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21 Class field theory: ray class groups and ray class fields

In the previous lecture we proved that every abelian extension L of Q is contained in a
cyclotomic field Q(ζm). The isomorphism Gal(Q(ζm)/Q) ' (Z/mZ)× then allows us to
view Gal(L/Q) as a quotient of (Z/mZ)×. We would like to replace the base field Q with
an arbitrary number field K, but we need analogs of the cyclotomic fields Q(ζm) and the
abelian Galois groups (Z/mZ)×. These analogs are ray class fields, and their Galois groups
are isomorphic to ray class groups. Ray class fields are not, in general, cyclotomic extensions
of K; their construction is rather more complicated. Before defining them, let us first recall
some properties of the Artin map we defined in Lecture 7.

21.1 The Artin map

Let L/K be a finite Galois extension of global fields, and let p be a prime of K. Recall
that the Galois group Gal(L/K) acts on the set {q|p} (primes q of L lying above p) and the
stabilizer of q|p is the decomposition group Dq ⊆ Gal(L/K). By Proposition 7.9, we have
a surjective homomorphism

πq : Dq → Gal(Fq/Fp)

σ 7→ σ := (α 7→ σ(α)),

where α ∈ OL is any lift of α ∈ Fq := OL/q to OL and σ(α) is the reduction of σ(α) ∈ OL
to Fq; kernel of πq is the inertia group Iq. If q is unramified then Iq is trivial and πq is an
isomorphism. The Artin symbol (Definition 7.18) is defined by(

L/K

q

)
:= σq := π−1q (x 7→ x#Fp),

where (x 7→ x#Fp) ∈ Gal(Fq/Fp) is the Frobenius automorphism, a canonical generator for
the cyclic group Gal(Fq/Fp). Equivalently, σq is the unique element of Gal(L/K) for which

σq(x) ≡ x#Fp mod q

for all x ∈ OL. For q|p the Frobenius elements σq are all conjugate (they form the Frobenius
class Frobp), and when L/K is abelian they coincide, in which case we may write σp instead
of σq (or use Frobp = {σp} to denote σp), and we may write the Artin symbol as(

L/K

p

)
:= σp.

Now assume L/K is abelian, let m be an OK-ideal divisible by every ramified prime
of K, and let ImK denote the subgroup of fractional ideals I ∈ IK for which vp(I) = 0 for
all p|m. The Artin map (Definition 7.21) is the homomorphism

ψm
L/K : ImK → Gal(L/K)∏

p6 |m

pnp 7→
∏
p6 |m

(
L/K

p

)np

.

A key ingredient of class field theory that we will prove in this lecture is surjectivity of
the Artin map ψm

L/K . This allows us to identify Gal(L/K) with the quotient ImK/ kerψm
L/K .
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Every p ∈ kerψm
L/K is unramified and has the property that the Frobenius elements σq are

trivial for all q|p, meaning that all the residue field extensions Fq/Fp are trivial. This implies
that p splits completely in L (it is unramified and primes above it have residue degree one).
Conversely, every prime p ∈ ImK that splits completely in L lies in kerψm

L/K .

Proposition 21.1. Let K ⊆ L ⊆ M be a tower of finite abelian extension of global fields
and let m be an OK-ideal divisible by all primes p of K that ramify in M . We have a
commutative diagram

ImK Gal(M/K)

Gal(L/K)

←→
ψm
M/K

←

→ψm
L/K

←→ res

where the vertical map is the homomorphism σ → σ|L induced by restriction.

Proof. It suffices to check commutativity at primes p - m, which are necessarily unramified.
The proposition then follows from Proposition 7.20.

21.2 Class field theory for Q

We now specialize to K = Q. The Kronecker-Weber theorem tells us that every abelian
extension L/K lies in a cyclotomic field Q(ζm). Each σ ∈ Gal(Q(ζm)/Q) is determined by
its action on ζm, and we have an isomorphism

ω : Gal(Q(ζm)/Q)
∼−→ (Z/mZ)×

defined by σ(ζm) = ζ
ω(σ)
m . The primes p that ramify in Q(ζm) are precisely those that

divide m (by Corollary 10.20). For each prime p 6 | m the Frobenius element σp is the
unique σ ∈ Gal(Q(ζm)/Q) for which σ(x) ≡ xp mod q for any (equivalently, all) q|(p).
Thus ω(σp) = p mod m, and it follows that the Artin map induces an inverse isomorphism
(Z/mZ)× → Gal(Q(ζm)/Q): for every integer a coprime to m we have (a) ∈ ImQ and

ω−1(ā) =

(
Q(ζm)/Q

(a)

)
,

where ā = a mod m. As you showed on Problem Set 4, the surjectivity of the Artin map
follows immediately, since a ranges over all integers coprime to m.

Now let L be a subfield of Q(ζm). We cannot apply ω to Gal(L/Q), since Gal(L/Q) is a
quotient of Gal(Q(ζm)/Q), not a subgroup, but the Artin map ImQ → Gal(L/Q) is available;
notice that the modulus m works for L as well as Q(ζm), since any primes that ramify in L
also ramify in Q(ζm) and therefore divide m. By Proposition 21.1, the Artin map factors
through the surjective homomorphism Gal(Q(ζm)/Q) → Gal(L/Q) induced by restriction
and thus induces a surjective homomorphism (Z/mZ)× → Gal(L/Q).

To sum up, we can now say the following about abelian extensions of Q:

• Existence: for each integer m we have a ray class field Q(ζm): an abelian extension
ramified only at p|m with Galois group isomorphic to the ray class group (Z/mZ)×.

• Completeness: every abelian extension of Q lies in a ray class field Q(ζm).
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• Reciprocity: if L is an abelian extension of Q contained in the ray class field Q(ζm),
the Artin map ImQ → Gal(L/Q) induces a surjective homomorphism from the ray class
group (Z/mZ)× to Gal(L/Q), letting us view Gal(L/Q) as a quotient of (Z/mZ)×.

All of these statements will be made more precise; in particular, we will refine the first
two statements so that ray class fields are uniquely determined by the modulus m, and we
will give an explicit description of the kernel of the Artin map that allows us to identify
Gal(L/Q) with a quotient of (Z/mZ)×. But let us first consider how to generalize these
statements to number fields other than Q and define the terms ray class field, and ray class
group. In order to do so, we first need to make the role of the integer m more precise by
introducing the notion of a modulus.

21.3 Moduli and ray class groups

Recall that for a global field K we use MK to denote its set of places (equivalence classes
of absolute values). We generically denote places by the symbol v, but for finite places,
those arising from a discrete valuation associated to a prime p of K (a nonzero prime ideal
of OK), we may write p in place of v. We write v|∞ to indicate that v is an infinite place
(one not arising from a prime of K); recall that when K is a number field all infinite places
are archimedean, and they may be real (Kv ' R) or complex (Kv ' C).

Definition 21.2. Let K be a number field. A modulus (or cycle) m for K is a function
MK → Z≥0 with finite support such that for v|∞ we have m(v) ≤ 1 with m(v) = 0 unless v
is a real place. We view m as a formal product

∏
vm(v) over MK , which we may factor as

m = m0m∞, m0 :=
∏
p6 |∞

pm(p), m∞ :=
∏
v|∞

vm(v),

where m0 is an OK-ideal and m∞ represents a subset of the real places of K; we use #m∞
to denote the number of real places in the support of m. If m and n are moduli for K we
say that m divides n and write m|n if m(v) ≤ n(v) for all v ∈ MK . We define the product
modulus mn by mn(v) := m(v) + n(v) for v -∞ and mn(v) := max(m(v) + n(v), 1) for v | ∞;
we also define gcd(m, n)(v) := min(m(v), n(v) and lcm(m, n)(v) := max(m(v), n(v)). The
zero function is the trivial modulus, with m0 = (1) and #m∞ = 0.
We use IK to denote the ideal class group of OK and define the following notation:1

• a fractional ideal a ∈ IK is coprime to m (or prime to m) if vp(a) = 0 for all p|m0.

• ImK ⊆ IK is the subgroup of fractional ideals coprime to m.

• Km ⊆ K× is the subgroup of elements α ∈ K× for which (α) ∈ ImK .

• Km,1 ⊆ Km is the subgroup of elements α ∈ Km with vp(α− 1) ≥ vp(m0) for all p|m0

and αv > 0 for v|m∞ (here αv is the image of α under K ↪→ Kv ' R).

• Rm
K ⊆ ImK is the subgroup of principal fractional ideals (α) ∈ ImK with α ∈ Km,1.

The groups Rm
K are called rays or ray groups.

1This notation varies from author to author; there is no universally accepted notation for these objects
(in particular, the modulus m may appear as a subscript rather than a superscript). Things will improve
when we come to the adelic/idelic formulation of class field theory where there is more consistency.
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Definition 21.3. Let m be a modulus for a number field K. The ray class group for the
modulus m is the quotient

ClmK := ImK/Rm
K .

A finite abelian extension L/K that is unramified at all places2 not in the support of m for
which the kernel of the Artin map ψm

L/K : ImK → Gal(L/K) is equal to the ray group Rm
K is

a ray class field for the modulus m.

When m is the trivial modulus, the ray class group is the same as the usual class group
ClK := cl(OK), but in general the class group ClK is a quotient of the ray class group ClmK
(as we will prove shortly). While not immediately apparent from the definition, we will see
that ray class fields are uniquely determined by m, so it makes sense to speak of the ray
class field for the modulus m (assuming existence).

Remark 21.4. The definitions above make sense for any global field, but in our ideal-
theoretic treatment of class field theory we will mostly restrict our attention to number
fields. Our adelic/idelic formulation of class field theory will address all global fields.

Remark 21.5. If m(v) = 1 for every real place v of K then ClmK is a narrow ray class
group. The narrow ray class group with m0 = (1) is the narrow class group; the usual class
group ClK = clOK is sometimes called the wide class group to distinguish the two. Note
that the wide class group is a quotient of the narrow class group, thus smaller in general;
this terminology can be confusing, but the thing to remember is that narrow equivalence is
stronger than ordinary equivalence, so there are more narrow equivalence classes, in general.
Of course for number fields with no real places (imaginary quadratic fields, in particular)
there is no distinction.

Example 21.6. ForK = Q with the modulus m = (5) we haveKm = {a/b : a, b 6≡ 0 mod 5}
and Km,1 = {a/b : a ≡ b 6≡ 0 mod 5}. Thus

ImK = {(1), (1/2), (2), (1/3), (2/3), (3/2), (3), (1/4), (3/4), (4/3), (4), (1/6), (6), . . .},
Rm
K = {(1), (2/3), (3/2), (1/4), (4), (6), (1/6), (2/7), (7/2), . . .}.

You might not have expected (2/3) ∈ Rm
K , since 2/3 6∈ Km,1, but note that −2/3 ∈ Km,1

and (−2/3) = (2/3). The ray class group is

ClmK = ImK/Rm
K = {[(1)], [(2)]} ' (Z/5Z)×/{±1},

which is isomorphic to the Galois group of the totally real subfield Q(ζ5)
+ of Q(ζ5), which

is the ray class field for this modulus. If we change the modulus to m = (5)∞ we instead
get Rm

K = {(1), (6), (1/6), (2/7), (7/2), . . .}, ClmK ' (Z/5Z)×, and the ray class field is Q(ζ5).

Lemma 21.7. Let A be a Dedekind domain and let a be an A-ideal. Every ideal class in
cl(A) contains an A-ideal coprime to a.

Proof. Let I be a nonzero fractional ideal of A. For each prime p|a we can pick πp ∈ p such

that vq(πp) = vq(p) for all q|a, by Corollary 3.21. If we then put α :=
∏

p|a π
−vp(I)
p , then

vp(αI) = 0 for all p|a; thus αI is coprime to a and [αI] = [I].

2Archimedean places of K are unramified in L except for real places v with a complex place w of L above
them. But if L is unramified at all p - m0 (necessary for ψm

L/K to be defined), and kerψm
L/K = Rm

K , then L
will necessarily be unramified at all infinite places v - m∞; so in the definition of a ray class field it is enough
for L to be unramified away from m0.
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Now let S be the finite set of primes p for which vp(αI) < 0 and pick πp ∈ p such
that vq(πp) = vq(p) for all q ∈ S and q|a (again using Corollary 3.21). If we now put

a :=
∏

p∈S π
−vp(αI)
p ∈ A, then vp(aαI) ≥ 0 for all p and vp(aαI) = 0 for all p|a. Thus aαI

is an A-ideal coprime to a and [aαI] = [I].

Theorem 21.8. Let m be a modulus for a number field K. We have an exact sequence

1 −→ O×K ∩K
m,1 −→ O×K −→ Km/Km,1 −→ ClmK −→ ClK −→ 1

and a canonical isomorphism

Km/Km,1 ' {±1}#m∞ × (OK/m0)
×.

Proof. Let us consider the composition of the maps Km,1 ⊆ Km and α 7→ (α):

Km,1 f−→ Km g−→ ImK .

The kernel of f is trivial, the kernel of g ◦ f is O×K ∩Km,1 (since (α) = (1) ⇐⇒ α ∈ O×K),
the kernel of g is O×K , the cokernel of f is Km/Km,1, the cokernel of g ◦ f is ClmK = ImK/Rm

K

(by definition), and the cokernel of g is ClK (by Lemma 21.7). Applying the snake lemma
(see [2, Lemma 5.13], for example) to the following commutative diagram with exact rows

1 Km,1 Km Km/Km,1 1

1 ImK ImK 1

←→ ←↩ →f

←→ g◦f

←→

←→ g

←→
←→ π

←→ ←→∼ ← →

yields the exact sequence ker g ◦ f → ker g → kerπ → coker g ◦ f → coker g → cokerπ:

1 −→ O×K ∩K
m,1 −→ O×K −→ Km/Km,1 −→ ClmK −→ ClK −→ 1,

where the initial 1 follows from the fact that f is injective (and kerπ = coker f).
We can write each α ∈ Km as α = a/b with a, b ∈ OK such that (a) and (b) are

coprime to m0 and to each other. The ideals (a) and (b) are uniquely determined by α,
since a/b = a′/b′ ⇒ ab′ = a′b ⇒ (a)(b′) = (a′)(b), and since (a) and (b) are coprime we
must have (a) = (a′) and (b) = (b′) (by unique factorization of ideals).

We now define the homomorphism

ϕ : Km →

∏
v|m∞

{±1}

× (OK/m0)
×

α 7→

∏
v|m∞

sgn(αv)

× (ᾱ),

where ᾱ = āb̄−1 ∈ (OK/m0)
× (here ā, b̄ are the images of a, b ∈ OK in OK/m0, and they

both lie in (OK/m0)
× because (a) and (b) are coprime to m0). The ring (OK/m0)

× is iso-
morphic to

∏
p|m0

(OK/pm(p))×, by the Chinese remainder theorem, and weak approximation

(Theorem 8.5) implies that ϕ is surjective. The kernel of ϕ is clearly Km,1, thus ϕ induces
an isomorphism Km/Km,1 ' {±}#m∞×(OK/m0)

×. This isomorphism is canonical, because
ᾱ depends only on the uniquely determined ideals (a) and (b) (if we replace a with a′ = au
for some u ∈ O×K we must replace b with b′ = bu).
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Corollary 21.9. Let K be a number field and let m be a modulus for K. The ray class
group ClmK is a finite abelian group whose cardinality hmK := #ClmK is given by

hmK =
φ(m)hK

[O×K : O×K ∩Km,1]
,

where hK := #ClK and φ(m) := #(Km/Km,1) = φ(m∞)φ(m0), with

φ(m∞) = 2#m∞ , φ(m0) = #(OK/m0)
× = N(m0)

∏
p|m0

(1−N(p)−1).

In particular, hK divides hmK and hmK divides hKφ(m).

Proof. The exact sequence implies φ(m)/[O×K : O×K ∩Km,1] = hmK/hK , and that both sides
of this equality are integers.

Computing the ray class number hmK is not a trivial problem, but there are algorithms
for doing so; see [1], which considers this problem in detail.

21.4 Polar density

We now want to prove the surjectivity of the Artin map for finite abelian extensions L/K
of number fields (as noted in §21.2, we already know this for K = Q). In order to do so we
first introduce a new way to measure the density of a set of primes that is defined in terms
of a generalization of the Dedekind zeta function. Throughout this section and the next,
all number fields are assumed to lie in some fixed algebraic closure of Q.

Definition 21.10. Let K be a number field and let S be a set of primes of K. The partial
Dedekind zeta function associated to S is the complex function

ζK,S(s) :=
∏
p∈S

(1−N(p)−s)−1,

which converges to a holomorphic function on Re(s) > 1 (by the same argument we used
for ζK(s) in Lecture 18).

If S is finite then ζK,S(s) is certainly holomorphic (and nonzero) on a neighborhood of 1.
If S contains all but finitely many primes of K then it differs from ζK(s) by a holomorphic
factor and therefore extends to a meromorphic function with a simple pole at s = 1, by
Theorem 19.12.

Between these two extremes the function ζK,S(s) may or may not extend to a function
that is meromorphic on a neighborhood of 1, but if it does, or more generally, if some power
of it does, then we can use the order of the pole at 1 (or the absence of a pole) to measure
the density of S.

Definition 21.11. If for some integer n ≥ 1 the function ζnK,S extends to a meromorphic
function on a neighborhood of 1, the polar density of S is defined by

ρ(S) :=
m

n
, m = −ords=1ζ

n
K,S(s)

(so m is the order of the pole at s = 1, if one is present). Note that if ζn1
K,S and ζn2

K,s both
extend to a meromorphic function on a neighborhood of 1 then we necessarily have

n2ords=1ζ
n1
K,S(s) = ords=1ζ

n1n2
K,S = n1ords=1ζ

n2
K,S(s),
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which implies that ρ(S) does not depend on the choice of n. We will show below that
(whenever it is defined) ρ(S) is a rational number in the interval [0, 1].

In Lecture 17 we encountered two other notions of density, the Dirichlet density

d(S) := lim
s→1+

∑
p∈S N(p)−s∑
p N(p)−s

= lim
s→1+

∑
p∈S N(p)−s

log 1
s−1

,

(the equality of the two expressions for d(S) follows from the fact that ζK(s) has a simple
pole at s = 1, see Problem Set 9), and the natural density

δ(S) := lim
x→∞

#{p ∈ S : N(p) ≤ x}
#{p : N(p) ≤ x}

.

On Problem Set 9 you proved that if S has a natural density then it has a Dirichlet density
and the two coincide. We now show that the same is true of the polar density.

Proposition 21.12. Let S be a set of primes of a number field K. If S has a polar density
then it has a Dirichlet density and the two are equal. In particular, ρ(S) ∈ [0, 1] whenever
it is defined.

Proof. Suppose S has polar density ρ(S) = m/n. By taking the Laurent series expansion
of ζnK,S(s) at s = 1 and factoring out the leading nonzero term we can write

ζK,S(s)n =
a

(s− 1)m

1 +
∑
r≥1

ar(s− 1)r

 ,

for some a ∈ C×. We must have a ∈ R>0, since ζK,S(s) ∈ R>0 for s ∈ R>1 and therefore
lims→1+(s− 1)mζK,S(s)n is a positive real number. Taking logs of both sides yields

n
∑
p∈S

N(p)−s ∼ m log
1

s− 1
(as s→ 1+),

which implies that S has Dirichlet density d(S) = m/n (note that log(a) = O(1) plays no
role, since −m log(s− 1)→∞ as s→ 1+).

Corollary 21.13. Let S be a set of primes of a number field K. If S has both a polar
density and a natural density then the two coincide.

We should note that not every set of primes with a natural density has a polar density,
since the later is always a rational number while the former need not be.

Recall that a degree-1 prime in a number field K is a prime with residue field degree 1
over Q, equivalently, a prime p whose absolute norm N(p) = [OK : p] = #Fp is prime.

Proposition 21.14. Let S and T denote sets of primes in a number field K, let P be the
set of all primes of K, and let P1 be the set of degree-1 primes of K. The following hold:

(a) If S is finite then ρ(S) = 0; if P − S is finite then ρ(S) = 1.

(b) If S ⊆ T both have polar densities, then ρ(S) ≤ ρ(T ).

(c) If two sets S and T have finite intersection and any two of the sets S, T , and S ∪ T
have polar densities then so does the third and ρ(S ∪ T ) = ρ(S) + ρ(T ).
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(d) We have ρ(P1) = 1, and ρ(S ∩ P1) = ρ(S) whenever S has a polar density.

Proof. We first note that for any finite set S, the function ζK,S(s) is a finite product of
nonvanishing entire functions and therefore holomorphic and nonzero everywhere (including
at s = 1). If the symmetric difference of S and T is finite, then ζK,S(s)f(s) = ζK,T (s)g(s)
for some nonvanishing functions f(s) and g(s) holomorphic on C. Thus if S and T differ
by a finite set, then ρ(S) = ρ(T ) whenever either set has a polar density

Part (a) follows, since ρ(∅) = 0 and ρ(P) = 1 (note that ζK,P(s) = ζK(s), and
ords=1ζK(s) = −1, by Theorem 19.12).

Part (b) follows from the analogous statement for Dirichlet density proved on Problem
Set 9.

For (c) we may assume S and T are disjoint (by the argument above), in which case
ζK,S∪T (s)n = ζK,S(s)nζK,T (s)n for all n ≥ 1, and the claim follows.

For (d), let P2 := P−P1 so that P = P1tP2. For each rational prime p there are at most
n := [K : Q] (in fact n/2) primes p|p in P2, each of which has absolute norm N(p) ≥ p2. It
follows by comparison with ζ(2s)n that the product defining ζK,P2(s) converges absolutely
to a holomorphic function on Re(s) > 1/2 and is therefore holomorphic (and nonvanishing,
since it is an Euler product) on a neighborhood of 1; thus ρ(P2) = 0 and ρ(P1) = 1. We
therefore have ρ(S ∩ P2) = 0, so ρ(S) = ρ(S ∩ P1) whenever ρ(S) exists, by (c).

For a Galois extension of number fields L/K, let Spl(L/K) denote the set of primes of
K that split completely in L. When K is clear from context we may just write Spl(L).

Theorem 21.15. Let L/K be a Galois extension of number fields of degree n. Then

ρ(Spl(L)) = 1/n.

Proof. Let S be the set of degree-1 primes of K that split completely in L; it suffices to
show ρ(S) = 1/n, by Proposition 21.14. Recall that p splits completely in L if and only if
both the ramification index ep and residue field degree fp are equal to 1. Let T be the set
of primes q of L that lie above some p ∈ S. For each q ∈ T lying above p ∈ S we have
NL/K(q) = pfp = p, so N(q) = N(NL/K(q)) = N(p), thus q is a degree-1 prime, since p is.

On the other hand, if q is any unramified degree-1 prime of L and p = q ∩ OK , then
N(q) = N(NL/K(q)) = N(pfp) is prime, so we must have fp = 1, and ep = 1 since q is
unramified, which implies that p is a degree-1 prime that splits completely in L and is thus
an element of S. Only finitely many primes ramify, so all but finitely many of the degree-1
primes in L lie in T , thus ρ(T ) = 1, by Proposition 21.14. Each p ∈ S has exactly n primes
q ∈ T lying above it (since p splits completely), and we have

ζL,T (s) =
∏
q∈T

(1−N(q)−s)−1 =
∏
q∈T

(1−N(NL/K(q))−s)−1 =
∏
p∈S

(1−N(p)−s)−n = ζK,S(s)n.

It follows that ρ(S) = 1
nρ(T ) = 1

n as desired.

Corollary 21.16. If L/K is a finite extension of number fields with Galois closure M/K
of degree n, then ρ(Spl(L)) = ρ(Spl(M)) = 1/n.

Proof. A prime p of K splits completely in L if and only if it splits completely in all the
conjugates of L in M ; the Galois closure M is the compositum of the conjugates of L, so p
splits completely in L if and only if it splits completely in M .
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Corollary 21.17. Let L/K be a Galois extension of number fields with Galois group G :=
Gal(L/K) and let H be a normal subgroup of G. The set S of primes for which Frobp ⊆ H
has polar density ρ(S) = #H/#G.

Proof. Let F = LH ; then F/K is Galois (since H is normal) and Gal(F/K) ' G/H. For
each unramified prime p of K, the Frobenius class Frobp lies in H if and only if every
σq ∈ Frobp acts trivially on LH = F , which occurs if and only if p splits completely in F .
By Theorem 21.15, the density of this set of primes is 1/[F : K] = #H/#G.

If S and T are sets of primes whose symmetric difference is finite, then either ρ(S) = ρ(T )
or neither set has a polar density. Let us write S ∼ T to indicate that two sets of primes
have finite symmetric difference (this is clearly an equivalence relation), and partially order
sets of primes by defining S - T ⇔ S ∼ S ∩ T (in other words, S − T is finite). If S and T
have polar densities, then S - T implies ρ(S) ≤ ρ(T ), by Proposition 21.14.

Theorem 21.18. If L/K and M/K are two Galois extensions of number fields then

L ⊆M ⇐⇒ Spl(M) - Spl(L)⇐⇒ Spl(M) ⊆ Spl(L),

L = M ⇐⇒ Spl(M) ∼ Spl(L)⇐⇒ Spl(M) = Spl(L),

and the map L 7→ Spl(L) is an injection from the set of finite Galois extensions of K (inside
some fixed algebraic closure) to sets of primes of K that have a positive polar density.

Proof. The implications L ⊆ M ⇒ Spl(M) ⊆ Spl(L) ⇒ Spl(M) - Spl(L) are clear, so it
suffices to show that Spl(M) - Spl(L)⇒ L ⊆M .

A prime p of K splits completely in the compositum LM if and only if it splits completely
in both L and M : the forward implication is clear and for the reverse, note that if p splits
completely in both L and M then it certainly splits completely in L∩M , so we may assume
K = L∩M ; we then have Gal(LM/K) ' Gal(L/K)×Gal(M/K), and if the decomposition
subgroups of all primes above p are trivial in both Gal(L/K) and Gal(M/K) then the same
applies in Gal(LM/K). Thus Spl(LM) = Spl(L) ∩ Spl(M).

It follows that Spl(M) - Spl(L) ⇒ Spl(LM) ∼ Spl(M). By Theorem 21.15, we have
ρ(Spl(M)) = 1/[M : K] and ρ(Spl(LM)) = 1/[LM : K], thus Spl(LM) ∼ Spl(M) implies

[LM : K] = ρ(Spl(LM))−1 = ρ(Spl(M))−1 = [M : K],

in which case LM = M and L ⊆M . This proves Spl(M) - Spl(L)⇒ L ⊆M , so the three
conditions in the first line of biconditionals are all equivalent, and this immediately implies
the second line of biconditionals. The last statement of the theorem is clear, since Spl(L)
has positive polar density, by Theorem 21.15.

21.5 Ray class fields and Artin reciprocity

As a special case of Corollary 21.16, if F/K is a finite extension of number fields in which
all but finitely many primes split completely, then [F :K] = 1 and therefore F = K. We
will use this fact to prove that the Artin map is surjective.

Theorem 21.19. Let L/K be an abelian extension of number fields and m a modulus
divisible by all ramified primes. Then the Artin map ψm

L/K : ImK → Gal(L/K) is surjective.
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Proof. Let H ⊆ Gal(L/K) be the image of ψm
L/K and let F = LH be its fixed field, which

we note is a Galois extension of K, since H is normal (because Gal(L/K) is abelian). For
each prime p ∈ ImK the automorphism ψm

L/K(p) ∈ H acts trivially on F = LH , therefore p
splits completely in F . The group ImK contains all but finitely many primes p of K, so the
polar density of the set of primes of K that split completely in F is 1. Thus [F : K] = 1
and H = Gal(L/K), by Corollary 21.16.

We now show that the kernel of the Artin map ψm
L/K uniquely determines the field L.

Theorem 21.20. Let m be a modulus for a number field K and let L and M be finite abelian
extensions of K unramified at all primes not in the support of m. If kerψm

L/K = kerψm
M/K

then L = M . In particular, ray class fields are unique whenever they exist.

Proof. Let S be the set of primes of K that do not divide m. Each prime p in S is unramified
in both L and M , and p splits completely in L (resp. M) if and only if it lies in the kernel
of ψm

L/K (resp. ψm
M/K). If kerψm

L/K = kerψm
M/K then

Spl(L) ∼ (S ∩ kerψm
L/K) = (S ∩ kerψm

M/K) ∼ Spl(M),

and therefore L = M , by Theorem 21.18.

Theorem 21.19 implies that we have an exact sequence

1→ kerψm
L/K → I

m
K → Gal(L/K)→ 1.

One of the key results of class field theory is that for a suitable choice of the modulus m,
we have Rm

K ⊆ kerψm
L/K . This implies that the Artin map induces an isomorphism between

Gal(L/K) and a quotient of the ray class group ClmK = ImK/Rm
K . When L is the ray class

field for the modulus m, the Artin map allows us to relate subfields of L to quotients of
the ray class group ClmK ' Gal(L/K) in a way that we will make more precise in the next
lecture; this is known as Artin reciprocity.
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