25 The ring of adeles, strong approximation

25.1 Introduction to adelic rings

Recall that we have a canonical injection
that embeds \mathbb{Z} into the product of its nonarchimedean completions. Each of the rings \mathbb{Z}_{p} is compact, hence $\hat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p}$ is compact (by Tychonoff's theorem). If we consider the analogous product $\prod_{p} \mathbb{Q}_{p}$ of the completions of \mathbb{Q}, each of the local fields \mathbb{Q}_{p} is locally compact (as is $\mathbb{Q}_{\infty}=\mathbb{R}$), but the product $\prod_{p} \mathbb{Q}_{p}$ is not locally compact.

To see where the problem arises, recall that for any family of topological spaces $\left(X_{i}\right)_{i \in I}$ (where the index set I is any set), the product topology on $X:=\prod X_{i}$ is defined as the weakest topology that makes all the projection maps $\pi_{i}: X \rightarrow X_{i}$ continuous; it is thus generated by open sets of the form $\pi_{i}^{-1}\left(U_{i}\right)$ with $U_{i} \subseteq X_{i}$ open. Every open set in X is a (possibly empty or infinite) union of open sets of the form

$$
\prod_{i \in S} U_{i} \times \prod_{i \notin S} X_{i}
$$

with $S \subseteq I$ finite and each $U_{i} \subseteq X_{i}$ open (these sets form a basis for the topology on X). In particular, every open $U \subseteq X$ satisfies $\pi_{i}(U)=X_{i}$ for all but finitely many $i \in I$. Unless all but finitely many of the X_{i} are compact, the space X cannot possibly be locally compact for the simple reason that no compact set C in X contains a nonempty open set (if it did then we would have $\pi_{i}(C)=X_{i}$ compact for all but finitely many $i \in I$). Recall that to be locally compact means that for every $x \in X$ there is an open U and compact C such that $x \in U \subseteq C$.

To address this issue we want to take the product of the fields \mathbb{Q}_{p} (or more generally, the completions of any global field) in a different way, one that yields a locally compact topological ring. This is the motivation of the restricted product, a topological construction that was invented primarily for the purpose of solving this number-theoretic problem.

25.2 Restricted products

This section is purely about the topology of restricted products; readers already familiar with restricted products should feel free to skip to the next section.

Definition 25.1. Let $\left(X_{i}\right)$ be a family of topological spaces indexed by $i \in I$, and let $\left(U_{i}\right)$ be a family of open sets $U_{i} \subseteq X_{i}$. The restricted product $\prod\left(X_{i}, U_{i}\right)$ is the topological space

$$
\coprod\left(X_{i}, U_{i}\right):=\left\{\left(x_{i}\right): x_{i} \in U_{i} \text { for almost all } i \in I\right\} \subseteq \prod X_{i}
$$

with the basis of open sets

$$
\mathcal{B}:=\left\{\prod V_{i}: V_{i} \subseteq X_{i} \text { is open for all } i \in I \text { and } V_{i}=U_{i} \text { for almost all } i \in I\right\}
$$

where almost all means all but finitely many.

For each $i \in I$ we have a projection map $\pi_{i}: \prod\left(X_{i}, U_{i}\right) \rightarrow X_{i}$ defined by $\left(x_{i}\right) \mapsto x_{i}$; each π_{i} is continuous, since if W_{i} is an open subset of X_{i}, then $\pi_{i}^{-1}\left(W_{i}\right)$ is the union of all basic open sets $\prod V_{i} \in \mathcal{B}$ with $V_{i}=W_{i}$, which is an open set.

As sets, we always have

$$
\prod U_{i} \subseteq \prod\left(X_{i}, U_{i}\right) \subseteq \prod X_{i},
$$

but in general the restricted product topology on $\prod\left(X_{i}, U_{i}\right)$ is not the same as the subspace topology it inherits from $\prod X_{i}$; it has more open sets. For example, $\prod U_{i}$ is an open set in $\square\left(X_{i}, U_{i}\right)$, but unless $U_{i}=X_{i}$ for almost all i (in which case $\left.\prod\left(X_{i}, U_{i}\right)=\prod X_{i}\right)$, it is not open in $\prod X_{i}$, and it is not open in the subspace topology on $\prod\left(X_{i}, U_{i}\right)$ because it does not contain the intersection of $\prod\left(X_{i}, U_{i}\right)$ with any basic open set in $\prod X_{i}$.

Thus the restricted product is a strict generalization of the direct product; the two coincide if and only if $U_{i}=X_{i}$ for almost all i. This is automatically true whenever the index set I is finite, so only infinite restricted products are of independent interest.
Remark 25.2. The restricted product does not depend on any particular U_{i}. Indeed,

$$
\coprod\left(X_{i}, U_{i}\right)=\rrbracket\left(X_{i}, U_{i}^{\prime}\right)
$$

whenever $U_{i}^{\prime}=U_{i}$ for almost all i; note that the two restricted products are not merely isomorphic, they are identical, both as sets and as topological spaces. It is thus enough to specify the U_{i} for all but finitely many $i \in I$.

Each $x \in X:=\prod\left(X_{i}, U_{i}\right)$ determines a (possibly empty) finite set

$$
S(x):=\left\{i \in I: x_{i} \notin U_{i}\right\} .
$$

Given any finite $S \subseteq I$, let us define

$$
X_{S}:=\{x \in X: S(x) \subseteq S\}=\prod_{i \in S} X_{i} \times \prod_{i \notin S} U_{i} .
$$

Notice that $X_{S} \in \mathcal{B}$ is an open set, and we can view it as a topological space in two ways, both as a subspace of X or as a direct product of certain X_{i} and U_{i}. Restricting the basis \mathcal{B} for X to a basis for the subspace X_{S} yields

$$
\mathcal{B}_{S}:=\left\{\prod V_{i}: V_{i} \subseteq \pi_{i}\left(X_{S}\right) \text { is open and } V_{i}=U_{i}=\pi_{i}\left(X_{S}\right) \text { for almost all } i \in I\right\}
$$

which is the standard basis for the product topology, so the two topologies on X_{S} coincide.
We have $X_{S} \subseteq X_{T}$ whenever $S \subseteq T$, thus if we partially order the finite subsets $S \subseteq I$ by inclusion, the family of topological spaces $\left\{X_{S}: S \subseteq I\right.$ finite $\}$ with inclusion maps $\left\{i_{S T}: X_{S} \hookrightarrow X_{T} \mid S \subseteq T\right\}$ forms a direct system, and we have a corresponding direct limit

$$
\underset{S}{\lim } X_{S}:=\coprod X_{S} / \sim,
$$

which is the quotient of the coproduct space (disjoint union) $\amalg X_{S}$ by the equivalence relation $x \sim i_{S T}(x)$ for all $x \in S \subseteq T .{ }^{1}$ This direct limit is canonically isomorphic to the restricted product X, which gives us another way to define the restricted product; before proving this let us recall the general definition of a direct limit of topological spaces.

[^0]Definition 25.3. A direct system (or inductive system) in a category is a family of objects $\left\{X_{i}: i \in I\right\}$ indexed by a directed set I (see Definition 8.7) and a family of morphisms $\left\{f_{i j}: X_{i} \rightarrow X_{j}: i \leq j\right\}$ such that each $f_{i i}$ is the identity and $f_{i k}=f_{j k} \circ f_{i j}$ for all $i \leq j \leq k$.

Definition 25.4. Let $\left(X_{i}, f_{i j}\right)$ be a direct system of topological spaces. The direct limit (or inductive limit) of $\left(X_{i}, f_{i j}\right)$ is the quotient space

$$
X=\underset{\longrightarrow}{\lim } X_{i}:=\coprod_{i \in I} X_{i} / \sim,
$$

where $x_{i} \sim f_{i j}\left(x_{i}\right)$ for all $i \leq j$. It is equipped with continuous maps $\phi_{i}: X_{i} \rightarrow X$ that are compositions of the inclusion maps $X_{i} \hookrightarrow \amalg X_{i}$ and quotient maps $\amalg X_{i} \rightarrow \amalg X_{i} / \sim$ and satisfy $\phi_{i}=\phi_{j} \circ f_{i j}$ for $i \leq j$.

The topological space $X=\underset{\longrightarrow}{\lim } X_{i}$ has the universal property that if Y is another topological space with continuous maps $\psi_{i}: X_{i} \rightarrow Y$ that satisfy $\psi_{i}=\psi_{j} \circ f_{i j}$ for $i \leq j$, then there is a unique continuous map $X \rightarrow Y$ for which all of the diagrams

commute (this universal property defines the direct limit in any category with coproducts).
We now prove that that $\Pi\left(X_{i}, U_{i}\right) \simeq \xrightarrow{\lim } X_{S}$ as claimed above.
Proposition 25.5. Let $\left(X_{i}\right)$ be a family of topological spaces indexed by $i \in I$, let $\left(U_{i}\right)$ be a family of open sets $U_{i} \subseteq X_{i}$, and let $X:=\Pi\left(X_{i}, U_{i}\right)$ be the corresponding restricted product. For each finite $S \subseteq I$ define

$$
X_{S}:=\prod_{i \in S} X_{i} \times \prod_{i \notin S} U_{i} \subseteq X
$$

and inclusion maps $i_{S T}: X_{S} \hookrightarrow X_{T}$, and let $\xrightarrow{\lim } X_{S}$ be the corresponding direct limit.
There is a canonical homeomorphism of topological spaces

$$
\varphi: X \xrightarrow{\sim} \xrightarrow{\lim } X_{S}
$$

that sends $x \in X$ to the equivalence class of $x \in X_{S(x)} \subseteq \amalg X_{S}$ in $\underset{\longrightarrow}{\lim } X_{S}:=\coprod X_{S} / \sim$, where $S(x):=\left\{i \in I: x_{i} \notin U_{i}\right\}$.

Proof. To prove that the map $\varphi: X \rightarrow \underline{\lim X_{S}}$ is a homeomorphism, we need to show that it is (1) a bijection, (2) continuous, and $\overrightarrow{(3)}$ an open map.
(1) For each equivalence class $\mathcal{C} \in \underset{\longrightarrow}{\lim } X_{S}:=\coprod X_{S} / \sim$, let $S(\mathcal{C})$ be the intersection of all the sets S for which \mathcal{C} contains an element of $\amalg X_{S}$ in X_{S}. Then $S(x)=S(\mathcal{C})$ for all $x \in \mathcal{C}$, and \mathcal{C} contains a unique element for which $x \in X_{S(x)} \subseteq \amalg X_{S}$ (distinct $x, y \in X_{S}$ cannot be equivalent). Thus φ is a bijection.
(2) Let U be an open set in $\lim X_{S}=\amalg X_{S} / \sim$. The inverse image V of U in $\amalg X_{S}$ is open, as are the inverse images \vec{V}_{S} of V under the canonical injections $\iota: X_{S} \hookrightarrow \amalg X_{S}$. The union of the V_{S} in X is equal to $\varphi^{-1}(U)$ and is an open set in X; thus φ is continuous.
(3) Let U be an open set in X. Since the X_{S} form an open cover of X, we can cover U with open sets $U_{S}:=U \cap X_{S}$, and then $\amalg U_{S}$ is an open set in $\coprod X_{S}$. Moreover, for each $x \in \amalg U_{S}$, if $y \sim x$ for some $y \in \amalg X_{S}$ then y and x must correspond to the same element in U; in particular, $y \in \amalg U_{S}$, so $\amalg U_{S}$ is a union of equivalence classes in $\coprod X_{S}$. It follows that its image in $\xrightarrow{\lim } X_{S}=\amalg X_{S} / \sim$ is open.

Proposition 25.5 gives us another way to construct the restricted product $\Pi\left(X_{i}, U_{i}\right)$: rather than defining it as a subset of $\prod X_{i}$ with a modified topology, we can instead construct it as a limit of direct products that are subspaces of ΠX_{i}.

We now specialize to the case of interest, where we are forming a restricted product using a family $\left(X_{i}\right)_{i \in I}$ of locally compact spaces and a family of open subsets $\left(U_{i}\right)$ that are almost all compact. Under these conditions the restricted product $\Pi\left(X_{i}, U_{i}\right)$ is locally compact, even though the product ΠX_{i} is not unless the index set I is finite.

Proposition 25.6. Let $\left(X_{i}\right)_{i \in I}$ be a family of locally compact topological spaces and let $\left(U_{i}\right)_{i \in I}$ be a corresponding family of open subsets $U_{i} \subseteq X_{i}$ almost all of which are compact. Then the restricted product $X:=\rrbracket\left(X_{i}, U_{i}\right)$ is locally compact.

Proof. We first note that for each finite set $S \subseteq I$ the topological space

$$
X_{S}:=\prod_{i \in S} X_{i} \times \prod_{i \notin S} U_{i}
$$

can be viewed as a finite product of locally compact spaces, since all but finitely many U_{i} are compact, and the product of these is compact (by Tychonoff's theorem), hence locally compact. A finite product of locally compact spaces is locally compact, since we can construct compact neighborhoods as products of compact neighborhoods in each factor (in a finite product, products of open sets are open and products of compact sets are compact); thus the X_{S} are locally compact, and they cover X (since each $x \in X$ lies in $X_{S(x)}$). It follows that X is locally compact, since each $x \in X_{S}$ has a compact neighborhood $x \in U \subseteq C \subseteq X_{S}$ that is also a compact neighborhood in X (the image of C under the inclusion map $X_{S} \rightarrow X$ is certainly compact, and U is open in X because X_{S} is open in X).

25.3 The ring of adeles

Recall that for a global field K (a finite extension of \mathbb{Q} or $\mathbb{F}_{q}(t)$), we use M_{K} to denote the set of places of K (equivalence classes of absolute values), and for any $v \in M_{K}$ we use K_{v} to denote the corresponding local field (the completion of K with respect to v). When v is nonarchimedean we use \mathcal{O}_{v} to denote the valuation ring of K_{v}, and for archimedean v we define $\mathcal{O}_{v}:=K_{v} .{ }^{2}$

Definition 25.7. Let K be a global field. The adele ring ${ }^{3}$ of K is the restricted product

$$
\mathbb{A}_{K}:=\prod\left(K_{v}, \mathcal{O}_{v}\right)_{v \in M_{K}},
$$

which we may view as a subset (but not a subspace!) of $\prod_{v} K_{v}$; indeed

$$
\mathbb{A}_{K}=\left\{\left(a_{v}\right) \in \prod K_{v}: a_{v} \in \mathcal{O}_{v} \text { for almost all } v\right\} .
$$

[^1]For each $a \in \mathbb{A}_{K}$ we use a_{v} to denote its projection in K_{v}; we make \mathbb{A}_{K} a ring by defining addition and multiplication component-wise.

For each finite set of places S we have the subring of S-adeles

$$
\mathbb{A}_{K, S}:=\prod_{v \in S} K_{v} \times \prod_{v \notin S} \mathcal{O}_{v}
$$

which is a direct product of topological rings. By Proposition $25.5, \mathbb{A}_{K} \simeq \underset{\rightarrow}{\lim } \mathbb{A}_{K, S}$ is the direct limit of the S-adele rings, which makes it clear that \mathbb{A}_{K} is also a topological ring. ${ }^{4}$

The canonical embeddings $K \hookrightarrow K_{v}$ induce a canonical embedding

$$
\begin{aligned}
K & \hookrightarrow \mathbb{A}_{K} \\
x & \mapsto(x, x, x, \ldots)
\end{aligned}
$$

Note that for each $x \in K$ we have $x \in \mathcal{O}_{v}$ for all but finitely many v. The image of K in \mathbb{A}_{K} is the subring of principal adeles (which of course is also a field).

We extend the normalized absolute value $\left\|\|_{v}\right.$ of K_{v} (see Definition 13.17) to \mathbb{A}_{K} via

$$
\|a\|_{v}:=\left\|a_{v}\right\|_{v}
$$

and define the adelic absolute value (or adelic norm)

$$
\|a\|:=\prod_{v \in M_{K}}\|a\|_{v} \in \mathbb{R}_{\geq 0}
$$

which we note converges to zero unless $\|a\|_{v}=1$ for all but finitely many v, in which case it is effectively a finite product. ${ }^{5}$ For $\|a\| \neq 0$ this is equal to the size of the $M_{K^{-}}$divisor $\left(\|a\|_{v}\right)$ we defined in Lecture 15 (see Definition 15.1). For any nonzero principal adele a, we have $a \in K^{\times}$and $\|a\|=1$, by the product formula (Theorem 13.21).

Example 25.8. For $K=\mathbb{Q}$ the adele ring $\mathbb{A}_{\mathbb{Q}}$ is the union of the rings

$$
\mathbb{R} \times \prod_{p \in S} \mathbb{Q}_{p} \times \prod_{p \notin S} \mathbb{Z}_{p}
$$

where S varies over finite sets of primes (but note that the topology is the restricted product topology, not the subspace topology in $\left.\prod_{p \leq \infty} \mathbb{Q}_{p}\right)$. We can also write $\mathbb{A}_{\mathbb{Q}}$ as

$$
\mathbb{A}_{\mathbb{Q}}=\left\{a \in \prod_{p \leq \infty} \mathbb{Q}_{p}:\|a\|_{p} \leq 1 \text { for almost all } p\right\}
$$

Proposition 25.9. The adele ring \mathbb{A}_{K} of a global field K is locally compact and Hausdorff.
Proof. Local compactness follows from Proposition 25.6, since the local fields K_{v} are all locally compact and all but finitely many \mathcal{O}_{v} are valuation rings of a nonarchimedean local field, hence compact $\left(\mathcal{O}_{v}=\left\{x \in K_{v}:\|x\|_{v} \leq 1\right\}\right.$ is a closed ball). The product space $\prod_{v} K_{v}$ is Hausdorff, since each K_{v} is Hausdorff, and the topology on $\mathbb{A}_{K} \subseteq \prod K_{v}$ is finer than the subspace topology, so \mathbb{A}_{K} is also Hausdorff.

[^2]Proposition 25.9 implies that the additive group of \mathbb{A}_{K} (which is sometimes denoted \mathbb{A}_{K}^{+}to emphasize that we are viewing it as a group rather than a ring) is a locally compact group, and therefore has a Haar measure that is unique up to scaling, by Theorem 13.14. Each of the completions K_{v} is a local field with a Haar measure μ_{v}, which we normalize as follows:

- $\mu_{v}\left(\mathcal{O}_{v}\right)=1$ for all nonarchimedean v;
- $\mu_{v}(S)=\mu_{\mathbb{R}}(S)$ for $K_{v} \simeq \mathbb{R}$, where $\mu_{\mathbb{R}}(S)$ is the Lebesgue measure on \mathbb{R};
- $\mu_{v}(S)=2 \mu_{\mathbb{C}}(S)$ for $K_{v} \simeq \mathbb{C}$, where $\mu_{\mathbb{C}}(S)$ is the Lebesgue measure on $\mathbb{C} \simeq \mathbb{R} \times \mathbb{R}$.

Note that the normalization of μ_{v} at the archimedean places is consistent with the measure μ on $K_{\mathbb{R}} \simeq \mathbb{R}^{r} \times \mathbb{C}^{s} \simeq \mathbb{R}^{n}$ induced by the canonical inner product on $K_{\mathbb{R}} \subseteq K_{\mathbb{C}}$ that we defined in Lecture 14 (see §14.2).

We now define a measure μ on \mathbb{A}_{K} as follows. We take as a basis for the σ-algebra of measurable sets all sets of the form $\prod_{v} B_{v}$, where each B_{v} is a measurable set in K_{v} with $\mu_{v}\left(B_{v}\right)<\infty$ such that $B_{v}=\mathcal{O}_{v}$ for almost all v (the σ-algebra is then generated by taking countable intersections, unions, and complements in \mathbb{A}_{K}). We then define

$$
\mu\left(\prod_{v} B_{v}\right):=\prod_{v} \mu_{v}\left(B_{v}\right)
$$

It is easy to verify that μ is a Radon measure, and it is clearly translation invariant since each of the Haar measures μ_{v} is translation invariant and addition is defined componentwise; note that for any $x \in \mathbb{A}_{K}$ and measurable set $B=\prod_{v} B_{v}$ the set $x+B=\prod_{v}\left(x_{v}+B_{v}\right)$ is also measurable, since $x_{v}+B_{v}=\mathcal{O}_{v}$ whenever $x_{v} \in \mathcal{O}_{v}$ and $B_{v}=\mathcal{O}_{v}$, and this applies to almost all v. It follows from uniqueness of the Haar measure (up to scaling) that μ is a Haar measure on \mathbb{A}_{K} which we henceforth adopt as our normalized Haar measure on \mathbb{A}_{K}.

We now want to understand the behavior of the adele ring \mathbb{A}_{K} under base change. Note that the canonical embedding $K \hookrightarrow \mathbb{A}_{K}$ makes \mathbb{A}_{K} a K-vector space, and if L / K is any finite separable extension of K (also a K-vector space), we may consider the tensor product

$$
\mathbb{A}_{K} \otimes_{K} L
$$

which is also an L-vector space. As a topological K-vector space, the topology on $\mathbb{A}_{K} \otimes L$ is just the product topology on $[L: K]$ copies of of \mathbb{A}_{K} (this applies whenever we take a tensor product of topological vector spaces, one of which has finite dimension).

Proposition 25.10. Let L be a finite separable extension of a global field K. There is a natural isomorphism of topological rings

$$
\mathbb{A}_{L} \simeq \mathbb{A}_{K} \otimes_{K} L
$$

that makes the following diagram commute

Proof. On the RHS the tensor product $\mathbb{A}_{K} \otimes_{K} L$ is isomorphic to the restricted product

$$
\prod_{v \in M_{K}}\left(K_{v} \otimes_{K} L, \mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}\right)
$$

Explicitly, each element of $\mathbb{A}_{K} \otimes_{K} L$ is a finite sum of elements of the form $\left(a_{v}\right) \otimes x$, where $\left(a_{v}\right) \in \mathbb{A}_{K}$ and $x \in L$, and there is a natural isomorphism of topological rings

$$
\begin{aligned}
\mathbb{A}_{K} \otimes_{K} L & \xrightarrow{\sim} \prod_{v \in M_{K}}\left(K_{v} \otimes_{K} L, \mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}\right) \\
\left(a_{v}\right) \otimes x & \mapsto\left(a_{v} \otimes x\right)
\end{aligned}
$$

Here we are using the general fact that tensor products commute with direct limits (restricted direct products can be viewed as direct limits via Proposition 25.5). ${ }^{6}$

On the LHS we have $\mathbb{A}_{L}:=\prod_{w \in M_{L}}\left(L_{w}, \mathcal{O}_{w}\right)$. But note that $K_{v} \otimes_{K} L \simeq \prod_{w \mid v} L_{w}$, by Theorem 11.23 and $\mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \simeq \prod_{w \mid v} \mathcal{O}_{w}$, by Corollary 11.26. These isomorphisms preserve both the algebraic and the topological structures of both sides, and it follows that

$$
\mathbb{A}_{K} \otimes_{K} L \simeq \coprod_{v \in M_{K}}\left(K_{v} \otimes_{K} L, \mathcal{O}_{v} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}\right) \simeq \coprod_{w \in M_{L}}\left(L_{w}, \mathcal{O}_{w}\right)=\mathbb{A}_{L}
$$

is an isomorphism of topological rings. The image of $x \in L$ in $\mathbb{A}_{K} \otimes_{K} L$ via the canonical embedding of L into $\mathbb{A}_{K} \otimes_{K} L$ is $1 \otimes x=(1,1,1, \ldots) \otimes x$, whose image $(x, x, x, \ldots) \in \mathbb{A}_{L}$ is equal to the image of $x \in L$ under the canonical embedding of L into its adele ring \mathbb{A}_{L}.

Corollary 25.11. Let L be a finite separable extension of a global field K of degree n. There is a natural isomorphism of topological K-vector spaces (and locally compact groups)

$$
\mathbb{A}_{L} \simeq \mathbb{A}_{K} \oplus \cdots \oplus \mathbb{A}_{K}
$$

that identifies \mathbb{A}_{K} with the direct sum of n copies of \mathbb{A}_{K}, and this isomorphism restricts to an isomorphism $L \simeq K \oplus \cdots \oplus K$ of the principal adeles of \mathbb{A}_{L} with the n-fold direct sum of the principal adeles of \mathbb{A}_{K}.

Theorem 25.12. For each global field L the principal adeles $L \subseteq \mathbb{A}_{L}$ form a discrete cocompact subgroup of the additive group of the adele ring \mathbb{A}_{L}.

Proof. Let K be the rational subfield of L (so $K=\mathbb{Q}$ or $K=\mathbb{F}_{q}(t)$). It follows from Corollary 25.11 that if the theorem holds for K then it holds for L, so we will prove the theorem for K. Let us identify K with its image in \mathbb{A}_{K} (the principal adeles).

To show that the topological group K is discrete in the locally compact group \mathbb{A}_{K}, it suffices to show that 0 is an isolated point. Consider the open set

$$
U=\left\{a \in \mathbb{A}_{K}:\|a\|_{\infty}<1 \text { and }\|a\|_{v} \leq 1 \text { for all } v<\infty\right\}
$$

where ∞ denotes the unique infinite place of K (either the real place of \mathbb{Q} or the place corresponding to the nonarchimedean valuation $v_{\infty}(f / g)=\operatorname{deg} g-\operatorname{deg} f$ of $\left.\mathbb{F}_{q}(t)\right)$. The product formula (Theorem 13.21) implies $\|a\|=1$ for all $a \in K^{\times} \subseteq \mathbb{A}_{K}$, so $U \cap K=\{0\}$.

To prove that the quotient \mathbb{A}_{K} / K is compact, we consider the set

$$
W:=\left\{a \in \mathbb{A}_{K}:\|a\|_{v} \leq 1 \text { for all } v\right\} .
$$

[^3]If we let $U_{\infty}:=\left\{x \in K_{\infty}:\|x\|_{\infty} \leq 1\right\}$, then

$$
W=U_{\infty} \times \prod_{v<\infty} \mathcal{O}_{v} \subseteq \mathbb{A}_{K,\{\infty\}} \subseteq \mathbb{A}_{K}
$$

is a product of compact sets and therefore compact. We will show that W contains a complete set of coset representatives for K in \mathbb{A}_{K}. This implies that \mathbb{A}_{K} / K is the image of the compact set W under the (continuous) quotient map $\mathbb{A}_{K} \rightarrow \mathbb{A}_{K} / K$, hence compact.

Let $a=\left(a_{v}\right)$ be any element of \mathbb{A}_{K}. We wish to show that $a=b+c$ for some $b \in W$ and $c \in K$, which we will do by constructing $c \in K$ so that $b=a-c \in W$.

For each $v<\infty$ define $x_{v} \in K$ as follows: put $x_{v}:=0$ if $\left\|a_{v}\right\|_{v} \leq 1$ (almost all v), and otherwise choose $x_{v} \in K$ so that $\left\|a_{v}-x_{v}\right\|_{v} \leq 1$ and $\left\|x_{v}\right\|_{w} \leq 1$ for $w \neq v$. To show that such an x_{v} exists, let us first suppose $a_{v}=r / s \in K$ with $r, s \in \mathcal{O}_{K}$ coprime (note that \mathcal{O}_{K} is a PID), and let \mathfrak{p} be the maximal ideal of \mathcal{O}_{v}. The ideals $\mathfrak{p}^{v(s)}$ and $\mathfrak{p}^{-v(s)}(s)$ are coprime, so we can write $r=r_{1}+r_{2}$ with $r_{1} \in \mathfrak{p}^{v(s)}$ and $r_{2} \in \mathfrak{p}^{-v(s)}(s) \subseteq \mathcal{O}_{K}$, so that $a_{v}=r_{1} / s+r_{2} / s$ with $v\left(r_{1} / s\right) \geq 0$ and $w\left(r_{2} / s\right) \geq 0$ for all $w \neq v$. If we now put $x_{v}:=r_{2} / s$, then $\left\|a_{v}-x_{v}\right\|_{v}=\left\|r_{1} / s\right\|_{v} \leq 1$ and $\left\|x_{v}\right\|_{w}=\left\|r_{2} / s\right\|_{w} \leq 1$ for all $w \neq v$ as desired. We can approximate any $a_{v}^{\prime} \in K_{v}$ by such an $a_{v} \in K$ with $\left\|a_{v}^{\prime}-a_{v}\right\|_{v}<\epsilon$ and construct x_{v} as above so that $\left\|a_{v}-x_{v}\right\|_{v} \leq 1$ and $\left\|a_{v}^{\prime}-x_{v}\right\|_{v} \leq 1+\epsilon$; but for sufficiently small ϵ this implies $\left\|a_{v}^{\prime}-x_{v}\right\|_{v} \leq 1$, since the nonarchimedean absolute value $\left\|\|_{v}\right.$ is discrete.

Finally, let $x:=\sum_{v<\infty} x_{v} \in K$ and choose $x_{\infty} \in \mathcal{O}_{K}$ so that

$$
\left\|a_{\infty}-x-x_{\infty}\right\|_{\infty} \leq 1
$$

For $a_{\infty}-x \in \mathbb{Q}_{\infty} \simeq \mathbb{R}$, we can take $x_{\infty} \in \mathbb{Z}$ in the real interval $\left[a_{\infty}-x-1, a_{\infty}-x+1\right)$. For $a_{\infty}-x \in \mathbb{F}_{q}(t)_{\infty} \simeq \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)$ we can take $x_{\infty} \in \mathbb{F}_{q}[t]$ to be the polynomial of least degree for which $a_{\infty}-x-x_{\infty} \in \mathbb{F}_{q}\left[\left[t^{-1}\right]\right] .^{7}$

Now let $c:=\sum_{v \leq \infty} x_{v} \in K \subseteq \mathbb{A}_{K}$, and let $b:=a-c$. Then $a=b+c$, with $c \in K$, and we claim that $b \in W$. For each $v<\infty$ we have $x_{w} \in \mathcal{O}_{v}$ for all $w \neq v$ and

$$
\|b\|_{v}=\|a-c\|_{v}=\left\|a_{v}-\sum_{w \leq \infty} x_{w}\right\|_{v} \leq \max \left(\left\|a_{v}-x_{v}\right\|_{v}, \max \left(\left\{\left\|x_{w}\right\|_{v}: w \neq v\right\}\right)\right) \leq 1
$$

by the nonarchimedean triangle inequality. For $v=\infty$ we have $\|b\|_{\infty}=\left\|a_{\infty}-c\right\|_{\infty} \leq 1$ by our choice of x_{∞}, and $\|b\|_{v} \leq 1$ for all v, so $b \in W$ as claimed and the theorem follows.

Corollary 25.13. For any global field K the quotient \mathbb{A}_{K} / K is a compact group.
Proof. As explained in Remark 14.4, this follows immediately (in particular, the fact that K is a discrete subgroup of \mathbb{A}_{K} implies that it is closed and therefore \mathbb{A}_{K} / K is Hausdorff).

25.4 Strong approximation

We are now ready to prove the strong approximation theorem, an important result that has many applications. We begin with an adelic version of the Blichfeldt-Minkowski lemma.

[^4]Lemma 25.14 (Adelic Blichfeldt-Minkowski lemma). Let K be a global field. There is a positive constant B_{K} such that for any $a \in \mathbb{A}_{K}$ with $\|a\|>B_{K}$ there exists a nonzero principal adele $x \in K \subseteq \mathbb{A}_{K}$ for which $\|x\|_{v} \leq\|a\|_{v}$ for all $v \in M_{K}$.

Proof. Let $b_{0}:=\operatorname{covol}(K)$ be the measure of a fundamental region for K in \mathbb{A}_{K} under our normalized Haar measure μ on \mathbb{A}_{K} (by Theorem $25.12, K$ is cocompact, so b_{0} is finite). Now define

$$
b_{1}:=\mu\left(\left\{z \in \mathbb{A}_{K}:\|z\|_{v} \leq 1 \text { for all } v \text { and }\|z\|_{v} \leq \frac{1}{4} \text { if } v \text { is archimedean }\right\}\right) .
$$

Then $b_{1} \neq 0$, since K has only finitely many archimedean places. Now let $B_{K}:=b_{0} / b_{1}$.
Suppose $a \in \mathbb{A}_{K}$ satisfies $\|a\|>B_{K}$. We know that $\|a\|_{v} \leq 1$ for all almost all v, so $\|a\| \neq 0$ implies that $\|a\|_{v}=1$ for almost all v. Let us now consider the set

$$
T:=\left\{t \in \mathbb{A}_{K}:\|t\|_{v} \leq\|a\|_{v} \text { for all } v \text { and }\|t\|_{v} \leq \frac{1}{4}\|a\|_{v} \text { if } v \text { is archimedean }\right\} .
$$

From the definition of b_{1} we have

$$
\mu(T)=b_{1}\|a\|>b_{1} B_{K}=b_{0}
$$

this follows from the fact that the Haar measure on \mathbb{A}_{K} is the product of the normalized Haar measures μ_{v} on each of the K_{v}. Since $\mu(T)>b_{0}$, the set T is not contained in any fundamental region for K, so there must be distinct $t_{1}, t_{2} \in T$ with the same image in \mathbb{A}_{K} / K, equivalently, whose difference $x=t_{1}-t_{2}$ is a nonzero element of $K \subseteq \mathbb{A}_{K}$. We have

$$
\left\|t_{1}-t_{2}\right\|_{v} \leq \begin{cases}\max \left(\left\|t_{1}\right\|_{v},\left\|t_{2}\right\|_{v}\right) \leq\|a\|_{v} & \text { nonarch. } v \\ \left\|t_{1}\right\|_{v}+\left\|t_{2}\right\|_{v} \leq 2 \cdot \frac{1}{4}\|a\|_{v} \leq\|a\|_{v} & \text { real } v \\ \left(\left\|t_{1}-t_{2}\right\|_{v}^{1 / 2}\right)^{2} \leq\left(\left\|t_{1}\right\|_{v}^{1 / 2}+\left\|t_{2}\right\|_{v}^{1 / 2}\right)^{2} \leq\left(2 \cdot \frac{1}{2}\|a\|_{v}^{1 / 2}\right)^{2} \leq\|a\|_{v} & \text { complex } v\end{cases}
$$

Here we have used the fact that the normalized absolute value $\left\|\|_{v}\right.$ satisfies the nonarchimedean triangle inequality when v is nonarchimedean, $\left\|\|_{v}\right.$ satisfies the archimedean triangle inequality when v is real, and $\left\|\|_{v}^{1 / 2}\right.$ satisfies the archimedean triangle inequality when v is complex. Thus $\|x\|_{v}=\left\|t_{1}-t_{2}\right\|_{v} \leq\|a\|_{v}$ for all places $v \in M_{K}$ as desired.

Remark 25.15. Lemma 25.14 should be viewed as an analog of Mikowski's lattice point theorem (Thoerem 14.12) and a generalization of Proposition 15.9. In Theorem 14.12 we have a discrete cocompact subgroup Λ in a real vector space $V \simeq \mathbb{R}^{n}$ and a sufficiently large symmetric convex set S that must contain a nonzero element of Λ. In Lemma 25.14 the lattice Λ is replaced by K, the vector space V is replaced by \mathbb{A}_{K}, the symmetric convex set S is replaced by the set

$$
L(a):=\left\{x \in \mathbb{A}_{K}:\|x\|_{v} \leq\|a\|_{v} \text { for all } v \in M_{K}\right\}
$$

and sufficiently large means $\|a\|>B_{K}$, putting a lower bound on $\mu(L(a))$. Proposition 15.9 is actually equivalent to Lemma 25.14 in the case that K is a number field: use the $M_{K^{-}}$ divisor $c:=\left(\|a\|_{v}\right)$ and note that $L(c)=L(a) \cap K$.
Theorem 25.16 (Strong Approximation). Let $M_{K}=S \sqcup T \sqcup\{w\}$ be a partition of the places of a global field K with S finite. Fix $a_{v} \in K$ and $\epsilon_{v} \in \mathbb{R}_{>0}$ for each $v \in S$. There exists an $x \in K$ for which

$$
\begin{array}{r}
\left\|x-a_{v}\right\|_{v} \leq \epsilon_{v} \text { for all } v \in S \\
\|x\|_{v} \leq 1 \text { for all } v \in T
\end{array}
$$

(note that there is no constraint on $\|x\|_{w}$).

Proof. Let $W=\left\{z \in \mathbb{A}_{K}:\|z\|_{v} \leq 1\right.$ for all $\left.v \in M_{K}\right\}$ as in the proof of Theorem 25.12. Then W contains a complete set of coset representatives for $K \subseteq \mathbb{A}_{K}$, so $\mathbb{A}_{K}=K+W$. For any nonzero $u \in K \subseteq \mathbb{A}_{K}$ we also have $\mathbb{A}_{K}=K+u W$: given $c \in \mathbb{A}_{K}$ write $u^{-1} c \in \mathbb{A}_{K}$ as $u^{-1} c=a+b$ with $a \in K$ and $b \in W$ and then $c=u a+u b$ with $u a \in K$ and $u b \in u W$. Now choose $z \in \mathbb{A}_{K}$ such that

$$
0<\|z\|_{v} \leq \epsilon_{v} \text { for } v \in S, \quad 0<\|z\|_{v} \leq 1 \text { for } v \in T, \quad\|z\|_{w}>B \prod_{v \neq w}\|z\|_{v}^{-1}
$$

where B is the constant in the Blichfeldt-Minkowski Lemma 25.14 (this is clearly possible: every $z=\left(z_{v}\right)$ with $\left\|z_{v}\right\|_{v} \leq 1$ is an element of $\left.\mathbb{A}_{K}\right)$. We have $\|z\|>B$, so there is a nonzero $u \in K \subseteq \mathbb{A}_{K}$ with $\|u\|_{v} \leq\|z\|_{v}$ for all $v \in M_{K}$.

Now let $a=\left(a_{v}\right) \in \mathbb{A}_{K}$ be the adele with a_{v} given by the hypothesis of the theorem for $v \in S$ and $a_{v}=0$ for $v \notin S$. We have $\mathbb{A}_{K}=K+u W$, so $a=x+y$ for some $x \in K$ and $y \in u W$. Therefore

$$
\left\|x-a_{v}\right\|_{v}=\|y\|_{v} \leq\|u\|_{v} \leq\|z\|_{v} \leq \begin{cases}\epsilon_{v} & \text { for } v \in S \\ 1 & \text { for } v \in T\end{cases}
$$

as desired.
Corollary 25.17. Let K be a global field and let w be any place of K. Then K is dense in the restricted product $\prod_{v \neq w}\left(K_{v}, \mathcal{O}_{v}\right)$.

Remark 25.18. Theorem 25.16 and Corollary 25.17 can be generalized to algebraic groups; see [1] for a survey.

References

[1] Andrei S. Rapinchuk, Strong approximation for algebraic groups, Thin groups and superstrong approximation, MSRI Publications 61, 2013.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The topology on $\coprod X_{S}$ is the weakest topology that makes the injections $X_{S} \hookrightarrow ~ \coprod X_{S}$ continuous; its open sets are disjoint unions of open sets in the X_{S}. The topology on $\left\lfloor X_{S} / \sim\right.$ is the weakest topology that makes the quotient map $\coprod X_{S} \rightarrow \coprod X_{S} / \sim$ continuous; its open sets are images of open sets in $\amalg X_{S}$.

[^1]: ${ }^{2}$ Per Remark 25.2, as far as the topology goes it doesn't matter how we define \mathcal{O}_{v} at the finite number of archimedean places, but we would like each \mathcal{O}_{v} to be a topological ring, which motivates this choice.
 ${ }^{3}$ In French one writes adèle, but it is common practice to omit the accent when writing in English.

[^2]: ${ }^{4}$ By definition it is a topological space that is also a ring; to be a topological ring is a stronger condition (the ring operations must be continuous), but this property is preserved by direct limits so all is well.
 ${ }^{5}$ For $v \nmid \infty$, if $\|a\|_{v}<1$ then $\|a\|_{v} \leq 1 / 2$, since $\|a\|_{v}:=q^{-v\left(a_{v}\right)}$ for some prime power q.

[^3]: ${ }^{6}$ In general, tensor products do not commute with infinite direct products; there is always a natural map $\left(\prod_{n} A_{n}\right) \otimes B \rightarrow \prod_{n}\left(A_{n} \otimes B\right)$, but it need be neither a monomorphism or an epimorphism. This is another motivation for using restricted direct products to define the adeles, so that base change works as it should.

[^4]: ${ }^{7}$ Note that while $\mathbb{F}_{q}\left(\left(t^{-1}\right)\right) \simeq \mathbb{F}_{q}((t))$, in order to view $K=\mathbb{F}_{q}(t)$ as canonically embedded in its completion with respect to the absolute value $|f|_{\infty}=q^{\operatorname{deg} f}$ we need to view K_{∞} as the field of Laurent series in a uniformizer, which we may take to be t^{-1} (but not t), and the valuation ring of K_{∞} is $\mathbb{F}_{q}[[-t]]$ (not $\left.\mathbb{F}_{q}[[t]]\right)$.

