20 The Kronecker-Weber theorem

In the previous lecture we established a relationship between finite groups of Dirichlet characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to-one-correspondence between finite groups H of primitive Dirichlet characters of conductor dividing m and subfields K of $\mathbb{Q}(\zeta_m)$ under which H can be viewed as the character group of the finite abelian group $\mathrm{Gal}(K/\mathbb{Q})$ and the Dedekind zeta function of K factors as

$$\zeta_K(s) = \prod_{\chi \in H} L(s, \chi).$$

Now suppose we are given an arbitrary finite abelian extension K/\mathbb{Q} . Does the character group of $Gal(K/\mathbb{Q})$ correspond to a group of Dirichlet characters, and can we then factor the Dedekind zeta function $\zeta_K(s)$ as a product of Dirichlet L-functions?

The answer is yes! This is a consequence of the *Kronecker-Weber theorem*, which states that every finite abelian extension of \mathbb{Q} lies in a cyclotomic field. This theorem was first stated in 1853 by Kronecker [2], who provided a partial proof for extensions of odd degree. Weber [7] published a proof 1886 that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [5]), but in any case an alternative proof was given a few years later by Hilbert [1]. The proof we present here is adapted from [6, Ch. 14]

20.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.

Theorem 20.1. Every finite abelian extension of \mathbb{Q} lies in a cyclotomic field $\mathbb{Q}(\zeta_m)$.

There is also a local version.

Theorem 20.2. Every finite abelian extension of \mathbb{Q}_p lies in a cyclotomic field $\mathbb{Q}_p(\zeta_m)$.

We first show that the local version implies the global one.

Proposition 20.3. The local Kronecker-Weber theorem implies the global Kronecker-Weber theorem.

Proof. Let K/\mathbb{Q} be a finite abelian extension. For each ramified prime p of \mathbb{Q} , pick a prime $\mathfrak{p}|p$ and let $K_{\mathfrak{p}}$ be the completion of K at \mathfrak{p} (the fact that K/\mathbb{Q} is Galois means that every $\mathfrak{p}|p$ is ramified with the same ramification index; it makes no difference which \mathfrak{p} we pick). We have $\operatorname{Gal}(K_{\mathfrak{p}}/\mathbb{Q}_p) \simeq D_{\mathfrak{p}} \subseteq \operatorname{Gal}(K/\mathbb{Q})$, by Theorem 11.23, so $K_{\mathfrak{p}}$ is an abelian extension of $\mathbb{Q}_{\mathfrak{p}}$ and the local Kronecker-Weber theorem implies that $K_{\mathfrak{p}} \subseteq \mathbb{Q}_p(\zeta_{m_p})$ for some $m_p \in \mathbb{Z}_{\geq 1}$. Let $n_p := v_p(m_p)$, put $m := \prod_p p^{n_p}$ (this is a finite product), and let $L = K(\zeta_m)$. We will show $L = \mathbb{Q}(\zeta_m)$, which implies $K \subseteq \mathbb{Q}(\zeta_m)$.

The field $L = K \cdot \mathbb{Q}(\zeta_m)$ is a compositum of Galois extensions of \mathbb{Q} , and is therefore Galois over \mathbb{Q} with $\operatorname{Gal}(L/\mathbb{Q})$ isomorphic to a subgroup of $\operatorname{Gal}(K/\mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q})$, hence abelian (as recalled below, the Galois group of a compositum $K_1 \cdots K_r$ of Galois extensions K_i/F is isomorphic to a subgroup of the direct product of the $\operatorname{Gal}(K_i/F)$). Let \mathfrak{q} be a prime of L lying above a ramified prime $\mathfrak{p}|p$; as above, the completion $L_{\mathfrak{q}}$ of L at \mathfrak{q} is a finite abelian extension of \mathbb{Q}_p , since L/\mathbb{Q} is finite abelian, and we have $L_{\mathfrak{q}} = K_{\mathfrak{p}} \cdot \mathbb{Q}_p(\zeta_m)$. Let $F_{\mathfrak{q}}$ be the maximal unramified extension of \mathbb{Q}_p in $L_{\mathfrak{q}}$. Then $L_{\mathfrak{q}}/F_{\mathfrak{q}}$ is totally ramified

and $\operatorname{Gal}(L_{\mathfrak{q}}/F_{\mathfrak{q}})$ is isomorphic to the inertia group $I_p := I_{\mathfrak{q}} \subseteq \operatorname{Gal}(L/\mathbb{Q})$, by Theorem 11.23 (the $I_{\mathfrak{q}}$ all coincide because L/\mathbb{Q} is abelian).

It follows from Corollary 10.20 that $K_{\mathfrak{p}} \subseteq F_{\mathfrak{q}}(\zeta_{p^{n_p}})$, since $K_{\mathfrak{p}} \subseteq \mathbb{Q}_p(\zeta_{m_p})$ and $\mathbb{Q}_p(\zeta_{m_p/p^{n_p}})$ is unramified, and that $L_{\mathfrak{q}} = F_{\mathfrak{q}}(\zeta_{p^{n_p}})$, since $\mathbb{Q}_p(\zeta_{m/p^{n_p}})$ is unramified. Moreover, we have $F_{\mathfrak{q}} \cap \mathbb{Q}_p(\zeta_{p^{n_p}}) = \mathbb{Q}_p$, since $\mathbb{Q}_p(\zeta_{p^{n_p}})/\mathbb{Q}_p$ is totally ramified, and it follows that

$$I_p \simeq \operatorname{Gal}(L_{\mathfrak{q}}/F_{\mathfrak{q}}) \simeq \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^{n_p}})/\mathbb{Q}_p) \simeq (\mathbb{Z}/p^{n_p}\mathbb{Z})^{\times}.$$

Now let I be the group generated by the union of the groups $I_p \subseteq \operatorname{Gal}(L/\mathbb{Q})$ for p|m. Since $\operatorname{Gal}(L/\mathbb{Q})$ is abelian, we have $\bigcup I_p \subseteq \prod I_p$, thus

$$\#I \le \prod_{p|m} \#I_p = \prod_{p|m} \#(\mathbb{Z}/p^{n_p}\mathbb{Z})^{\times} = \prod_{p|m} \phi(p^{n_p}) = \phi(m) = [\mathbb{Q}(\zeta_m) : \mathbb{Q}].$$

Each inertia field L^{I_p} is unramified at p (see Proposition 7.12), as is $L^I \subseteq L^{I_p}$. So L^I/\mathbb{Q} is unramified, and therefore $L^I = \mathbb{Q}$, by Corollary 14.25. Thus

$$[L:\mathbb{Q}] = [L:L^I] = \#I \le [\mathbb{Q}(\zeta_m):\mathbb{Q}],$$

and
$$\mathbb{Q}(\zeta_m) \subseteq L$$
, so $L = \mathbb{Q}(\zeta_m)$ as claimed and $K \subseteq L = \mathbb{Q}(\zeta_m)$.

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic extensions of prime-power degree. Recall that if L_1 and L_2 are two Galois extensions of a field K then their compositum $L := L_1L_2$ is Galois over K with Galois group

$$\operatorname{Gal}(L/K) \simeq \{(\sigma_1, \sigma_2) : \sigma_1|_{L_1 \cap L_2} = \sigma_2|_{L_1 \cap L_2}\} \subseteq \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K).$$

The inclusion on the RHS is an equality if and only if $L_1 \cap L_2 = K$. Conversely, if $\operatorname{Gal}(L/K) \simeq H_1 \times H_2$ then by defining $L_2 := L^{H_1}$ and $L_1 := L^{H_2}$ we have $L = L_1 L_2$ with $L_1 \cap L_2 = K$, and $\operatorname{Gal}(L_1/K) \simeq H_1$ and $\operatorname{Gal}(L_2/K) \simeq H_2$.

It follows from the structure theorem for finite abelian groups that we may decompose any finite abelian extension L/K into a compositum $L = L_1 \cdots L_n$ of linearly disjoint cyclic extensions L_i/K of prime-power degree. If each L_i lies in a cyclotomic field $\mathbb{Q}(\zeta_{m_i})$, then so does L. Indeed, $L \subseteq \mathbb{Q}(\zeta_{m_1}) \cdots \mathbb{Q}(\zeta_{m_n}) = \mathbb{Q}(\zeta_m)$, where $m := m_1 \cdots m_n$.

To prove the local Kronecker-Weber theorem it thus suffices to consider cyclic extensions K/\mathbb{Q}_p of prime power degree ℓ^r . There two distinct cases: $\ell \neq p$ and $\ell = p$.

20.2 The local Kronecker-Weber theorem for $\ell \neq p$

Proposition 20.4. Let K/\mathbb{Q}_p be a cyclic extension of degree ℓ^r for some prime $\ell \neq p$. Then K lies in a cyclotomic field $\mathbb{Q}_p(\zeta_m)$.

Proof. Let F be the maximal unramified extension of \mathbb{Q}_p in K; then $F = \mathbb{Q}_p(\zeta_n)$ for some $n \in \mathbb{Z}_{\geq 1}$, by Corollary 10.19. The extension K/F is totally ramified, and it must be tamely ramified, since the ramification index is a power of $\ell \neq p$. By Theorem 11.10, we have $K = F(\pi^{1/e})$ for some uniformizer π , with e = [K : F]. We may assume that $\pi = -pu$ for some $u \in \mathcal{O}_F^{\times}$, since F/\mathbb{Q}_p is unramified: if $\mathfrak{q}|p$ is the maximal ideal of \mathcal{O}_F then the valuation $v_{\mathfrak{q}}$ extends v_p with index $e_{\mathfrak{q}} = 1$ (by Theorem 8.20), so $v_{\mathfrak{q}}(-pu) = v_p(-p) = 1$. The field $K = F(\pi^{1/e})$ lies in the compositum of $F((-p)^{1/e})$ and $F(u^{1/e})$, and we will show that both fields lie in a cyclotomic extension of \mathbb{Q}_p .

The extension $F(u^{1/e})/F$ is unramified, since $v_{\mathfrak{q}}(\operatorname{disc}(x^e-u))=0$ for $p\nmid e$, so $F(u^{1/e})/\mathbb{Q}_p$ is unramified and $F(u^{1/e})=\mathbb{Q}_p(\zeta_k)$ for some $k\in\mathbb{Z}_{\geq 1}$. The field $K(u^{1/e})=K\cdot\mathbb{Q}_p(\zeta_k)$ is a compositum of abelian extensions, so $K(u^{1/e})/\mathbb{Q}_p$ is abelian, and it contains the subextension $\mathbb{Q}_p((-p)^{1/e})/\mathbb{Q}_p$, which must be Galois (since it lies in an abelian extension) and totally ramified (by Theorem 11.5, since it is an Eisenstein extension). The field $\mathbb{Q}_p((-p)^{1/e})$ contains ζ_e (take ratios of roots of x^e+p) and is totally ramified, but $\mathbb{Q}_p(\zeta_e)/\mathbb{Q}_p$ is unramified (since $p\not\mid e$), so we must have $\mathbb{Q}_p(\zeta_e)=\mathbb{Q}_p$. Thus e|(p-1), and by Lemma 20.5 below,

$$\mathbb{Q}_p((-p)^{1/e}) \subseteq \mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p).$$

It follows that $F((-p)^{1/e}) = F \cdot \mathbb{Q}_p((-p)^{1/e}) \subseteq \mathbb{Q}_p(\zeta_n) \cdot \mathbb{Q}_p(\zeta_p) \subseteq \mathbb{Q}_p(\zeta_{np})$. We then have $K \subseteq F(u^{1/e}) \cdot F((-p)^{1/e}) \subseteq \mathbb{Q}(\zeta_k) \cdot \mathbb{Q}(\zeta_{np}) \subseteq \mathbb{Q}(\zeta_{knp})$ and may take m = knp.

Lemma 20.5. For any prime p we have $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p)$.

Proof. Let $\alpha = (-p)^{1/(p-1)}$. Then α is a root of the Eisenstein polynomial $x^{p-1} + p$, so the extension $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\alpha)$ is totally ramified of degree p-1, and α is a uniformizer (by Lemma 11.4 and Theorem 11.5). Let $\pi = \zeta_p - 1$. The minimal polynomial of π is

$$f(x) := \frac{(x+1)^p - 1}{x} = x^{p-1} + px^{p-2} + \dots + p,$$

which is Eisenstein, so $\mathbb{Q}_p(\pi) = \mathbb{Q}_p(\zeta_p)$ is also totally ramified of degree p-1, and π is a uniformizer. We have $u := -\pi^{p-1}/p \equiv 1 \mod \pi$, so u is a unit in the ring of integers of $\mathbb{Q}_p(\zeta_p)$. If we now put $g(x) = x^{p-1} - u$ then $g(1) \equiv 0 \mod \pi$ and $g'(1) = p-1 \not\equiv 0 \mod \pi$, so by Hensel's Lemma 9.15 we can lift 1 to a root β of g(x) in $\mathbb{Q}_p(\zeta_p)$.

We then have $p\beta^{p-1} = pu = -\pi^{p-1}$, so $(\pi/\beta)^{p-1} + p = 0$, and therefore $\pi/\beta \in \mathbb{Q}_p(\zeta_p)$ is a root of the minimal polynomial of α . Since $\mathbb{Q}_p(\zeta_p)$ is Galois, this implies that $\alpha \in \mathbb{Q}_p(\zeta_p)$, and since $\mathbb{Q}_p(\alpha)$ and $\mathbb{Q}_p(\zeta_p)$ both have degree p-1, the two fields coincide.

To complete the proof of the local Kronecker-Weber theorem, we need to address the case $\ell = p$. Before doing so, we first recall some background on Kummer extensions.

20.3 A brief introduction to Kummer theory

Let n be a positive integer and let K be a field of characteristic prime to n that contains a primitive nth root of unity ζ_n . While we are specifically interested in the case where K is a local or global field, in this section K can be any field that satisfies these conditions.

For any $a \in K$, the field $L = K(\sqrt[n]{a})$ is the splitting field of $f(x) = x^n - a$ over K; the notation $\sqrt[n]{a}$ denotes a particular nth root of a, but it does not matter which root we pick because all the nth roots of a lie in L (if $f(\alpha) = f(\beta) = 0$ then $\alpha/\beta \in \zeta_n^i \in K$ for some $0 \le i < n$ and $K(\alpha) = K(\beta)$). The polynomial f(x) is separable, since n is prime to the characteristic of K, so L is a Galois extension of K, and Gal(L/K) is cyclic, since we have an injective homomorphism

$$\operatorname{Gal}(L/K) \hookrightarrow \langle \zeta_n \rangle \simeq \mathbb{Z}/n\mathbb{Z}$$

$$\sigma \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}.$$

This homomorphism is an isomorphism if and only if $x^n - a$ is irreducible.

Kummer's key observation is that the converse holds. In order to prove this we first recall a basic (but often omitted) lemma from Galois theory, originally due to Dedekind.

Lemma 20.6. Let L/K be a finite extension of fields. The set $\operatorname{Aut}_K(L)$ is a linearly independent subset of the L-vector space of functions $L \to L$.

Proof. Suppose not. Let $f := c_1\sigma_1 + \cdots + c_r\sigma_r = 0$ with $c_i \in L$, $\sigma_i \in \operatorname{Aut}_K(L)$, and r minimal; we must have r > 1, the c_i nonzero, and the σ_i distinct. Choose $\alpha \in L$ so $\sigma_1(\alpha) \neq \sigma_r(\alpha)$ (possible since $\sigma_1 \neq \sigma_r$). We have $f(\beta) = 0$ for all $\beta \in L$, and the same applies to $f(\alpha\beta) - \sigma_1(\alpha)f(\beta)$, which yields a shorter relation $c'_2\sigma_2 + \cdots + c'_r\sigma_r = 0$, where $c'_i = c_i\sigma_i(\alpha) - c_i\sigma_1(\alpha)$ with $c'_1 = 0$, which is nontrivial because $c'_r \neq 0$, a contradiction. \square

Corollary 20.7. Let L/K be a cyclic field extension of degree n with Galois group $\langle \sigma \rangle$ and suppose L contains an nth root of unity ζ_n . Then $\sigma(\alpha) = \zeta_n \alpha$ for some $\alpha \in L$.

Proof. The automorphism σ is a linear transformation of L with characteristic polynomial $x^n - 1$; by Lemma 20.6, this must be its minimal polynomial, since $\{1, \sigma^1, \ldots, \sigma^{n-1}\}$ is linearly independent. Therefore ζ_n is eigenvalue of σ , and the lemma follows.

Remark 20.8. Corollary 20.7 is a special case of HILBERT'S THEOREM 90, which replaces ζ_n with any element u of norm $N_{L/K}(u) = 1$; see [4, Thm. VI.6.1], for example.

Lemma 20.9. Let K be a field, let $n \ge 1$ be prime to the characteristic of K, and assume $\zeta_n \in K$. If L/K is a cyclic extension of degree n then $L = K(\sqrt[n]{a})$ for some $a \in K$.

Proof. Let L/K be a cyclic extension of degree n with $Gal(L/K) = \langle \sigma \rangle$. By Corollary 20.7, there exists an element $\alpha \in L$ for which $\sigma(\alpha) = \zeta_n \alpha$. We have

$$\sigma(\alpha^n) = \sigma(\alpha)^n = (\zeta_n \alpha)^n = \alpha^n,$$

thus $a = \alpha^n$ is invariant under the action of $\langle \sigma \rangle = \operatorname{Gal}(L/K)$ and therefore lies in K. Moreover, the orbit $\{\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha\}$ of α under the action of $\operatorname{Gal}(L/K)$ has order n, so $L = K(\alpha) = K(\sqrt[n]{a})$ as desired.

Definition 20.10. Let K be a field with algebraic closure \overline{K} , let $n \geq 1$ be prime to the characteristic of K, and assume $\zeta_n \in K$. The *Kummer pairing* is the map

$$\langle \cdot, \cdot \rangle \colon \operatorname{Gal}(\overline{K}/K) \times K^{\times} \to \langle \zeta_n \rangle$$

$$(\sigma, a) \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}$$

where $\sqrt[n]{a}$ is any nth root of a in $\in \overline{K}^{\times}$. If α and β are two nth roots of a, then $(\alpha/\beta)^n = 1$, so $\alpha/\beta \in \langle \zeta_n \rangle \subseteq K$ is fixed by σ and $\sigma(\beta)/\beta = \sigma(\beta)/\beta \cdot \sigma(\alpha/\beta)/(\alpha/\beta) = \sigma(\alpha)/\alpha$, so the value of $\langle \sigma, a \rangle$ does not depend on the choice of $\sqrt[n]{a}$. If $a \in K^{\times n}$, then $\langle \sigma, a \rangle = 1$ for all $\sigma \in \operatorname{Gal}(\overline{K}/K)$, so the Kummer pairing depends only on the image of a in $K^{\times}/K^{\times n}$; thus we may also view it as a pairing on $\operatorname{Gal}(\overline{K}/K) \times K^{\times}/K^{\times n}$.

Theorem 20.11. Let K be a field, let $n \geq 1$ be prime to the characteristic of K with $\zeta_n \in K$. The Kummer pairing induces an isomorphism

$$\Phi \colon K^{\times}/K^{\times n} \to \operatorname{Hom}\left(\operatorname{Gal}(\overline{K}/K), \langle \zeta_n \rangle\right)$$
$$a \mapsto (\sigma \mapsto \langle \sigma, a \rangle).$$

Proof. For each $a \in K^{\times} - K^{\times n}$, if we pick an nth root $\alpha \in \overline{K}$ of a then the extension $K(\alpha)/K$ will be non-trivial and some $\sigma \in \operatorname{Gal}(\overline{K}/K)$ must act nontrivially on α . For this σ we have $\langle \sigma, a \rangle \neq 1$, so $a \notin \ker \Phi$; thus Φ is injective.

Now let $f: \operatorname{Gal}(\overline{K}/K) \to \langle \zeta_n \rangle$ be a homomorphism, and put $d \coloneqq \# \operatorname{im} f$, $H \coloneqq \ker f$, and $L \coloneqq \overline{K}^H$. Then $\operatorname{Gal}(L/K) \simeq \operatorname{Gal}(\overline{K}/K)/H \simeq \mathbb{Z}/d\mathbb{Z}$, so L/K is a cyclic extension of degree d, and Lemma 20.9 implies that $L = K(\sqrt[d]{a})$ for some $a \in K$. If we put e = n/d and consider the homomorphisms $\Phi(a^{me})$ for $m \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, these homomorphisms are all distinct (because the a^{me} are distinct modulo $K^{\times n}$ and Φ is injective), and they all have the same kernel and image as f (their kernels have the same fixed field L because L contains all the dth roots of a). There are $\#(\mathbb{Z}/d\mathbb{Z})^{\times} = \#\operatorname{Aut}(\mathbb{Z}/d\mathbb{Z})$ distinct isomorphisms $\operatorname{Gal}(\overline{K}/K)/H \simeq \mathbb{Z}/d\mathbb{Z}$, one of which corresponds to f, and each corresponds to one of the $\Phi(a^{me})$. It follows that $f = \Phi(a^{me})$ for some $m \in (\mathbb{Z}/d\mathbb{Z})^{\times}$, thus Φ is surjective. \square

Given a finite subgroup A of $K^{\times}/K^{\times n}$, we can choose $a_1, \ldots, a_r \in K^{\times}$ so that the images \bar{a}_i of the a_i in $K^{\times}/K^{\times n}$ form a basis for the abelian group A; this means

$$A = \langle \bar{a}_1 \rangle \times \cdots \times \langle \bar{a}_r \rangle \simeq \mathbb{Z}/n_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/n_r \mathbb{Z},$$

where $n_i|n$ is the order of \bar{a}_i in A. For each a_i , the fixed field of the kernel of $\Phi(\bar{a}_i)$ is a cyclic extension of K isomorphic to $L_i := K(\sqrt[n_i]{a_i})$, as in the proof of Theorem 20.11. The fields L_i are linearly disjoint over K (because the a_i correspond to independent generators of A), and their compositum $L = K(\sqrt[n_i]{a_1}, \ldots, \sqrt[n_i]{a_r})$ has Galois group $\operatorname{Gal}(L/K) \simeq A$, an abelian group whose exponent divides n; such fields L are called n-Kummer extensions of K.

Conversely, given an n-Kummer extension L/K, we can iteratively apply Lemma 20.9 to put L in the form $L = K(\sqrt[n_1]{a_1}, \ldots, \sqrt[n_i]{a_r})$ with each $a_i \in K^{\times}$ and $n_i|n$, and the images of the a_i in $K^{\times}/K^{\times n}$ then generate a subgroup A corresponding to L as above. We thus have a 1-to-1 correspondence between finite subgroups of $K^{\times}/K^{\times n}$ and (finite) n-Kummer extensions of K (this correspondence also extends to infinite subgroups provided we put a suitable topology on the groups).

So far we have been assuming that K contains all the nth roots of unity. To help handle situations where this is not necessarily the case, we rely on the following lemma.

Lemma 20.12. Fix $n \in \mathbb{Z}_{>1}$, let F be a field of characteristic prime to n, let $K = F(\zeta_n)$, and let $L = K(\sqrt[n]{a})$ for some $a \in K^{\times}$. Define the homomorphism $\omega \colon \operatorname{Gal}(K/F) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ by $\zeta_n^{\omega(\sigma)} = \sigma(\zeta_n)$. If L/F is abelian then $\sigma(a)/a^{\omega(\sigma)} \in K^{\times n}$ for all $\sigma \in \operatorname{Gal}(K/F)$.

Proof. Let $G = \operatorname{Gal}(L/F)$, let $H = \operatorname{Gal}(L/K) \subseteq G$, and let A be the subgroup of $K^{\times}/K^{\times n}$ generated by a. The Kummer pairing induces a bilinear pairing $H \times A \to \langle \zeta_n \rangle$ that is compatible with the Galois action of $\operatorname{Gal}(K/F) \simeq G/H$. In particular, we have

$$\langle h, a^{\omega(\sigma)} \rangle = \langle h, a \rangle^{\omega(\sigma)} = \sigma(\langle h, a \rangle) = \langle h^{\sigma}, \sigma(a) \rangle = \langle h, \sigma(a) \rangle$$

for all $\sigma \in \operatorname{Gal}(K/F)$ and $h \in H$; the Galois action on H is by conjugation (lift σ to G and conjugate there), but it is trivial because G is abelian (so $h^{\sigma} = h$). The isomorphism Φ induced by the Kummer pairing is injective, so $a^{\omega(\sigma)} \equiv \sigma(a) \mod K^{\times n}$.

20.4 The local Kronecker-Weber theorem for $\ell = p > 2$

We are now ready to prove the local Kronecker-Weber theorem in the case $\ell = p > 2$.

Theorem 20.13. Let K/\mathbb{Q}_p be a cyclic extension of odd degree p^r . Then K lies in a cyclotomic field $\mathbb{Q}_p(\zeta_m)$.

Proof. There are two obvious candidates for K, namely, the cyclotomic field $\mathbb{Q}_p(\zeta_{p^{p^r}-1})$, which by Corollary 10.19 is an unramified extension of degree p^r , and the index p-1 subfield of the cyclotomic field $\mathbb{Q}_p(\zeta_{p^{r+1}})$, which by Corollary 10.20 is a totally ramified extension of degree p^r (the p^{r+1} -cyclotomic polynomial $\Phi_{p^{r+1}}(x)$ has degree $\phi(p^{r+1}) = p^r(p-1)$ and remains irreducible over \mathbb{Q}_p). If K is contained in the compositum of these two fields then $K \subseteq \mathbb{Q}_p(\zeta_m)$, where $m := (p^{p^r}-1)(p^{r+1})$ and the theorem holds. Otherwise, the field $K(\zeta_m)$ is a Galois extension of \mathbb{Q}_p with

$$\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_p) \simeq \mathbb{Z}/p^r\mathbb{Z} \times \mathbb{Z}/p^r\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}/p^s\mathbb{Z},$$

for some s>0; the first factor comes from the Galois group of $\mathbb{Q}_p(\zeta_{p^{p^r}-1})$, the second two factors come from the Galois group of $\mathbb{Q}_p(\zeta_{p^{r+1}})$ (note $\mathbb{Q}_p(\zeta_{p^{r+1}})\cap \mathbb{Q}_p(\zeta_{p^{p^r}-1})=\mathbb{Q}_p$), and the last factor comes from the fact that we are assuming $K \not\subseteq \mathbb{Q}_p(\zeta_m)$, so $\mathrm{Gal}(K(\zeta_m)/\mathbb{Q}_p(\zeta_m))$ is nontrivial and must have order p^s for some $s \in [1, r]$.

It follows that the abelian group $\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_p)$ has a quotient isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$, and the subfield of $K(\zeta_m)$ corresponding to this quotient is an abelian extension of \mathbb{Q}_p with Galois group isomorphic $(\mathbb{Z}/p\mathbb{Z})^3$. By Lemma 20.14 below, no such field exists.

To prove that \mathbb{Q}_p admits no $(\mathbb{Z}/p\mathbb{Z})^3$ -extensions our strategy is to use Kummer theory to show that the corresponding subgroup of $\mathbb{Q}_p(\zeta_p)^{\times}/\mathbb{Q}_p(\zeta_p)^{\times p}$ given by Theorem 20.11 must have p-rank 2 and therefore cannot exist. For an alternative proof that uses higher ramification groups instead of Kummer theory, see Problem Set 10.

Lemma 20.14. For p > 2 no extension of \mathbb{Q}_p has Galois group isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$.

Proof. Suppose for the sake of contradiction that K is an extension of \mathbb{Q}_p with Galois group $\operatorname{Gal}(K/\mathbb{Q}_p) \simeq (\mathbb{Z}/p\mathbb{Z})^3$. Then K/\mathbb{Q}_p is linearly disjoint from $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$, since the order of $G := \operatorname{Gal}(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p) \simeq (\mathbb{Z}/p\mathbb{Z})^{\times}$ is not divisible by p, and $\operatorname{Gal}(K(\zeta_p)/\mathbb{Q}_p(\zeta_p)) \simeq (\mathbb{Z}/p\mathbb{Z})^3$ is a p-Kummer extension. There is thus a subgroup $A \subseteq \mathbb{Q}_p(\zeta_p)^{\times}/\mathbb{Q}_p(\zeta_p)^{\times p}$ isomorphic to $(\mathbb{Z}/p\mathbb{Z})^3$, for which $K(\zeta_p) = \mathbb{Q}_p(\zeta_p, A^{1/p})$, where $A^{1/p} := \{\sqrt[p]{a} : a \in A\}$ (here we identify elements of A by representatives in $\mathbb{Q}_p(\zeta_p)^{\times}$ that are determined only up to pth powers).

For any $a \in A$, the extension $\mathbb{Q}_p(\zeta_p, \sqrt[p]{a})/\mathbb{Q}_p$ is abelian, so by Lemma 20.12, we have

$$\sigma(a)/a^{\omega(\sigma)} \in \mathbb{Q}_p(\zeta_p)^{\times p} \tag{1}$$

for all $\sigma \in G$, where $\omega \colon G \xrightarrow{\sim} (\mathbb{Z}/p\mathbb{Z})^{\times}$ is the isomorphism defined by $\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)}$.

The field $\mathbb{Q}_p(\zeta_p)$ is a totally tamely ramified extension of \mathbb{Q}_p of degree p-1 with residue field $\mathbb{Z}/p\mathbb{Z}$; as shown in the proof of Lemma 20.5, we may take $\pi := \zeta_p - 1$ as a uniformizer. For each $a \in A$ we have

$$v_{\pi}(a) = v_{\pi}(\sigma(a)) \equiv \omega(\sigma)v_{\pi}(a) \bmod p$$
,

thus $(1 - \omega(\sigma))v_{\pi}(a) \equiv 0 \mod p$, for all $\sigma \in G$, hence for all $\omega(\sigma) \in \omega(G) = (\mathbb{Z}/p\mathbb{Z})^{\times}$; for p > 2, this implies $v_{\pi}(a) \equiv 0 \mod p$. Now a is determined only up to pth-powers, so after multiplying by $\pi^{-v_{\pi}(a)}$ we may assume $v_{\pi}(a) = 0$, and after multiplying by a suitable power of $\zeta_{p-1}^p = \zeta_{p-1}$, we may assume $a \equiv 1 \mod \pi$, since the image of ζ_{p-1} generates the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of the residue field.

We may thus assume that $A \subseteq U_1/U_1^p$, where $U_1 := \{u \equiv 1 \mod \pi\}$. Each $u \in U_1$ can be written as a power series in π with integer coefficients in [0, p-1] and constant coefficient 1.

We have $\zeta_p \in U_1$, since $\zeta_p = 1 + \pi$, and $\zeta_p^b = 1 + b\pi + O(\pi^2)$ for integers $b \in [0, p-1]$. For $a \in A \subseteq U_1$, we can choose b so that for some integer $c \in [0, p-1]$ and $e \in \mathbb{Z}_{\geq 2}$ we have

$$a = \zeta_p^b (1 + c\pi^e + O(\pi^{e+1})).$$

For $\sigma \in G$ we have

$$\frac{\sigma(\pi)}{\pi} = \frac{\sigma(\zeta_p - 1)}{\zeta_p - 1} = \frac{\zeta_p^{\omega(\sigma)} - 1}{\zeta_p - 1} = \zeta_p^{\omega(\sigma) - 1} + \dots + \zeta_p + 1 \equiv \omega(\sigma) \bmod \pi,$$

since each term in the sum is congruent to 1 modulo $\pi = (\zeta_p - 1)$; here we are representing $\omega(\sigma) \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ as an integer in [1, p - 1]. Thus $\sigma(\pi) \equiv \omega(\sigma)\pi \mod \pi^2$ and

$$\sigma(a) = \zeta_p^{b\omega(\sigma)} (1 + c\omega(\sigma)^e \pi^e + O(\pi^{e+1})).$$

We also have

$$a^{\omega(\sigma)} = \zeta_p^{b\omega(\sigma)} (1 + c\omega(\sigma)\pi^e + O(\pi^{e+1})).$$

As we showed for a above, any $u \in U_1$ can be written as $u = \zeta_p^b u_1$ with $u_1 \equiv 1 \mod \pi^2$. Each interior term in the binomial expansion of $u_1^p = (1 + O(\pi^2))^p$ other than leading 1 is a multiple of $p\pi^2$ with $v_{\pi}(p\pi^2) = p - 1 + 2 = p + 1$, and it follows that $u^p = u_1^p \equiv 1 \mod \pi^{p+1}$. Thus every element of U_1^p is congruent to 1 modulo π^{p+1} , and as you will show on the problem set, the converse holds, that is, $U_1^p = \{u \equiv 1 \mod \pi^{p+1}\}$.

We know from (1) that $\sigma(a)/a^{\omega(\sigma)} \in U_1^p$, so $\sigma(a) = a^{\omega(\sigma)}(1 + O(\pi^{p+1}))$ and therefore

$$\sigma(a) \equiv a^{\omega(\sigma)} \bmod \pi^{p+1}$$
.

For $e \leq p$ this is possible only if $\omega(\sigma) = \omega(\sigma)^e$ for every $\sigma \in G$, equivalently, for every $\omega(\sigma) \in \sigma(G) = (\mathbb{Z}/p\mathbb{Z})^{\times}$, but then $e \equiv 1 \mod (p-1)$ and we must have $e \geq p$, since $e \geq 2$.

We have shown that every $a \in A$ is represented by an element $\zeta_p^b(1+c\pi^p+O(\pi^{p+1})) \in U_1$ with $b,c \in \mathbb{Z}$, and therefore lies in the subgroup of U_1/U_1^p generated by ζ_p and $(1+\pi^p)$, which is an abelian group of exponent p generated by 2 elements, hence isomorphic to a subgroup of $(\mathbb{Z}/p\mathbb{Z})^2$. But this contradicts $A \simeq (\mathbb{Z}/p\mathbb{Z})^3$.

Remark 20.15. In the proof of Lemma 20.14 above, the elements of $\mathbb{Q}_p(\zeta_p)^{\times}/\mathbb{Q}_p(\zeta_p)^{\times p}$ that lie in A are quite special. For most $a \in \mathbb{Q}_p(\zeta_p)^{\times}$ the extension $\mathbb{Q}_p(\zeta_p, \sqrt[p]{a})/\mathbb{Q}_p$ will not be abelian, even though the extensions $\mathbb{Q}_p(\sqrt[p]{a})/\mathbb{Q}_p(\zeta_p)$ and $\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p$ both are, and we typically will not have $v_{\pi}(a) \equiv 0 \mod p$ (consider $a = \pi$). The key point is that we started with an abelian extension K/\mathbb{Q}_p , so $K(\zeta_p) = K \cdot \mathbb{Q}_p(\zeta_p)$ is an abelian extension containing $A^{1/p}$; this ensures that for $a \in A$ the fields $\mathbb{Q}_p(\zeta_p, \sqrt[p]{a})$ are abelian.

Remark 20.16. There is an alternative proof to Lemma 20.14 that is much more explicit. One can show that for p > 2 the field \mathbb{Q}_p admits exactly p+1 cyclic extensions of degree p: the unramified extension $\mathbb{Q}_p(\zeta_{p^p-1})$ and the extensions $\mathbb{Q}_p[x]/(x^p + px^{p-1} + p(1+ap))$, for integers $a \in [0, p-1]$; see [3, Prop. 2.3.1]. This implies that \mathbb{Q}_p cannot have a $(\mathbb{Z}/p\mathbb{Z})^3$ extension, since this would imply the existence of $p^2 + p + 1$ cyclic extensions of degree p, one for each index p subgroup of $(\mathbb{Z}/p\mathbb{Z})^3$.

¹The expression $O(\pi^n)$ denotes a power series in π that is divisible by π^n .

For p=2 there is an extension of \mathbb{Q}_2 with Galois group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$, the cyclotomic field $\mathbb{Q}_2(\zeta_{24}) = \mathbb{Q}_2(\zeta_3) \cdot \mathbb{Q}_2(\zeta_8)$, so the proof we used for p>2 will not work. However we can apply a completely analogous argument.

Theorem 20.17. Let K/\mathbb{Q}_2 be a cyclic extension of degree 2^r . Then K lies in a cyclotomic field $\mathbb{Q}_2(\zeta_m)$.

Proof. The unramified cyclotomic field $\mathbb{Q}_2(\zeta_{2^{2^r}-1})$ has Galois group $\mathbb{Z}/2^r\mathbb{Z}$, and the totally ramified cyclotomic field $\mathbb{Q}_2(\zeta_{2^{r+2}})$ has Galois group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^r\mathbb{Z}$ (up to isomorphism). Let $m = (2^{2^r} - 1)(2^{r+2})$. If K is not contained in $\mathbb{Q}_2(\zeta_m)$ then

$$\operatorname{Gal}(K(\zeta_m)/\mathbb{Q}_2) \simeq \begin{cases} \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2^r\mathbb{Z})^2 \times \mathbb{Z}/2^s\mathbb{Z} & \text{with } 1 \leq s \leq r \\ \text{or} \\ (\mathbb{Z}/2^r\mathbb{Z})^2 \times \mathbb{Z}/2^s\mathbb{Z} & \text{with } 2 \leq s \leq r \end{cases}$$

and thus admits a quotient isomorphic to $(\mathbb{Z}/2\mathbb{Z})^4$ or $(\mathbb{Z}/4\mathbb{Z})^3$. By Lemma 20.18 below, no extension of \mathbb{Q}_2 has either of these Galois groups, thus K must lie in $\mathbb{Q}_2(\zeta_m)$.

Lemma 20.18. No extension of \mathbb{Q}_2 has Galois group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^4$ or $(\mathbb{Z}/4\mathbb{Z})^3$.

Proof. As you proved on Problem Set 4, there are exactly 7 quadratic extensions of \mathbb{Q}_2 ; it follows that no extension of \mathbb{Q}_2 has Galois group $(\mathbb{Z}/2\mathbb{Z})^4$, since this group has 15 subgroups of index 2 whose fixed fields would yield 15 distinct quadratic extension of \mathbb{Q}_2 .

As you proved on Problem Set 5, there are only finitely many extensions of \mathbb{Q}_2 of any fixed degree d, and these can be enumerated by considering Eisenstein polynomials in $\mathbb{Q}_2[x]$ of degrees dividing d up to an equivalence relation implied by Krasner's lemma. One finds that there are 59 quartic extensions of \mathbb{Q}_2 , of which 12 are cyclic; you can find a list of them here. It follows that no extension of \mathbb{Q}_2 has Galois group $(\mathbb{Z}/4\mathbb{Z})^3$, since this group has 28 subgroups whose fixed fields would yield 28 distinct cyclic quartic extensions of \mathbb{Q}_2 .

References

- [1] David Hilbert, Ein neuer Beweis des Kroneckerschen Fundamentalsatzes über Abelsche Zahlkörper, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klass (1896), 29–39.
- [2] Leopold Kronecker, Uber die algebraisch auflösbaren Gleichungen I (1853), in Leopold Kronecker's Werke, Part 4 (ed. K. Hensel), AMS Chelsea Publishing, 1968.
- [3] John W. Jones and David P. Roberts, *A database of local fields*, J. Symbolic Comput. **41** (2006), 80–97.
- [4] Serge Lang, Algebra, 3rd edition, Springer, 2002.
- [5] Olaf Neumann, Two proofs of the Kronecker-Weber theorem "according to Kronecker, and Weber", J. Reine Angew. Math. **323** (1981),105–126.
- [6] Lawrence C. Washington, *Introduction to cyclotomic fields*, 2nd edition, Springer, 1997.
- [7] Heinrich M. Weber, Theorie der Abel'schen Zahlkörper, Acta Mathematica 8 (1886), 193–263.

MIT OpenCourseWare https://ocw.mit.edu

18.785 Number Theory I Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.