the compositum of all finite abelian extensions of K. This requires us to
understand the infinite Galois group Gal(Kab/K), which is an example of a profinite group.

Definition 26.12. A profinite group is a topological group that is an inverse limit of finite
groups with the discrete topology. Given any topological group G, we can construct a
profinite group by taking the profinite completion

Ĝ := lim←−
N

G/N ⊆
∏
N

G/N
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where N ranges over finite index open normal subgroups, ordered by containment.1 If we
are given a group G without a specified topology, we can make it a topological group by
giving it the profinite topology. This is the weakest topology that makes every finite quotient
discrete and is obtained by taking all cosets of finite-index normal subgroups as a basis.

The profinite completion of G is (by construction) a profinite group, and it comes
equipped with a natural homomorphism φ : G→ Ĝ that sends each g ∈ G to the sequence
of its images (gN ) in the discrete finite quotients G/N , which we may view as an element of∏
N G/N . The homomorphism φ is not necessarily injective; this occurs if and only if the

intersection of all finite-index open normal subgroups of G is the trivial group (such a G is
said to be residually finite), but we always have the following universal property for inverse
limits. For every continuous homomorphism ϕ : G → H with H a profinite group, there is
a unique continuous homomorphism that makes the following diagram commute

G Ĝ

H

←→φ

←

→ϕ

←→ ∃!

There is much one can say about profinite groups but we shall limit ourselves to a few
remarks and statements of the main results we need, deferring most of the proofs to Problem
Set 11. See [4] for a comprehensive treatment of profinite groups.

Remark 26.13. Taking inverse limits in the category of topological groups is the same thing
as taking the inverse limits in the categories of topological spaces and groups independently:
the topology is the subspace topology in the product, and the group operation is the group
operation in the product (defined component-wise). This might seem obvious, but the same
statement does not apply to direct limits, where one must compute the limit in the category
of topological groups, otherwise the group operation in the direct limit of the groups is not
necessarily continuous under the direct limit topology; see [5].2

Remark 26.14. The profinite completion of G as a topological group is not necessarily the
same thing as the profinite completion of G as a group if we forget its topology; this depends
on whether the original topology on G contains the profinite topology or not. In particular,
a profinite group need not equal to its profinite completion as a group; the group Gal(Q/Q)
endowed with the Krull topology is an example (see below). Profinite groups that are
isomorphic to their profinite completions as groups are said to be strongly complete; this is
equivalent to requiring every finite index subgroup to be open (see Corollary 26.19 below). It
is known that if G is finitely generated as a topological group (meaning it contains a finitely
generated dense subgroup), then G is strongly complete [3]. This applies, for example, to
Gal(F̄q/Fq) for any finite field Fq, since the q-power Frobenius automorphism generates a
dense subgroup (it is thus a topological generator).

Remark 26.15. For suitable restricted types of finite groups C (for example, all finite cyclic
groups, or all finite p-groups for some fixed prime p), one can similarly define the notion of
a pro-C group and the pro-C completion of a group by constraining the finite groups in the
inverse system to lie in C. One can also define profinite rings or pro-C rings.

1Recall that an inverse system has objects Xi and morphisms Xi ← Xj for i ≤ j. Here we have objects
G/Ni and morphisms G/Ni ← G/Nj for i ≤ j; we want the indices ordered so that i ≤ j whenever Ni

contains Nj ; containment induces a canonical morphism g +Ni ←[ g +Nj on the quotients.
2For countable direct systems of locally compact groups this issue does not arise [5, Thm. 2.7].
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Example 26.16. Here are a few examples of profinite completions:

1. The profinite completion of any finite group G is isomorphic to G with the discrete
topology; the natural map G→ Ĝ is an isomorphism.

2. The profinite completion of Z is Ẑ := lim←−n Z/nZ =
∏

Zp, where the indices n are

ordered by divisibility; the natural map Z→ Ẑ is injective but not surjective.

3. The profinite completion of Q is trivial because Q has no finite index subgroups other
than itself. The natural map Q→ Q̂ = {1} is surjective but not injective.

Lemma 26.17. Let G be a topological group with profinite completion Ĝ. The image of G
under the natural map φ : G→ Ĝ is dense in Ĝ.

Proof. See Problem Set 11.

We now give a topological characterization of profinite groups that can serve as an
alternative definition.

Theorem 26.18. A topological group is profinite if and only if it is a totally disconnected
compact group.

Proof. See Problem Set 11.

Corollary 26.19. Let G be a profinite group. Then G is naturally isomorphic to its profinite
completion. In fact,

G ' lim←−G/U,

where U ranges over open normal subgroups (ordered by containment).
However, G is isomorphic to its profinite completion as a group (in other words, strongly

complete) if and only if every finite index subgroup of G is open.

Proof. See Problem Set 11 for the first statement. For the second statement, if every finite
index subgroup of G is open then every finite-index normal subgroup is open, meaning
that the topology on G is finer than the profinite topology, and we get the same profinite
completion under both topologies.

Conversely, if G has a finite index subgroup H that is not open, then no subgroup
of H is open (since H is the union of the cosets of any of its subgroups); in particular, the
intersection of all the conjugates of H, which is a normal subgroup N , is not open in G, nor
are any of its subgroups. If the topological group G is isomorphic to its profinite completion
Ĝ as a group, then by the universal property of the profinite completion the natural map
φ : G → Ĝ is an isomorphism, but the image of N under φ is an open subgroup of Ĝ by
construction, which is a contradiction.

26.3 Infinite Galois theory

The key issue that arises when studying Galois groups of infinite algebraic extensions (as
opposed to finite ones) is that the Galois correspondence (the inclusion reversing bijection
between subgroups and subextensions) fails spectacularly. As you proved on Problem Set 5
in the case Gal(Fq/Fq) ' Ẑ '

∏
p Zp, this happens for a simple reason: there are too many

subgroups. For a more extreme example, the absolute Galois group of Q has uncountably
many subgroups of index 2 (all of which are necessarily normal) but Q has only countably
many quadratic extensions, see [2, Aside 7.27].
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Thus not all subgroups of an infinite Galois group Gal(L/K) correspond to subextensions
of L/K. We are going to put a topology on Gal(L/K) that distinguishes those that do.

Lemma 26.20. Let L/K be a Galois extension with Galois group G = Gal(L/K), If F/K
is a normal subextension of L/K, then H = Gal(L/F ) is a normal subgroup of G with fixed
field F , and we have an exact sequence

1→ Gal(L/F )→ Gal(L/K)→ Gal(F/K)→ 1,

where the first map is inclusion, the second map is induced by restriction, and we have

G/H ' Gal(F/K).

This lemma is a list of things we already know to be true for finite Galois extensions,
the point is simply to verify that they also hold for infinite Galois extensions; this seems
prudent given the aforementioned failure of the Galois correspondence.

Proof. If F/K is a normal subextension of L/K then the restriction map σ 7→ σ|F defines a
homomorphism Gal(L/K)→ Gal(F/K) whose kernel is a normal subgroup H = Gal(L/F ).
The fixed field ofH contains F by definition, and it must be equal to F : if we had α ∈ LH−F
we could construct an element of H that sends α to a distinct root α′ 6= α of its minimal
polynomial f over F (this defines an element of Gal(E/F ), where E is the splitting field
of f , which can be extended to Gal(L/F ) = H by embedding L in an algebraic closure and
applying Theorem 4.9). The restriction map is surjective because any σ ∈ Gal(F/K) can
be extended to Gal(L/K), by Theorem 4.9, thus the sequence in the lemma is exact, and
G/H ' Gal(F/K) follows.

Unlike the situation for finite Galois extensions, it can happen that a normal subgroup H
of Gal(L/K) with fixed field F is not equal to Gal(L/F ); it must be contained in Gal(L/F ),
but it could be a proper subgroup. This is exactly what happens for all but a countable
number of the uncountably many index 2 subgroups H of G = Gal(Q/Q); the fixed field of
H is Q but H ( G is not the Galois group of Q/Q, nor is the the Galois group of Q/K for
any subextension K/Q. It is thus necessary to distinguish the subgroups of Gal(L/K) that
are actually Galois groups of a subextension. This is achieved by putting an appropriate
topology on the Galois group.

Definition 26.21. Let L/K be a Galois extension with Galois group G := Gal(L/K). The
Krull topology on G has the basis consisting of all cosets of subgroups HF := Gal(L/F ),
where F ranges over finite normal extensions of K in L.

Under the Krull topology every open normal subgroup necessarily has finite index, but
it is typically not the case that every normal subgroup of finite index is open. Thus the
Krull topology on Gal(L/K) is strictly coarser than the profinite topology, in general (this
holds for Gal(Q/Q), for example). However, the topological group we obtain by putting
the Krull topology on Gal(L/K) is a profinite group.

Theorem 26.22. Let L/K be a Galois extension. Under the Krull topology, the restriction
maps induce a natural isomorphism of topological groups

φ : Gal(L/K)→ lim←−Gal(F/K),

where F ranges over finite Galois extensions of K in L. In particular, Gal(L/K) is a
profinite group whose open normal subgroups are precisely those of the form Gal(L/F ) for
some finite normal extension F/K.
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Proof. Every α ∈ L is algebraic over K, hence lies in some finite normal subextension F/K
(take the normal closure of K(α)). Every automorphism in Gal(L/K) is thus uniquely
determined by its restrictions to finite normal F/K, which implies that φ is injective. Given
an element (σF ) ∈ lim←−Gal(F/K), we can define an automorphism σ ∈ Gal(L/K) by simply
putting σ(α) = σF (α), where F is the normal closure of K(α) (the fact that this actually
gives an automorphism is guaranteed by the inverse system of restriction maps used to
define lim←−Gal(F/K)). Thus φ is surjective.

By Lemma 26.20, if we put G := Gal(L/K) and HF := Gal(L/F ), then we can view φ
as the natural map

φ : G→ lim←−G/HF ,

which is continuous, and we have shown it is a bijection. To prove that φ is an isomorphism
of topological groups it remains only to show that it is an open map. For this it suffices to
show that φ maps open subgroups H ⊆ G to open sets in lim←−G/HF , since every open set
in G is a union of cosets of open subgroups. If H = Gal(L/F ) then

φ(H) = {(σE) : σE |E∩F
= id|E∩F

} = π−1F (id|F ),

where E/K ranges over finite normal subextensions of L/K and πF is the projection map
from the inverse limit to Gal(F/K). The singleton set {id|F } is open in the discrete group
Gal(E/F ), so its inverse image under the continuous projection πF is open in G.

The last statement follows from Corollary 26.19 and Lemma 26.20.

Theorem 26.23 (Fundamental theorem of Galois theory). Let L/K be a Galois extension
and let G := Gal(L/K) be endowed with the Krull topology. The maps F 7→ Gal(L/F )
and H 7→ LH define an inclusion reversing bijection between subextensions F/K of L/K
and closed subgroups H of G. Under this correspondence, subextensions of finite degree n
correspond to subgroups of finite index n, and normal subextensions F/K correspond to
normal subgroups H ⊆ G such that Gal(F/K) ' G/H as topological groups.

Proof. We first note that every open subgroup of G is closed, since it is the complement
of the union of its non-trivial cosets, all of which are open, and closed subgroups of finite
index are open by the same argument.

The correspondence between finite Galois subextensions F/K and finite index closed
normal subgroups H then follows the previous theorem, and we have [F : K] = [G : H]
because G/H ' Gal(F/K), by Lemma 26.20.

If F/K is any finite subextension with normal closure E, then H = Gal(L/F ) contains
the normal subgroup N = Gal(L/E) with finite index. The subgroup N is open and
therefore closed, thus H is closed since it is a finite union of cosets of N . The fixed field
of H is F (by the same argument as in the proof of Lemma 26.20), thus finite subextensions
correspond to closed subgroups of finite index. Conversely, every closed subgroup H of
finite index has a fixed field F of finite degree, since the intersection of its conjugates is
a normal closed subgroup N = Gal(L/E) of finite index whose fixed field E contains F
and has finite degree. The degrees and indices match because [G : N ] = [G : H][H : N ]
and [E : K] = [F : K][E : F ]; by the previous argument for finite normal subextensions,
[E : K] = [G : N ] and [E : F ] = [H : N ] (for the second equality, replace L/K with L/F
and G with H).

Any subextension F/K is the union of its finite subextensions E/K. The intersection
of the corresponding closed finite index subgroups Gal(L/E) is equal to Gal(L/F ), which
is therefore closed. Conversely, every closed subgroup H of G is an intersection of basic
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closed subgroups, all of which have the form Gal(L/E) for some finite subextension E/K,
thus H = Gal(L/F ), where F is the union of the E.

The isomorphism Gal(F/K) ' G/H for normal subextensions/subgroups follows di-
rectly from Lemma 26.20.

Corollary 26.24. Let L/K be a Galois extension and let H be a subgroup of Gal(L/K)
with fixed field F . The closure H of H in the Krull topology is Gal(L/F ).

Proof. The Galois group Gal(L/F ) contains H, since it contains every σ ∈ Gal(L/K) that
fixes F (by definition), and Gal(L/F ) is a closed subgroup of Gal(L/K) with LGal(L/F ) = F ,
by Theorem 26.23. We thus have H ⊆ H ⊆ Gal(L/F ) with the same fixed field F . The last
two groups are closed and therefore equal under the bijection given by Theorem 26.23.

We conclude this section with the following theorem due to Waterhouse [6].

Theorem 26.25 (Waterhouse 1973). Every profinite group G is isomorphic to the Galois
group of some Galois extension L/K.

Proof sketch. Let X be the disjoint union of the finite discrete quotients of G equipped with
the G-action induced by multiplication. Now let k be any field and define L = k(X) as a
purely transcendental extension of k with indeterminates for each element of X. We can
view each σ ∈ G as an automorphism of L that fixes k and sends each x ∈ X to σ(x), and
since G acts faithfully on X, we can view G as a subgroup of Autk(L). Now let K = LG.
Then L/K is a Galois extension with G ' Gal(L/K), by [6, Thm. 1].

Remark 26.26. Although this proof lets us choose any field k we like, we have no way to
control K. In particular, it is not known whether every profinite group G is isomorphic to
a Galois group over K = Q; indeed, this is not even known for all finite groups G.
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