20 The Kronecker-Weber theorem

In the previous lecture we established a relationship between finite groups of Dirichlet characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to-one-correspondence between finite groups H of primitive Dirichlet characters of conductor dividing m and subfields K of $\mathbb{Q}\left(\zeta_{m}\right)$ under which H can be viewed as the character group of the finite abelian group $\operatorname{Gal}(K / \mathbb{Q})$ and the Dedekind zeta function of K factors as

$$
\zeta_{K}(s)=\prod_{\chi \in H} L(s, \chi)
$$

Now suppose we are given an arbitrary finite abelian extension K / \mathbb{Q}. Does the character group of $\operatorname{Gal}(K / \mathbb{Q})$ correspond to a group of Dirichlet characters, and can we then factor the Dedekind zeta function $\zeta_{K}(s)$ as a product of Dirichlet L-functions?

The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states that every finite abelian extension of \mathbb{Q} lies in a cyclotomic field. This theorem was first stated in 1853 by Kronecker [2], who provided a partial proof for extensions of odd degree. Weber [7] published a proof 1886 that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [5]), but in any case an alternative proof was given a few years later by Hilbert [1]. The proof we present here is adapted from [6, Ch. 14]

20.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.
Theorem 20.1. Every finite abelian extension of \mathbb{Q} lies in a cyclotomic field $\mathbb{Q}\left(\zeta_{m}\right)$.
There is also a local version.
Theorem 20.2. Every finite abelian extension of \mathbb{Q}_{p} lies in a cyclotomic field $\mathbb{Q}_{p}\left(\zeta_{m}\right)$.
We first show that the local version implies the global one.
Proposition 20.3. The local Kronecker-Weber theorem implies the global Kronecker-Weber theorem.

Proof. Let K / \mathbb{Q} be a finite abelian extension. For each ramified prime p of \mathbb{Q}, pick a prime $\mathfrak{p} \mid p$ and let $K_{\mathfrak{p}}$ be the completion of K at \mathfrak{p} (the fact that K / \mathbb{Q} is Galois means that every $\mathfrak{p} \mid p$ is ramified with the same ramification index; it makes no difference which \mathfrak{p} we pick). We have $\operatorname{Gal}\left(K_{\mathfrak{p}} / \mathbb{Q}_{p}\right) \simeq D_{\mathfrak{p}} \subseteq \operatorname{Gal}(K / \mathbb{Q})$, by Theorem 11.23 , so $K_{\mathfrak{p}}$ is an abelian extension of $\mathbb{Q}_{\mathfrak{p}}$ and the local Kronecker-Weber theorem implies that $K_{\mathfrak{p}} \subseteq \mathbb{Q}_{p}\left(\zeta_{m_{p}}\right)$ for some $m_{p} \in \mathbb{Z}_{\geq 1}$. Let $n_{p}:=v_{p}\left(m_{p}\right)$, put $m:=\prod_{p} p^{n_{p}}$ (this is a finite product), and let $L=K\left(\zeta_{m}\right)$. We will show $L=\mathbb{Q}\left(\zeta_{m}\right)$, which implies $K \subseteq \mathbb{Q}\left(\zeta_{m}\right)$.

The field $L=K \cdot \mathbb{Q}\left(\zeta_{m}\right)$ is a compositum of Galois extensions of \mathbb{Q}, and is therefore Galois over \mathbb{Q} with $\operatorname{Gal}(L / \mathbb{Q})$ isomorphic to a subgroup of $\operatorname{Gal}(K / \mathbb{Q}) \times \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right)$, hence abelian (as recalled below, the Galois group of a compositum $K_{1} \cdots K_{r}$ of Galois extensions K_{i} / F is isomorphic to a subgroup of the direct product of the $\left.\operatorname{Gal}\left(K_{i} / F\right)\right)$. Let \mathfrak{q} be a prime of L lying above a ramified prime $\mathfrak{p} \mid p$; as above, the completion $L_{\mathfrak{q}}$ of L at \mathfrak{q} is a finite abelian extension of \mathbb{Q}_{p}, since L / \mathbb{Q} is finite abelian, and we have $L_{\mathfrak{q}}=K_{\mathfrak{p}} \cdot \mathbb{Q}_{p}\left(\zeta_{m}\right)$. Let $F_{\mathfrak{q}}$ be the maximal unramified extension of \mathbb{Q}_{p} in $L_{\mathfrak{q}}$. Then $L_{\mathfrak{q}} / F_{\mathfrak{q}}$ is totally ramified
and $\operatorname{Gal}\left(L_{\mathfrak{q}} / F_{\mathfrak{q}}\right)$ is isomorphic to the inertia group $I_{p}:=I_{\mathfrak{q}} \subseteq \operatorname{Gal}(L / \mathbb{Q})$, by Theorem 11.23 (the $I_{\mathfrak{q}}$ all coincide because L / \mathbb{Q} is abelian).

It follows from Corollary 10.20 that $K_{\mathfrak{p}} \subseteq F_{\mathfrak{q}}\left(\zeta_{p^{n_{p}}}\right)$, since $K_{\mathfrak{p}} \subseteq \mathbb{Q}_{p}\left(\zeta_{m_{p}}\right)$ and $\mathbb{Q}_{p}\left(\zeta_{m_{p} / p^{n_{p}}}\right)$ is unramified, and that $L_{\mathfrak{q}}=F_{\mathfrak{q}}\left(\zeta_{p^{n_{p}}}\right)$, since $\mathbb{Q}_{p}\left(\zeta_{m / p^{n_{p}}}\right)$ is unramified. Moreover, we have $F_{\mathfrak{q}} \cap \mathbb{Q}_{p}\left(\zeta_{p^{n_{p}}}\right)=\mathbb{Q}_{p}$, since $\mathbb{Q}_{p}\left(\zeta_{p^{n_{p}}}\right) / \mathbb{Q}_{p}$ is totally ramified, and it follows that

$$
I_{p} \simeq \operatorname{Gal}\left(L_{\mathfrak{q}} / F_{\mathfrak{q}}\right) \simeq \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p^{n_{p}}}\right) / \mathbb{Q}_{p}\right) \simeq\left(\mathbb{Z} / p^{n_{p}} \mathbb{Z}\right)^{\times}
$$

Now let I be the group generated by the union of the groups $I_{p} \subseteq \operatorname{Gal}(L / \mathbb{Q})$ for $p \mid m$. Since $\operatorname{Gal}(L / \mathbb{Q})$ is abelian, we have $\bigcup I_{p} \subseteq \prod I_{p}$, thus

$$
\# I \leq \prod_{p \mid m} \# I_{p}=\prod_{p \mid m} \#\left(\mathbb{Z} / p^{n_{p}} \mathbb{Z}\right)^{\times}=\prod_{p \mid m} \phi\left(p^{n_{p}}\right)=\phi(m)=\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right] .
$$

Each inertia field $L^{I_{p}}$ is unramified at p (see Proposition 7.12), as is $L^{I} \subseteq L^{I_{p}}$. So L^{I} / \mathbb{Q} is unramified, and therefore $L^{I}=\mathbb{Q}$, by Corollary 14.25. Thus

$$
[L: \mathbb{Q}]=\left[L: L^{I}\right]=\# I \leq\left[\mathbb{Q}\left(\zeta_{m}\right): \mathbb{Q}\right],
$$

and $\mathbb{Q}\left(\zeta_{m}\right) \subseteq L$, so $L=\mathbb{Q}\left(\zeta_{m}\right)$ as claimed and $K \subseteq L=\mathbb{Q}\left(\zeta_{m}\right)$.
To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic extensions of prime-power degree. Recall that if L_{1} and L_{2} are two Galois extensions of a field K then their compositum $L:=L_{1} L_{2}$ is Galois over K with Galois group

$$
\operatorname{Gal}(L / K) \simeq\left\{\left(\sigma_{1}, \sigma_{2}\right):\left.\sigma_{1}\right|_{L_{1} \cap L_{2}}=\left.\sigma_{2}\right|_{L_{1} \cap L_{2}}\right\} \subseteq \operatorname{Gal}\left(L_{1} / K\right) \times \operatorname{Gal}\left(L_{2} / K\right)
$$

The inclusion on the RHS is an equality if and only if $L_{1} \cap L_{2}=K$. Conversely, if $\operatorname{Gal}(L / K) \simeq H_{1} \times H_{2}$ then by defining $L_{2}:=L^{H_{1}}$ and $L_{1}:=L^{H_{2}}$ we have $L=L_{1} L_{2}$ with $L_{1} \cap L_{2}=K$, and $\operatorname{Gal}\left(L_{1} / K\right) \simeq H_{1}$ and $\operatorname{Gal}\left(L_{2} / K\right) \simeq H_{2}$.

It follows from the structure theorem for finite abelian groups that we may decompose any finite abelian extension L / K into a compositum $L=L_{1} \cdots L_{n}$ of linearly disjoint cyclic extensions L_{i} / K of prime-power degree. If each L_{i} lies in a cyclotomic field $\mathbb{Q}\left(\zeta_{m_{i}}\right)$, then so does L. Indeed, $L \subseteq \mathbb{Q}\left(\zeta_{m_{1}}\right) \cdots \mathbb{Q}\left(\zeta_{m_{n}}\right)=\mathbb{Q}\left(\zeta_{m}\right)$, where $m:=m_{1} \cdots m_{n}$.

To prove the local Kronecker-Weber theorem it thus suffices to consider cyclic extensions K / \mathbb{Q}_{p} of prime power degree ℓ^{r}. There two distinct cases: $\ell \neq p$ and $\ell=p$.

20.2 The local Kronecker-Weber theorem for $\ell \neq p$

Proposition 20.4. Let K / \mathbb{Q}_{p} be a cyclic extension of degree ℓ^{r} for some prime $\ell \neq p$. Then K lies in a cyclotomic field $\mathbb{Q}_{p}\left(\zeta_{m}\right)$.

Proof. Let F be the maximal unramified extension of \mathbb{Q}_{p} in K; then $F=\mathbb{Q}_{p}\left(\zeta_{n}\right)$ for some $n \in \mathbb{Z}_{\geq 1}$, by Corollary 10.19. The extension K / F is totally ramified, and it must be tamely ramified, since the ramification index is a power of $\ell \neq p$. By Theorem 11.10, we have $K=F\left(\pi^{1 / e}\right)$ for some uniformizer π, with $e=[K: F]$. We may assume that $\pi=-p u$ for some $u \in \mathcal{O}_{F}^{\times}$, since F / \mathbb{Q}_{p} is unramified: if $\mathfrak{q} \mid p$ is the maximal ideal of \mathcal{O}_{F} then the valuation $v_{\mathfrak{q}}$ extends v_{p} with index $e_{\mathfrak{q}}=1$ (by Theorem 8.20), so $v_{\mathfrak{q}}(-p u)=v_{p}(-p)=1$. The field $K=F\left(\pi^{1 / e}\right)$ lies in the compositum of $F\left((-p)^{1 / e}\right)$ and $F\left(u^{1 / e}\right)$, and we will show that both fields lie in a cyclotomic extension of \mathbb{Q}_{p}.

The extension $F\left(u^{1 / e}\right) / F$ is unramified, since $v_{\mathfrak{q}}\left(\operatorname{disc}\left(x^{e}-u\right)\right)=0$ for $p \nmid e$, so $F\left(u^{1 / e}\right) / \mathbb{Q}_{p}$ is unramified and $F\left(u^{1 / e}\right)=\mathbb{Q}_{p}\left(\zeta_{k}\right)$ for some $k \in \mathbb{Z}_{\geq 1}$. The field $K\left(u^{1 / e}\right)=K \cdot \mathbb{Q}_{p}\left(\zeta_{k}\right)$ is a compositum of abelian extensions, so $K\left(u^{1 / e}\right) / \mathbb{Q}_{p}$ is abelian, and it contains the subextension $\mathbb{Q}_{p}\left((-p)^{1 / e}\right) / \mathbb{Q}_{p}$, which must be Galois (since it lies in an abelian extension) and totally ramified (by Theorem 11.5, since it is an Eisenstein extension). The field $\mathbb{Q}_{p}\left((-p)^{1 / e}\right)$ contains ζ_{e} (take ratios of roots of $x^{e}+p$) and is totally ramified, but $\mathbb{Q}_{p}\left(\zeta_{e}\right) / \mathbb{Q}_{p}$ is unramified (since $p \nmid e$), so we must have $\mathbb{Q}_{p}\left(\zeta_{e}\right)=\mathbb{Q}_{p}$. Thus $e \mid(p-1)$, and by Lemma 20.5 below,

$$
\mathbb{Q}_{p}\left((-p)^{1 / e}\right) \subseteq \mathbb{Q}_{p}\left((-p)^{1 /(p-1)}\right)=\mathbb{Q}_{p}\left(\zeta_{p}\right) .
$$

It follows that $F\left((-p)^{1 / e}\right)=F \cdot \mathbb{Q}_{p}\left((-p)^{1 / e}\right) \subseteq \mathbb{Q}_{p}\left(\zeta_{n}\right) \cdot \mathbb{Q}_{p}\left(\zeta_{p}\right) \subseteq \mathbb{Q}_{p}\left(\zeta_{n p}\right)$. We then have $K \subseteq F\left(u^{1 / e}\right) \cdot F\left((-p)^{1 / e}\right) \subseteq \mathbb{Q}\left(\zeta_{k}\right) \cdot \mathbb{Q}\left(\zeta_{n p}\right) \subseteq \mathbb{Q}\left(\zeta_{k n p}\right)$ and may take $m=k n p$.

Lemma 20.5. For any prime p we have $\mathbb{Q}_{p}\left((-p)^{1 /(p-1)}\right)=\mathbb{Q}_{p}\left(\zeta_{p}\right)$.
Proof. Let $\alpha=(-p)^{1 /(p-1)}$. Then α is a root of the Eisenstein polynomial $x^{p-1}+p$, so the extension $\mathbb{Q}_{p}\left((-p)^{1 /(p-1)}\right)=\mathbb{Q}_{p}(\alpha)$ is totally ramified of degree $p-1$, and α is a uniformizer (by Lemma 11.4 and Theorem 11.5). Let $\pi=\zeta_{p}-1$. The minimal polynomial of π is

$$
f(x):=\frac{(x+1)^{p}-1}{x}=x^{p-1}+p x^{p-2}+\cdots+p
$$

which is Eisenstein, so $\mathbb{Q}_{p}(\pi)=\mathbb{Q}_{p}\left(\zeta_{p}\right)$ is also totally ramified of degree $p-1$, and π is a uniformizer. We have $u:=-\pi^{p-1} / p \equiv 1 \bmod \pi$, so u is a unit in the ring of integers of $\mathbb{Q}_{p}\left(\zeta_{p}\right)$. If we now put $g(x)=x^{p-1}-u$ then $g(1) \equiv 0 \bmod \pi$ and $g^{\prime}(1)=p-1 \not \equiv 0 \bmod \pi$, so by Hensel's Lemma 9.15 we can lift 1 to a root β of $g(x)$ in $\mathbb{Q}_{p}\left(\zeta_{p}\right)$.

We then have $p \beta^{p-1}=p u=-\pi^{p-1}$, so $(\pi / \beta)^{p-1}+p=0$, and therefore $\pi / \beta \in \mathbb{Q}_{p}\left(\zeta_{p}\right)$ is a root of the minimal polynomial of α. Since $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ is Galois, this implies that $\alpha \in \mathbb{Q}_{p}\left(\zeta_{p}\right)$, and since $\mathbb{Q}_{p}(\alpha)$ and $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ both have degree $p-1$, the two fields coincide.

To complete the proof of the local Kronecker-Weber theorem, we need to address the case $\ell=p$. Before doing so, we first recall some background on Kummer extensions.

20.3 A brief introduction to Kummer theory

Let n be a positive integer and let K be a field of characteristic prime to n that contains a primitive nth root of unity ζ_{n}. While we are specifically interested in the case where K is a local or global field, in this section K can be any field that satisfies these conditions.

For any $a \in K$, the field $L=K(\sqrt[n]{a})$ is the splitting field of $f(x)=x^{n}-a$ over K; the notation $\sqrt[n]{a}$ denotes a particular nth root of a, but it does not matter which root we pick because all the nth roots of a lie in L (if $f(\alpha)=f(\beta)=0$ then $\alpha / \beta \in \zeta_{n}^{i} \in K$ for some $0 \leq i<n$ and $K(\alpha)=K(\beta))$. The polynomial $f(x)$ is separable, since n is prime to the characteristic of K, so L is a Galois extension of K, and $\operatorname{Gal}(L / K)$ is cyclic, since we have an injective homomorphism

$$
\begin{aligned}
\operatorname{Gal}(L / K) & \hookrightarrow\left\langle\zeta_{n}\right\rangle \simeq \mathbb{Z} / n \mathbb{Z} \\
\sigma & \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}
\end{aligned}
$$

This homomorphism is an isomorphism if and only if $x^{n}-a$ is irreducible.
Kummer's key observation is that the converse holds. In order to prove this we first recall a basic (but often omitted) lemma from Galois theory, originally due to Dedekind.

Lemma 20.6. Let L / K be a finite extension of fields. The set $\operatorname{Aut}_{K}(L)$ is a linearly independent subset of the L-vector space of functions $L \rightarrow L$.

Proof. Suppose not. Let $f:=c_{1} \sigma_{1}+\cdots+c_{r} \sigma_{r}=0$ with $c_{i} \in L, \sigma_{i} \in \operatorname{Aut}_{K}(L)$, and r minimal; we must have $r>1$, the c_{i} nonzero, and the σ_{i} distinct. Choose $\alpha \in L$ so $\sigma_{1}(\alpha) \neq \sigma_{r}(\alpha)$ (possible since $\left.\sigma_{1} \neq \sigma_{r}\right)$. We have $f(\beta)=0$ for all $\beta \in L$, and the same applies to $f(\alpha \beta)-\sigma_{1}(\alpha) f(\beta)$, which yields a shorter relation $c_{2}^{\prime} \sigma_{2}+\cdots+c_{r}^{\prime} \sigma_{r}=0$, where $c_{i}^{\prime}=c_{i} \sigma_{i}(\alpha)-c_{i} \sigma_{1}(\alpha)$ with $c_{1}^{\prime}=0$, which is nontrivial because $c_{r}^{\prime} \neq 0$, a contradiction.

Corollary 20.7. Let L / K be a cyclic field extension of degree n with Galois group $\langle\sigma\rangle$ and suppose L contains an nth root of unity ζ_{n}. Then $\sigma(\alpha)=\zeta_{n} \alpha$ for some $\alpha \in L$.

Proof. The automorphism σ is a linear transformation of L with characteristic polynomial $x^{n}-1$; by Lemma 20.6 , this must be its minimal polynomial, since $\left\{1, \sigma^{1}, \ldots, \sigma^{n-1}\right\}$ is linearly independent. Therefore ζ_{n} is eigenvalue of σ, and the lemma follows.

Remark 20.8. Corollary 20.7 is a special case of Hilbert's Theorem 90, which replaces ζ_{n} with any element u of norm $\mathrm{N}_{L / K}(u)=1$; see [4, Thm. VI.6.1], for example.

Lemma 20.9. Let K be a field, let $n \geq 1$ be prime to the characteristic of K, and assume $\zeta_{n} \in K$. If L / K is a cyclic extension of degree n then $L=K(\sqrt[n]{a})$ for some $a \in K$.

Proof. Let L / K be a cyclic extension of degree n with $\operatorname{Gal}(L / K)=\langle\sigma\rangle$. By Corollary 20.7, there exists an element $\alpha \in L$ for which $\sigma(\alpha)=\zeta_{n} \alpha$. We have

$$
\sigma\left(\alpha^{n}\right)=\sigma(\alpha)^{n}=\left(\zeta_{n} \alpha\right)^{n}=\alpha^{n}
$$

thus $a=\alpha^{n}$ is invariant under the action of $\langle\sigma\rangle=\operatorname{Gal}(L / K)$ and therefore lies in K. Moreover, the orbit $\left\{\alpha, \zeta_{n} \alpha, \ldots, \zeta_{n}^{n-1} \alpha\right\}$ of α under the action of $\operatorname{Gal}(L / K)$ has order n, so $L=K(\alpha)=K(\sqrt[n]{a})$ as desired.

Definition 20.10. Let K be a field with algebraic closure \bar{K}, let $n \geq 1$ be prime to the characteristic of K, and assume $\zeta_{n} \in K$. The Kummer pairing is the map

$$
\begin{aligned}
\langle\cdot, \cdot\rangle: \operatorname{Gal}(\bar{K} / K) \times K^{\times} & \rightarrow\left\langle\zeta_{n}\right\rangle \\
(\sigma, a) & \mapsto \frac{\sigma(\sqrt[n]{a})}{\sqrt[n]{a}}
\end{aligned}
$$

where $\sqrt[n]{a}$ is any nth root of a in $\in \bar{K}^{\times}$. If α and β are two nth roots of a, then $(\alpha / \beta)^{n}=1$, so $\alpha / \beta \in\left\langle\zeta_{n}\right\rangle \subseteq K$ is fixed by σ and $\sigma(\beta) / \beta=\sigma(\beta) / \beta \cdot \sigma(\alpha / \beta) /(\alpha / \beta)=\sigma(\alpha) / \alpha$, so the value of $\langle\sigma, a\rangle$ does not depend on the choice of $\sqrt[n]{a}$. If $a \in K^{\times n}$, then $\langle\sigma, a\rangle=1$ for all $\sigma \in \operatorname{Gal}(\bar{K} / K)$, so the Kummer pairing depends only on the image of a in $K^{\times} / K^{\times n}$; thus we may also view it as a pairing on $\operatorname{Gal}(\bar{K} / K) \times K^{\times} / K^{\times n}$.

Theorem 20.11. Let K be a field, let $n \geq 1$ be prime to the characteristic of K with $\zeta_{n} \in K$. The Kummer pairing induces an isomorphism

$$
\begin{aligned}
\Phi: K^{\times} / K^{\times n} & \rightarrow \operatorname{Hom}\left(\operatorname{Gal}(\bar{K} / K),\left\langle\zeta_{n}\right\rangle\right) \\
a & \mapsto(\sigma \mapsto\langle\sigma, a\rangle)
\end{aligned}
$$

Proof. For each $a \in K^{\times}-K^{\times n}$, if we pick an nth root $\alpha \in \bar{K}$ of a then the extension $K(\alpha) / K$ will be non-trivial and some $\sigma \in \operatorname{Gal}(\bar{K} / K)$ must act nontrivially on α. For this σ we have $\langle\sigma, a\rangle \neq 1$, so $a \notin \operatorname{ker} \Phi$; thus Φ is injective.

Now let $f: \operatorname{Gal}(\bar{K} / K) \rightarrow\left\langle\zeta_{n}\right\rangle$ be a homomorphism, and put $d:=\# \operatorname{im} f, H:=\operatorname{ker} f$, and $L:=\bar{K}^{H}$. Then $\operatorname{Gal}(L / K) \simeq \operatorname{Gal}(\bar{K} / K) / H \simeq \mathbb{Z} / d \mathbb{Z}$, so L / K is a cyclic extension of degree d, and Lemma 20.9 implies that $L=K(\sqrt[d]{a})$ for some $a \in K$. If we put $e=n / d$ and consider the homomorphisms $\Phi\left(a^{m e}\right)$ for $m \in(\mathbb{Z} / d \mathbb{Z})^{\times}$, these homomorphisms are all distinct (because the $a^{m e}$ are distinct modulo $K^{\times n}$ and Φ is injective), and they all have the same kernel and image as f (their kernels have the same fixed field L because L contains all the d th roots of $a)$. There are $\#(\mathbb{Z} / d \mathbb{Z})^{\times}=\# \operatorname{Aut}(\mathbb{Z} / d \mathbb{Z})$ distinct isomorphisms $\operatorname{Gal}(\bar{K} / K) / H \simeq \mathbb{Z} / d \mathbb{Z}$, one of which corresponds to f, and each corresponds to one of the $\Phi\left(a^{m e}\right)$. It follows that $f=\Phi\left(a^{m e}\right)$ for some $m \in(\mathbb{Z} / d \mathbb{Z})^{\times}$, thus Φ is surjective.

Given a finite subgroup A of $K^{\times} / K^{\times n}$, we can choose $a_{1}, \ldots, a_{r} \in K^{\times}$so that the images \bar{a}_{i} of the a_{i} in $K^{\times} / K^{\times n}$ form a basis for the abelian group A; this means

$$
A=\left\langle\bar{a}_{1}\right\rangle \times \cdots \times\left\langle\bar{a}_{r}\right\rangle \simeq \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{r} \mathbb{Z}
$$

where $n_{i} \mid n$ is the order of \bar{a}_{i} in A. For each a_{i}, the fixed field of the kernel of $\Phi\left(\bar{a}_{i}\right)$ is a cyclic extension of K isomorphic to $L_{i}:=K\left(\sqrt[n_{i}]{a_{i}}\right)$, as in the proof of Theorem 20.11. The fields L_{i} are linearly disjoint over K (because the a_{i} correspond to independent generators of A), and their compositum $L=K\left(\sqrt[n_{1}]{a_{1}}, \ldots \sqrt[n_{r}]{a_{r}}\right)$ has Galois group $\operatorname{Gal}(L / K) \simeq A$, an abelian group whose exponent divides n; such fields L are called n-Kummer extensions of K.

Conversely, given an n-Kummer extension L / K, we can iteratively apply Lemma 20.9 to put L in the form $L=K\left(\sqrt[n_{1}]{a_{1}}, \ldots, \sqrt[n_{r}]{a_{r}}\right)$ with each $a_{i} \in K^{\times}$and $n_{i} \mid n$, and the images of the a_{i} in $K^{\times} / K^{\times n}$ then generate a subgroup A corresponding to L as above. We thus have a 1-to-1 correspondence between finite subgroups of $K^{\times} / K^{\times n}$ and (finite) n-Kummer extensions of K (this correspondence also extends to infinite subgroups provided we put a suitable topology on the groups).

So far we have been assuming that K contains all the nth roots of unity. To help handle situations where this is not necessarily the case, we rely on the following lemma.

Lemma 20.12. Fix $n \in \mathbb{Z}_{>1}$, let F be a field of characteristic prime to n, let $K=F\left(\zeta_{n}\right)$, and let $L=K(\sqrt[n]{a})$ for some $a \in K^{\times}$. Define the homomorphism $\omega: \operatorname{Gal}(K / F) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$ by $\zeta_{n}^{\omega(\sigma)}=\sigma\left(\zeta_{n}\right)$. If L / F is abelian then $\sigma(a) / a^{\omega(\sigma)} \in K^{\times n}$ for all $\sigma \in \operatorname{Gal}(K / F)$.

Proof. Let $G=\operatorname{Gal}(L / F)$, let $H=\operatorname{Gal}(L / K) \subseteq G$, and let A be the subgroup of $K^{\times} / K^{\times n}$ generated by a. The Kummer pairing induces a bilinear pairing $H \times A \rightarrow\left\langle\zeta_{n}\right\rangle$ that is compatible with the Galois action of $\operatorname{Gal}(K / F) \simeq G / H$. In particular, we have

$$
\left\langle h, a^{\omega(\sigma)}\right\rangle=\langle h, a\rangle^{\omega(\sigma)}=\sigma(\langle h, a\rangle)=\left\langle h^{\sigma}, \sigma(a)\right\rangle=\langle h, \sigma(a)\rangle
$$

for all $\sigma \in \operatorname{Gal}(K / F)$ and $h \in H$; the Galois action on H is by conjugation (lift σ to G and conjugate there), but it is trivial because G is abelian (so $h^{\sigma}=h$). The isomorphism Φ induced by the Kummer pairing is injective, so $a^{\omega(\sigma)} \equiv \sigma(a) \bmod K^{\times n}$.

20.4 The local Kronecker-Weber theorem for $\ell=p>2$

We are now ready to prove the local Kronecker-Weber theorem in the case $\ell=p>2$.

Theorem 20.13. Let K / \mathbb{Q}_{p} be a cyclic extension of odd degree p^{r}. Then K lies in a cyclotomic field $\mathbb{Q}_{p}\left(\zeta_{m}\right)$.

Proof. There are two obvious candidates for K, namely, the cyclotomic field $\mathbb{Q}_{p}\left(\zeta_{p} p^{r}-1\right)$, which by Corollary 10.19 is an unramified extension of degree p^{r}, and the index $p-1$ subfield of the cyclotomic field $\mathbb{Q}_{p}\left(\zeta_{p^{r+1}}\right)$, which by Corollary 10.20 is a totally ramified extension of degree p^{r} (the p^{r+1}-cyclotomic polynomial $\Phi_{p^{r+1}}(x)$ has degree $\phi\left(p^{r+1}\right)=p^{r}(p-1)$ and remains irreducible over \mathbb{Q}_{p}). If K is contained in the compositum of these two fields then $K \subseteq \mathbb{Q}_{p}\left(\zeta_{m}\right)$, where $m:=\left(p^{p^{r}}-1\right)\left(p^{r+1}\right)$ and the theorem holds. Otherwise, the field $K\left(\zeta_{m}\right)$ is a Galois extension of \mathbb{Q}_{p} with

$$
\operatorname{Gal}\left(K\left(\zeta_{m}\right) / \mathbb{Q}_{p}\right) \simeq \mathbb{Z} / p^{r} \mathbb{Z} \times \mathbb{Z} / p^{r} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z} \times \mathbb{Z} / p^{s} \mathbb{Z}
$$

for some $s>0$; the first factor comes from the Galois group of $\mathbb{Q}_{p}\left(\zeta_{p^{p}}-1\right)$, the second two factors come from the Galois group of $\mathbb{Q}_{p}\left(\zeta_{p^{r+1}}\right)\left(\right.$ note $\left.\mathbb{Q}_{p}\left(\zeta_{p^{r+1}}\right) \cap \mathbb{Q}_{p}\left(\zeta_{p^{p}-1}\right)=\mathbb{Q}_{p}\right)$, and the last factor comes from the fact that we are assuming $K \nsubseteq \mathbb{Q}_{p}\left(\zeta_{m}\right)$, so $\operatorname{Gal}\left(K\left(\zeta_{m}\right) / \mathbb{Q}_{p}\left(\zeta_{m}\right)\right)$ is nontrivial and must have order p^{s} for some $s \in[1, r]$.

It follows that the abelian group $\operatorname{Gal}\left(K\left(\zeta_{m}\right) / \mathbb{Q}_{p}\right)$ has a quotient isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{3}$, and the subfield of $K\left(\zeta_{m}\right)$ corresponding to this quotient is an abelian extension of \mathbb{Q}_{p} with Galois group isomorphic $(\mathbb{Z} / p \mathbb{Z})^{3}$. By Lemma 20.14 below, no such field exists.

To prove that \mathbb{Q}_{p} admits no $(\mathbb{Z} / p \mathbb{Z})^{3}$-extensions our strategy is to use Kummer theory to show that the corresponding subgroup of $\mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times} / \mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times p}$ given by Theorem 20.11 must have p-rank 2 and therefore cannot exist. For an alternative proof that uses higher ramification groups instead of Kummer theory, see Problem Set 10.

Lemma 20.14. For $p>2$ no extension of \mathbb{Q}_{p} has Galois group isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{3}$.
Proof. Suppose for the sake of contradiction that K is an extension of \mathbb{Q}_{p} with Galois group $\operatorname{Gal}\left(K / \mathbb{Q}_{p}\right) \simeq(\mathbb{Z} / p \mathbb{Z})^{3}$. Then K / \mathbb{Q}_{p} is linearly disjoint from $\mathbb{Q}_{p}\left(\zeta_{p}\right) / \mathbb{Q}_{p}$, since the order of $G:=\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p}\right) / \mathbb{Q}_{p}\right) \simeq(\mathbb{Z} / p \mathbb{Z})^{\times}$is not divisible by p, and $\operatorname{Gal}\left(K\left(\zeta_{p}\right) / \mathbb{Q}_{p}\left(\zeta_{p}\right)\right) \simeq(\mathbb{Z} / p \mathbb{Z})^{3}$ is a p-Kummer extension. There is thus a subgroup $A \subseteq \mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times} / \mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times p}$ isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{3}$, for which $K\left(\zeta_{p}\right)=\mathbb{Q}_{p}\left(\zeta_{p}, A^{1 / p}\right)$, where $A^{1 / p}:=\{\sqrt[p]{a}: a \in A\}$ (here we identify elements of A by representatives in $\mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times}$that are determined only up to p th powers).

For any $a \in A$, the extension $\mathbb{Q}_{p}\left(\zeta_{p}, \sqrt[p]{a}\right) / \mathbb{Q}_{p}$ is abelian, so by Lemma 20.12, we have

$$
\begin{equation*}
\sigma(a) / a^{\omega(\sigma)} \in \mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times p} \tag{1}
\end{equation*}
$$

for all $\sigma \in G$, where $\omega: G \xrightarrow{\sim}(\mathbb{Z} / p \mathbb{Z})^{\times}$is the isomorphism defined by $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{\omega(\sigma)}$.
The field $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ is a totally tamely ramified extension of \mathbb{Q}_{p} of degree $p-1$ with residue field $\mathbb{Z} / p \mathbb{Z}$; as shown in the proof of Lemma 20.5 , we may take $\pi:=\zeta_{p}-1$ as a uniformizer. For each $a \in A$ we have

$$
v_{\pi}(a)=v_{\pi}(\sigma(a)) \equiv \omega(\sigma) v_{\pi}(a) \bmod p,
$$

thus $(1-\omega(\sigma)) v_{\pi}(a) \equiv 0 \bmod p$, for all $\sigma \in G$, hence for all $\omega(\sigma) \in \omega(G)=(\mathbb{Z} / p \mathbb{Z})^{\times}$; for $p>2$, this implies $v_{\pi}(a) \equiv 0 \bmod p$. Now a is determined only up to p th-powers, so after multiplying by $\pi^{-v_{\pi}(a)}$ we may assume $v_{\pi}(a)=0$, and after multiplying by a suitable power of $\zeta_{p-1}^{p}=\zeta_{p-1}$, we may assume $a \equiv 1 \bmod \pi$, since the image of ζ_{p-1} generates the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$of the residue field.

We may thus assume that $A \subseteq U_{1} / U_{1}^{p}$, where $U_{1}:=\{u \equiv 1 \bmod \pi\}$. Each $u \in U_{1}$ can be written as a power series in π with integer coefficients in $[0, p-1]$ and constant coefficient 1.

We have $\zeta_{p} \in U_{1}$, since $\zeta_{p}=1+\pi$, and $\zeta_{p}^{b}=1+b \pi+O\left(\pi^{2}\right)$ for integers $b \in[0, p-1]$. ${ }^{1}$ For $a \in A \subseteq U_{1}$, we can choose b so that for some integer $c \in[0, p-1]$ and $e \in \mathbb{Z}_{\geq 2}$ we have

$$
a=\zeta_{p}^{b}\left(1+c \pi^{e}+O\left(\pi^{e+1}\right)\right)
$$

For $\sigma \in G$ we have

$$
\frac{\sigma(\pi)}{\pi}=\frac{\sigma\left(\zeta_{p}-1\right)}{\zeta_{p}-1}=\frac{\zeta_{p}^{\omega(\sigma)}-1}{\zeta_{p}-1}=\zeta_{p}^{\omega(\sigma)-1}+\cdots+\zeta_{p}+1 \equiv \omega(\sigma) \bmod \pi
$$

since each term in the sum is congruent to 1 modulo $\pi=\left(\zeta_{p}-1\right)$; here we are representing $\omega(\sigma) \in(\mathbb{Z} / p \mathbb{Z})^{\times}$as an integer in $[1, p-1]$. Thus $\sigma(\pi) \equiv \omega(\sigma) \pi \bmod \pi^{2}$ and

$$
\sigma(a)=\zeta_{p}^{b \omega(\sigma)}\left(1+c \omega(\sigma)^{e} \pi^{e}+O\left(\pi^{e+1}\right)\right)
$$

We also have

$$
a^{\omega(\sigma)}=\zeta_{p}^{b \omega(\sigma)}\left(1+c \omega(\sigma) \pi^{e}+O\left(\pi^{e+1}\right)\right)
$$

As we showed for a above, any $u \in U_{1}$ can be written as $u=\zeta_{p}^{b} u_{1}$ with $u_{1} \equiv 1 \bmod \pi^{2}$. Each interior term in the binomial expansion of $u_{1}^{p}=\left(1+O\left(\pi^{2}\right)\right)^{p}$ other than leading 1 is a multiple of $p \pi^{2}$ with $v_{\pi}\left(p \pi^{2}\right)=p-1+2=p+1$, and it follows that $u^{p}=u_{1}^{p} \equiv 1 \bmod \pi^{p+1}$. Thus every element of U_{1}^{p} is congruent to 1 modulo π^{p+1}, and as you will show on the problem set, the converse holds, that is, $U_{1}^{p}=\left\{u \equiv 1 \bmod \pi^{p+1}\right\}$.

We know from (1) that $\sigma(a) / a^{\omega(\sigma)} \in U_{1}^{p}$, so $\sigma(a)=a^{\omega(\sigma)}\left(1+O\left(\pi^{p+1}\right)\right)$ and therefore

$$
\sigma(a) \equiv a^{\omega(\sigma)} \bmod \pi^{p+1}
$$

For $e \leq p$ this is possible only if $\omega(\sigma)=\omega(\sigma)^{e}$ for every $\sigma \in G$, equivalently, for every $\omega(\sigma) \in \sigma(G)=(\mathbb{Z} / p \mathbb{Z})^{\times}$, but then $e \equiv 1 \bmod (p-1)$ and we must have $e \geq p$, since $e \geq 2$.

We have shown that every $a \in A$ is represented by an element $\zeta_{p}^{b}\left(1+c \pi^{p}+O\left(\pi^{p+1}\right)\right) \in U_{1}$ with $b, c \in \mathbb{Z}$, and therefore lies in the subgroup of U_{1} / U_{1}^{p} generated by ζ_{p} and $\left(1+\pi^{p}\right)$, which is an abelian group of exponent p generated by 2 elements, hence isomorphic to a subgroup of $(\mathbb{Z} / p \mathbb{Z})^{2}$. But this contradicts $A \simeq(\mathbb{Z} / p \mathbb{Z})^{3}$.

Remark 20.15. In the proof of Lemma 20.14 above, the elements of $\mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times} / \mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times p}$ that lie in A are quite special. For most $a \in \mathbb{Q}_{p}\left(\zeta_{p}\right)^{\times}$the extension $\mathbb{Q}_{p}\left(\zeta_{p}, \sqrt[p]{a}\right) / \mathbb{Q}_{p}$ will not be abelian, even though the extensions $\mathbb{Q}_{p}(\sqrt[p]{a}) / \mathbb{Q}_{p}\left(\zeta_{p}\right)$ and $\mathbb{Q}_{p}\left(\zeta_{p}\right) / \mathbb{Q}_{p}$ both are, and we typically will not have $v_{\pi}(a) \equiv 0 \bmod p($ consider $a=\pi)$. The key point is that we started with an abelian extension K / \mathbb{Q}_{p}, so $K\left(\zeta_{p}\right)=K \cdot \mathbb{Q}_{p}\left(\zeta_{p}\right)$ is an abelian extension containing $A^{1 / p}$; this ensures that for $a \in A$ the fields $\mathbb{Q}_{p}\left(\zeta_{p}, \sqrt[p]{a}\right)$ are abelian.

Remark 20.16. There is an alternative proof to Lemma 20.14 that is much more explicit. One can show that for $p>2$ the field \mathbb{Q}_{p} admits exactly $p+1$ cyclic extensions of degree p : the unramified extension $\mathbb{Q}_{p}\left(\zeta_{p^{p}-1}\right)$ and the extensions $\mathbb{Q}_{p}[x] /\left(x^{p}+p x^{p-1}+p(1+a p)\right)$, for integers $a \in[0, p-1]$; see [3, Prop. 2.3.1]. This implies that \mathbb{Q}_{p} cannot have a $(\mathbb{Z} / p \mathbb{Z})^{3}$ extension, since this would imply the existence of $p^{2}+p+1$ cyclic extensions of degree p, one for each index p subgroup of $(\mathbb{Z} / p \mathbb{Z})^{3}$.

[^0]For $p=2$ there is an extension of \mathbb{Q}_{2} with Galois group isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{3}$, the cyclotomic field $\mathbb{Q}_{2}\left(\zeta_{24}\right)=\mathbb{Q}_{2}\left(\zeta_{3}\right) \cdot \mathbb{Q}_{2}\left(\zeta_{8}\right)$, so the proof we used for $p>2$ will not work. However we can apply a completely analogous argument.

Theorem 20.17. Let K / \mathbb{Q}_{2} be a cyclic extension of degree 2^{r}. Then K lies in a cyclotomic field $\mathbb{Q}_{2}\left(\zeta_{m}\right)$.

Proof. The unramified cyclotomic field $\mathbb{Q}_{2}\left(\zeta_{2^{2^{r}}-1}\right)$ has Galois group $\mathbb{Z} / 2^{r} \mathbb{Z}$, and the totally ramified cyclotomic field $\mathbb{Q}_{2}\left(\zeta_{2^{r+2}}\right)$ has Galois group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r} \mathbb{Z}$ (up to isomorphism). Let $m=\left(2^{2^{r}}-1\right)\left(2^{r+2}\right)$. If K is not contained in $\mathbb{Q}_{2}\left(\zeta_{m}\right)$ then

$$
\operatorname{Gal}\left(K\left(\zeta_{m}\right) / \mathbb{Q}_{2}\right) \simeq \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \times\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{2} \times \mathbb{Z} / 2^{s} \mathbb{Z} & \text { with } 1 \leq s \leq r \\ \text { or } & \text { with } 2 \leq s \leq r \\ \left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{2} \times \mathbb{Z} / 2^{s} \mathbb{Z} & \end{cases}
$$

and thus admits a quotient isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ or $(\mathbb{Z} / 4 \mathbb{Z})^{3}$. By Lemma 20.18 below, no extension of \mathbb{Q}_{2} has either of these Galois groups, thus K must lie in $\mathbb{Q}_{2}\left(\zeta_{m}\right)$.

Lemma 20.18. No extension of \mathbb{Q}_{2} has Galois group isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ or $(\mathbb{Z} / 4 \mathbb{Z})^{3}$.
Proof. As you proved on Problem Set 4 , there are exactly 7 quadratic extensions of \mathbb{Q}_{2}; it follows that no extension of \mathbb{Q}_{2} has Galois group $(\mathbb{Z} / 2 \mathbb{Z})^{4}$, since this group has 15 subgroups of index 2 whose fixed fields would yield 15 distinct quadratic extension of \mathbb{Q}_{2}.

As you proved on Problem Set 5, there are only finitely many extensions of \mathbb{Q}_{2} of any fixed degree d, and these can be enumerated by considering Eisenstein polynomials in $\mathbb{Q}_{2}[x]$ of degrees dividing d up to an equivalence relation implied by Krasner's lemma. One finds that there are 59 quartic extensions of \mathbb{Q}_{2}, of which 12 are cyclic; you can find a list of them here. It follows that no extension of \mathbb{Q}_{2} has Galois group $(\mathbb{Z} / 4 \mathbb{Z})^{3}$, since this group has 28 subgroups whose fixed fields would yield 28 distinct cyclic quartic extensions of \mathbb{Q}_{2}.

References

[1] David Hilbert, Ein neuer Beweis des Kroneckerschen Fundamentalsatzes über Abelsche Zahlkörper, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klass (1896), 29-39.
[2] Leopold Kronecker, Uber die algebraisch auflösbaren Gleichungen I (1853), in Leopold Kronecker's Werke, Part 4 (ed. K. Hensel), AMS Chelsea Publishing, 1968.
[3] John W. Jones and David P. Roberts, A database of local fields, J. Symbolic Comput. 41 (2006), 80-97.
[4] Serge Lang, Algebra, 3rd edition, Springer, 2002.
[5] Olaf Neumann, Two proofs of the Kronecker-Weber theorem"according to Kronecker, and Weber", J. Reine Angew. Math. 323 (1981),105-126.
[6] Lawrence C. Washington, Introduction to cyclotomic fields, 2nd edition, Springer, 1997.
[7] Heinrich M. Weber, Theorie der Abel'schen Zahlkörper, Acta Mathematica 8 (1886), 193-263.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The expression $O\left(\pi^{n}\right)$ denotes a power series in π that is divisible by π^{n}.

