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18 Dirichlet L-functions, primes in arithmetic progressions

Having proved the prime number theorem, we would like to prove an analogous result
for primes in arithmetic progressions. We begin with Dirichlet’s theorem on primes in
arithmetic progressions, a result that predates the prime number theorem by sixty years.

Theorem 18.1 (Dirichlet 1837). For all coprime integers a and m there are infinitely many
primes p ≡ a mod m.

In fact Dirichlet proved more than this. In a sense that we will make precise below, he
proved that for every fixed modulus m the primes are equidistributed among the residue
classes in (Z/mZ)×. The equidistribution statement that Dirichlet was able to prove is a
bit weaker than one might like, but it is more than enough to establish Theorem 18.1.

Remark 18.2. Many of the standard tools of complex analysis we take for granted were not
available to Dirichlet in 1837. Riemann was the first to seriously study ζ(s) as a function of
a complex variable, some twenty years after Dirichlet proved Theorem 18.1. We will work
in a more modern setting, but our approach still follows the spirit of Dirichlet’s proof.

18.1 Infinitely many primes

To motivate Dirichlet’s method of proof, let us consider the following (admittedly clumsy)
proof that there are infinitely many primes. It is sufficient to show that the Euler product

ζ(s) =
∏
p

(1− p−s)−1

diverges as s→ 1+. Of course we know ζ(s) has a pole at s = 1 (by Theorem 16.3), but let
us suppose for the moment that we did not already know this. Taking logarithms yields

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

p−s +O(1), (1)

as s→ 1+, where we have used the asymptotic bounds

− log(1− x) = x+O(x2) (as x→ 0) and
∑
p

O(p−2s) = O(1) (Re(s) > 1/2 + ε).

We can estimate
∑

p≤x
1
p via Mertens’ second theorem, one of three he proved in [4].

Theorem 18.3 (Mertens 1874). As x→∞ we have

(1)
∑
p≤x

log p
p = log x+R(x), where |R(x)| < 2.1

(2)
∑
p≤x

1
p = log log x+B +O

(
1

log x

)
, where B = 0.261497 . . . is Mertens’ constant;

(3)
∑
p≤x

log
(
1− 1

p

)
= −log log x− γ +O

(
1

log x

)
, where γ = 0.577216 . . . is Euler’s constant.

1In fact, R(x) = −B3 + o(1) where B3 = 1.332582 . . . is an explicit constant.
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Proof. See Problem Set 9.

Thus not only does
∑
p−s diverge as s→ 1+, we can say with a fair degree of precision

how quickly this happens. We should note, however, that Mertens’ estimate is not as
strong as the prime number theorem. Indeed, as you will prove on Problem Set 9, the
Prime Number Theorem is equivalent to the statement∑

p≤x

1

p
= log log x+B + o

(
1

log x

)
,

which is (ever so slightly) sharper than Mertens’ estimate.2

18.1.1 Infinitely many primes congruent to 1 modulo 4

To demonstrate how the argument above generalizes to primes in arithmetic progressions,
let us prove there are infinitely many primes congruent to 1 mod 4. We might initially
consider ∏

p≡ 1 mod 4

(1− p−s)−1 =
∑
n≥1

p|n⇒ p≡ 1 mod 4

n−s,

but the sum on the RHS is a bit awkward. Let us instead define a Dirichlet character

χ(n) :=


1 if n ≡ 1 mod 4,

−1 if n ≡ −1 mod 4,

0 otherwise,

and consider the Dirichlet L-function

L(s, χ) :=
∏
p

(1− χ(p)p−s)−1 =
∑
n≥1

χ(n)n−s = 1− 3−s + 5−s − 7−s + 9−s + · · · ,

which converges absolutely on Re(s) > 1. As s→ 1+ we have

logL(s, χ) = −
∑
p

log(1− χ(p)p−s) =
∑
p

χ(p)p−s +O(1)

=
∑

p≡ 1 mod 4

p−s −
∑

p≡ 3 mod 4

p−s + O(1),

and
log ζ(s) =

∑
p≡ 1 mod 4

p−s +
∑

p≡ 3 mod 4

p−s +O(1),

thus
log ζ(s) + logL(s, χ)

2
=

∑
p≡ 1 mod 4

p−s +O(1).

Provided logL(s, χ) = O(1) as s→ 1+, the LHS (and hence the RHS) must tend to infinity
as s→ 1+, since ζ(s)→∞ as s→ 1+. It thus suffices to show that L(s, χ) has an analytic

2The error term in the PNT actually implies
∑

p≤x
1
p

= log log x + B + O
(
1
x

)
, but an o( 1

log x
) bound is

already enough to show π(x) ∼ x/ log x. That the difference between a little-o and a big-O is the difference
between proving the PNT and not proving it demonstrates how critical it is to understand error terms.
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continuation to a neighborhood of s = 1 with L(1, χ) 6= 0 (in which case there is a branch
of the complex logarithm holomorphic on a neighborhood of L(1, χ)). We will prove this in
the next lecture. Assuming this for the moment, we then have∑

p≤x
p≡ 1 mod 4

1

p
=

1

2
log log x+O(1).

Mertens’ second theorem implies that the same holds if we instead sum over p ≡ 3 mod 4.
The primes are thus equidistributed modulo m = 4 in the sense that for all integers a
coprime to m we have ∑

p≤x
p≡ a mod m

1

p
∼ 1

φ(m)

∑
p≤x

1

p
∼ 1

φ(m)
log log x.

We should note that this statement is weaker than the prime number theorem for arithmetic
progressions, which states that

π(x;m, a) ∼ 1

φ(m)
π(x),

where π(x;m, a) counts the primes p ≤ x for which p ≡ a mod m (see Problem Set 9).
Dirichlet did not have Mertens’ asymptotic bounds so he stated his results in a different

way, using what is now called the Dirichlet density of a set of primes S,

d(S) := lim
s→1+

∑
p∈S p

−s∑
p p
−s ,

defined whenever this limit exists (one can also define notions of lower and upper Dirichlet
density using lim inf and lim sup that are always defined and agree whenever d(S) is defined).
This definition differs from the more common notion of natural density

δ(S) := lim
x→∞

#{p ≤ x : p ∈ S}
#{p ≤ x}

.

Dirichlet proved that for all coprime integers a and m the set of primes p ≡ a mod m has
Dirichlet density 1/φ(m), whereas the prime number theorem for arithmetic progressions
states that this set has natural density 1/φ(m). If a set of primes S has a natural density
then it has a Dirichlet density and the two are equal, but the converse need not hold: there
are sets of primes that have a Dirichlet density but no natural density (see Problem Set 9).

In order to complete our proof that there are infinitely many primes p ≡ 1 mod 4, we
still need to show L(1, χ) 6= 0. We will achieve this in the next lecture, but for now let
us show that this reduces to understanding the behavior of the Dedekind zeta function3

ζQ(i)(s) at s = 1. In general the Dedekind zeta function of a number field K is defined by

ζK(s) :=
∑
a

N(a)−s =
∏
p

(1−N(p)−s)−1,

3The Dedekind zeta function is named after Richard Dedekind, the last doctoral student of Gauss. He
received his Ph.D. in 1854, the same year as Riemann, another student of Gauss. Dedekind and Riemann
both studied under Dirichlet as well.
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where the sum ranges over nonzero ideals of the ring of integers OK , the product ranges
over nonzero prime ideals of OK (primes of K), and N(a) := [OK : a] is the absolute norm.
Note that ζQ(s) = ζ(s), so this is a natural generalization of the Riemann zeta function.

That the Euler product for ζK(s) converges for Re(s) > 1 follows easily from the case
ζQ(s) = ζ(s) proved in Theorem 16.2. We use unique factorization of ideals in the Dedekind
domain OK to convert the sum over ideals a into a product over prime ideals p. We then
note that for each rational prime p we have #{p|p} ≤ [K : Q] = n and N(p) = pfp ≥ p (by
Theorems 5.35 and 6.10), and it follows that∑

p

∣∣log(1−N(p)−s)
∣∣ ≤ n

∑
p

∣∣log(1− p−s)
∣∣ .

The sum on the RHS converges on Re(s) > 1, so the sum on the LHS must as well.
For K = Q(i) we can rewrite the Euler product for ζK(s) as

ζK(s) =
∏
p

(1−N(p)−s)−1 =
∏
p

∏
p|p

(1−N(p)−s)−1

= (1− 2−s)−1
∏

p≡1 mod 4

(1− p−s)−1(1− p−s)−1
∏

p≡3 mod 4

(1− p−2s)−1

= (1− 2−s)−1
∏

p≡1 mod 4

(1− p−s)−1(1− p−s)−1
∏

p≡3 mod 4

(1− p−s)−1(1 + p−s)−1

=
∏
p

(1− p−s)−1
∏
p

(1− χ(p)p−s)−1

= ζ(s)L(s, χ),

where we have used the fact that we have

• one prime p of norm N(p) = 2 above the single prime p = 2 that ramifies in Q(i);

• two primes p, p̄ of norm N(p) = N(p̄) = p above each prime p that splits in Q(i),
equivalently, the primes p ≡ 1 mod 4;

• one prime p of norm N(p) = p2 above each prime p that remains inert in Q(i),
equivalently, the primes p ≡ 3 mod 4.

We know ζ(s) has a simple pole at s = 1. If we can show ζK(s) extends to a meromorphic
function with a simple pole at s = 1, then L(s, χ) must extend to a function that is
holomorphic and nonvanishing at s = 1, since

ords=1L(s, χ) = ords=1ζK(s)− ords=1ζ(s) = −1− (−1) = 0.

In fact, ζK(s) extends to a meromorphic function on Re(s) > 1
2 with a simple pole at

s = 1; this can be proved directly, but it follows from a much more general and striking
result, the analytic class number formula, which was also proved by Dirichlet (at least for
quadratic fields). We will prove the analytic class number formula in the next lecture. For
the remainder of this lecture we will focus on generalizing our approach to handle arbitrary
moduli m.
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18.2 Dirichlet characters

We now define the notion of a Dirichlet character. Historically, these preceded the notion
of a group character; they were introduced by Dirichlet in 1831, well before the notion of an
abstract group was in common use.4 In order to simplify the exposition we will occasionally
invoke some standard facts about characters of finite abelian groups that we recall in §18.6.

Definition 18.4. A function f : Z → C is called an arithmetic function.5 The function f
is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all coprime m,n ∈ Z; it is totally
multiplicative (or completely multiplicative) if f(1) = 1 and f(mn) = f(m)f(n) for all
m,n ∈ Z. For m ∈ Z>0 we say that f is m-periodic if f(n + m) = f(n) for all n ∈ Z, and
we call m the period of f it is the least m > 0 for which this holds.

Definition 18.5. A Dirichlet character is a periodic totally multiplicative arithmetic func-
tion χ : Z→ C.

The image of a Dirichlet character is a finite multiplicatively closed subset of C, hence
the union of a finite subgroup of U(1) and a subset of {0}. The constant function 1(n) := 1
is the trivial Dirichlet character ; it is the unique Dirichlet character of period 1. Each
m-periodic Dirichlet character χ restricts to a group character χ on (Z/mZ)×. Conversely,
every group character χ of (Z/mZ)× can be extended to a Dirichlet character χ by defining
χ(n) = 0 for n 6∈ (Z/mZ)×; this is called extension by zero.6

Definition 18.6. A Dirichlet character of modulus m is an m-periodic Dirichlet character χ
that is the extension by zero of a group character on (Z/mZ)×; equivalently, an m-periodic
Dirichlet character for which n ∈ (Z/mZ)× ⇐⇒ χ(n) 6= 0.

Remark 18.7. Some authors only define Dirichlet characters of modulus m, thereby bak-
ing m into the definition of a Dirichlet character; we simply view Dirichlet characters as
functions Z → C that satisfy certain properties. Note that a single Dirichlet character
may be a Dirichlet character of modulus m for infinitely many m (for example, the unique
Dirichlet character of modulus 2 is also a Dirichlet character of modulus 2k for all k ≥ 1).

The Dirichlet characters of modulus m form a group under pointwise multiplication
that is canonically isomorphic to the character group of (Z/mZ)×. Not every m-periodic
Dirichlet character χ is a Dirichlet character of modulus m, since an m-periodic Dirichlet
character need not vanish on n 6∈ (Z/mZ)×. More generally, we have the following lemma.

Lemma 18.8. Let χ be a Dirichlet character of period m. Then χ is a Dirichlet character
of modulus m′ if and only if m|m′|mk for some k (which holds in particular for m′ = m).

Proof. Suppose for the sake of contradiction that χ(n) 6= 0 for some n ∈ Z that has a prime
factor p in common with m. Then χ(p) 6= 0, since χ(p)χ(n/p) = χ(n) 6= 0, and for r ∈ Z,

χ(r)χ(p) = χ(rp) = χ(rp+m) = χ(r +m/p)χ(p),

which implies χ(r) = χ(r + m/p), since χ(p) 6= 0. Thus χ is (m/p)-periodic, but this
contradicts the minimality of the period m. Therefore χ(n) = 0 for all n 6∈ (Z/mZ)×.

4Galois’ seminal paper was rejected that same year; it wasn’t published until 12 years after his death.
5Many authors restrict the domain of an arithmetic function to Z≥1; for the periodic arithmetic functions

we are interested in here, this distinction is irrelevant, and it is slightly more natural to work with Z.
6When we write n 6∈ (Z/mZ)× we of course refer to the image of n under the quotient map Z→ Z/mZ.
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Conversely, for any n ∈ (Z/mZ)× we can pick an integer a = ne ≡ 1 mod m so that
χ(1) = χ(a) = χ(ne) = χ(n)e 6= 0 and χ(n) 6= 0. So χ is a Dirichlet character of modulus m.

If m|m′|mk, then the prime divisors of m′ coincide with those of m. It follows that

n ∈ (Z/m′Z)× ⇐⇒ n ∈ (Z/mZ)× ⇐⇒ χ(n) 6= 0,

and χ is clearly m′-periodic (since m|m′), so χ is a Dirichlet character of modulus m′.
Conversely, if χ is a Dirichlet character of modulus m′, then χ is m′-periodic, and

therefore m|m′, since m is the period of χ. And since χ is a Dirichlet character of modulus m
and of modulus m′, for each prime p we have

p 6∈ (Z/mZ)× ⇐⇒ χ(p) = 0⇐⇒ p 6∈ (Z/m′Z)×,

thus the prime divisors of m and m′ coincide and m′ must divide some power mk of m.

18.2.1 Primitive Dirichlet characters

Given a Dirichlet character χ1 of modulus m1 dividing m2, we can always create a Dirichlet
character χ2 of modulus m2 by taking the extension by zero of the restriction of χ1 to
(Z/m2Z)×; in other words, let χ2(n) := χ1(n) for n ∈ (Z/m2Z)× and χ2(n) := 0 otherwise.
If m2 is divisible by a prime p that does not divide m1, the Dirichlet characters χ1 and χ2

will not be the same (χ2(p) = 0 6= χ1(p), for example), they will agree on n ∈ (Z/m2Z)×

but not on n ∈ (Z/m1Z)×.7 We can create infinitely many new Dirichlet characters from
χ1 in this way, but they will differ from χ1 only in a rather trivial sense. We would like to
distinguish the Dirichlet characters that arise in this way from those that do not.

Definition 18.9. Let χ1 and χ2 be Dirichlet characters of modulus m1 and m2, respectively,
with m1|m2. If χ2(n) = χ1(n) for n ∈ (Z/m2Z)× then χ2 is induced by χ1. A Dirichlet
character that is not induced by any character other than itself is primitive.

Lemma 18.10. A Dirichlet character χ2 of modulus m2 is induced by a Dirichlet character
of modulus m1|m2 if and only if χ2 is constant on residue classes in (Z/m2Z)× that are
congruent modulo m1. When this holds, the Dirichlet character χ1 of modulus m1 that
induces χ2 is uniquely determined.

Proof. If χ2 is induced by χ1 then it must be constant on residue classes in (Z/m2Z)×

that are congruent modulo m1, since χ1 is. To prove the converse we first show that the
surjective ring homomorphism Z/m2Z→ Z/m1Z given by reduction modulo m1 induces a
surjective homomorphism π : (Z/m2Z)× → (Z/m1Z)× of unit groups.8

Suppose u1 ∈ Z is a unit modulo m1. Let a be the product of all primes dividing m2/m1

but not u1. Then u2 = u1 + m1a is not divisible by any prime p|m1 (since u1 isn’t), nor
is it divisible by any prime p|(m2/m1): by construction, such a p divides exactly one of u1
and m1a. Thus u2 is a unit modulo m2 that reduces to u1 modulo m1 and π is surjective.

If χ2 is a Dirichlet character of modulus m2 constant on fibers of π we can define
a Dirichlet character χ1 of modulus m1 via χ1(n1) := χ2(n2) for n1 ∈ (Z/m1Z)× with
n2 ∈ π−1(n1) (any such n2 will do). Thus χ1 induces χ2, and if χ′1 also induces χ2 it must
satisfy the same condition χ1(n1) = χ2(n2) that uniquely determines χ1.

7Note that while #(Z/m1Z)× ≤ #(Z/m2Z)×, the set of integers n ∈ (Z/m1Z)× (the n coprime to m1)
contains the set of integers n ∈ (Z/m2Z)× (the n coprime to m2) and is usually larger.

8In fact, one can show that every surjective homomorphism of finite rings induces a surjective homomor-
phism of unit groups, but this does not hold in general (consider Z→ Z/5Z, for example).
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Definition 18.11. A Dirichlet character χ induced by 1 is called principal (and is primitive
if only if χ = 1). For m ∈ Z>0 we use 1m to denote the principal Dirichlet character of
modulus m; it corresponds to the trivial character of (Z/mZ)×.

Lemma 18.12. Let χ be a Dirichlet character of modulus m. Then∑
n∈Z/mZ

χ(n) 6= 0 ⇐⇒ χ = 1m.

Proof. We have χ(n) = 0 for n 6∈ (Z/mZ)×, and the sum over (Z/mZ)× is nonzero if and
only if χ restricts to the trivial character on (Z/mZ)×, by the orthogonality of characters;
see Corollary 18.37.

Note that the principal Dirichlet characters 1m and 1m′ necessarily coincide when
m|m′|mk; for example the principal Dirichlet character of modulus 2 (the parity function)
is the same as the principal Dirichlet character of modulus 4 (and every power of 2).

Theorem 18.13. Every Dirichlet character χ is induced by a primitive Dirichlet charac-
ter χ̃ that is uniquely determined by χ.

Proof. Let us define a partial ordering � on the set of all Dirichlet characters by defining
χ1 � χ2 if χ1 induces χ2. The relation � is clearly reflexive, and it follows from Lemma 18.10
that it is transitive.

Let χ be a Dirichlet character of period m and consider the set X = {χ′ : χ′ � χ}. Each
χ′ ∈ X necessarily has period m′ dividing m and there is at most one χ′ of period m′ for
each divisor m′ of m, by Lemma 18.10. Thus X is finite, and nonempty (since χ ∈ X).

Suppose χ1, χ2 ∈ X have periods m1 and m2, respectively. Then m1 and m2 both
divide m, as does m3 = gcd(m1,m2). We have a commutative square of surjective unit
group homomorphisms induced by reduction maps:

(Z/mZ)× (Z/m1Z)×

(Z/m2Z)× (Z/m3Z)×.

←�

←�

←�

←�

From Lemma 18.10 we know that χ is constant on residue classes in (Z/mZ)× that are con-
gruent modulo either m1 or m2, and therefore χ is constant on residue classes in (Z/mZ)×

that are congruent modulo m3, as are χ1 and χ2 (which are determined by χ). It follows
that there is a unique Dirichlet character χ3 of modulus m3 that induces χ, χ1, and χ2.

Thus every pair χ1, χ2 ∈ X has a lower bound χ3 under the partial ordering � that is
compatible with the total ordering of X by period. This implies that X contains a unique
element χ̃ that is minimal, both with respect to the partial ordering � and with respect to
the total ordering by period; it must be primitive, by the transitivity of �.

Definition 18.14. The conductor of a Dirichlet character χ is the period of the unique
primitive Dirichlet character χ̃ that induces χ.

Corollary 18.15. For a Dirichlet character χ of modulus m we have
∑

n∈Z/mZ χ(n) 6= 0
if and only if χ has conductor 1.

Proof. This follows immediately from Lemma 18.12.
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Corollary 18.16. Let M(m) denote the set of Dirichlet characters of modulus m, let X(m)
denote the set of primitive Dirichlet characters of conductor dividing m, and let Ĝ(m) denote
the character group of (Z/mZ)×. We have canonical bijections

M(m)
∼−→ X(m)

∼−→ Ĝ(m)

χ 7−→ χ̃ 7−→ (n 7→ χ̃(n)).

Proof. By Theorem 18.13, the map χ → χ̃ is injective, and it is also surjective: each
χ̃ ∈ X(m) induces the character χ ∈ M(m) by setting χ(n) := χ̃(n) for n ∈ (Z/mZ)×

and extending by zero. As previously noted, the map χ→ (m 7→ χ(m)) defines a bijection
M → Ĝ(m) (a group isomorphism, in fact), and this bijection factors through the map
χ 7→ χ̃, since χ̃(n) = χ(n) for n ∈ (Z/mZ)×.

Remark 18.17. Corollary 18.16 implies that we can make X(m) a group by defining
χ̃1χ̃2 := χ̃1χ2. Note that χ̃1χ2 is not the pointwise product of χ̃1 and χ̃2 (which is typically
not primitive), it is the unique primitive character that induces the pointwise product.

Example 18.18. 12-periodic Dirichlet characters, ordered by period m and conductor c.

m c 0 1 2 3 4 5 6 7 8 9 10 11 mod-12 principal primitive
1 1 1 1 1 1 1 1 1 1 1 1 1 1 no yes yes
2 1 0 1 0 1 0 1 0 1 0 1 0 1 no yes no
3 1 0 1 1 0 1 1 0 1 1 0 1 1 no yes no
3 3 0 1 -1 0 1 -1 0 1 -1 0 1 -1 no no yes
4 4 0 1 0 -1 0 1 0 -1 0 1 0 -1 no no yes
6 1 0 1 0 0 0 1 0 1 0 0 0 1 yes yes no
6 3 0 1 0 0 0 -1 0 1 0 0 0 -1 yes no no

12 4 0 1 0 0 0 1 0 -1 0 0 0 -1 yes no no
12 12 0 1 0 0 0 -1 0 -1 0 0 0 1 yes no yes

The fact that χ(n) ∈ {0,±1} for all 12-periodic Dirichlet characters χ follows from the
fact that the exponent of (Z/mZ)× is 2; thus (imχ) ∩U(1) ⊆ µ2 = {±1}.

18.3 Dirichlet L-functions

Definition 18.19. The Dirichlet L-function associated to a Dirichlet character χ is

L(s, χ) :=
∏
p

(1− χ(p)p−s)−1 =
∑
n≥1

χ(n)n−s.

The sum and product converge absolutely for Re s > 1, since |χ(n)| ≤ 1, thus L(s, χ) is
holomorphic on Re(s) > 1.

For the trivial Dirichlet character 1 have L(s,1) = ζ(s). For the principal character 1m
of modulus m induced by 1 we have

ζ(s) = L(s,1m)
∏
p|m

(1− p−s)−1.

The product on the RHS is finite, hence bounded and nonzero as s→ 1+, so the L-function
L(s,1m) has a simple pole at s = 1 with residue

ress=1 L(s,1m) = lim
s→1

(s− 1)ζ(s)
∏
p|m

(1− p−s) =
∏
p|m

(1− p−1) =
φ(m)

m
.

The L-functions of non-principal Dirichlet characters do not have a pole at s = 1.
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Proposition 18.20. Let χ be a non-principal Dirichlet character of modulus m. Then
L(s, χ) extends to a holomorphic function on Re s > 0.

Proof. Define the function T : R≥0 → C by

T (x) :=
∑

0<n≤x
χ(n).

For any x ∈ R≥0 Lemma 18.15 implies

T (x+m)− T (x) =
∑

x<n≤x+m
χ(n) =

∑
n∈Z/mZ

χ(n) = 0,

since χ is non-principal. Thus T (x) is periodic modulo m and therefore bounded.
Writing L(s, χ) as a Stieltjes integral (see §18.5) and integrating by parts yields

L(s, χ) =
∑
n≥1

χ(n)n−s

=

∫ ∞
0

x−sdT (x)

= x−sT (x)

∣∣∣∣∞
0

−
∫ ∞
0

T (x)d(x−s)

= 0−
∫ ∞
0

T (x)(−sx−s−1)dx

= s

∫ ∞
0

T (x)x−s−1dx.

The RHS is holomorphic on Re s > 0, since it is the limit of the uniformly converging se-
quence of functions φn(s) := s

∫ n
0 T (x)x−s−1dx (here we use the fact that T (x) is bounded),

and is thus the analytic continuation of L(x, χ) to Re(s) > 0.

Remark 18.21. In fact, L(s, χ) extends to a holomorphic function on C whenever χ is
non-principal.

18.4 Primes in arithmetic progressions

We now return to our goal of proving Dirichlet’s theorem on primes in arithmetic progres-
sions. We want to show that for coprime integers a ⊥ m the set S := {p ≡ a mod m} is
infinite, and it suffices to show the sum ∑

p≡ a mod m

p−s

is unbounded as s→ 1+. To convert this to a sum over all primes we use Proposition 18.36
to construct the indicator function

1

φ(m)

∑
χ∈X(m)

χ(p/a) =

{
1 if p ≡ a mod m,

0 otherwise

where p/a is computed modulom and χ ranges over primitive Dirichlet characters of conduc-
tor dividing m (which we identify with the character group of (Z/mZ)× via Corollary 18.16).
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As s→ 1+ we have∑
p≡ a mod m

p−s =
∑
p

p−s
1

φ(m)

∑
χ∈X(m)

χ(p/a)

=
∑

χ∈X(m)

χ(1/a)

φ(m)

∑
p

χ(p)p−s

=
∑

χ∈X(m)

χ(1/a)

φ(m)

(
logL(s, χ) +O(1)

)
=

log ζ(s)

φ(m)
+

∑
χ∈X(m)
χ6=1

χ(1/a)

φ(m)
logL(s, χ) +O(1).

We now make the key claim that so long as χ is not principal, we have

L(1, χ) 6= 0.

This implies that logL(s, χ) = O(1) as s→ 1+ and therefore∑
p≡ a mod m

p−s =
log ζ(s)

φ(m)
+O(1)

is unbounded as s→ 1+, since ζ(s) is. Moreover, Mertens’ second theorem implies∑
p≤x

p≡ a mod m

1

p
∼ log log x

φ(m)
.

This proves that the set S = {p ≡ a mod m} is infinite. Moreover, we have

d(S) = lim
s→1+

∑
p∈S p

−s∑
p p
−s = lim

s→1+

log ζ(s)/φ(m)

log ζ(s)
=

1

φ(m)
.

We will prove the key claim that L(1, χ) 6= 0 for non-principal χ in the next lecture.

18.5 Stieltjes integrals

For the benefit of those who have not seen them before, we recall a few facts about Stieltjes
integrals (also called Riemann-Stieltjes integrals), taken from [1, Ch. 7]. These generalize
the Riemann integral but are less general than the Lebesgue integral; they provide a handy
way for converting sums to integrals that is often used in analytic number theory.

Definition 18.22. Let f and g be (real or complex valued) functions defined on a nonempty
real interval [a, b]. For any partition P = (x0, . . . , xn) of [a, b] and sequence T = (t1, . . . , tn)
with tk ∈ [xk−1, xk], we define the Riemann-Stieltjes sum

S(P, T, f, g) :=

n∑
k=1

f(tk)
(
g(xk)− g(xk−1)

)
We say that f is Riemann-Stieltjes integrable with respect to g and write f ∈ S(g) if there
is a (real or complex) number S such that for every ε > 0 there is a partition Pε of [a, b]
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such that for every refinement P = (x0, . . . , xn) of Pε and every sequence T = (t1, . . . , tn)
with tk ∈ [xk−1, xk] we have |S(P, T, f, g)− S| < ε.9

When such an S exists it is necessarily unique and we denote it by
∫ b
a f dg, the Riemann-

Stieltjes integral of f with respect to g. Improper Riemann-Stieltjes integrals are then defined
as limits ∫ ∞

a
f dg := lim

b→∞

∫ b

a
f dg

(and similarly for the lower limit), and we define
∫ a
b f dg = −

∫ b
a f dg and

∫ a
a f dg = 0.

Taking g(x) = x yields the Riemann integral. The Riemann-Stieltjes integral satisfies
the usual properties of linearity, summability, and integration by parts.

Proposition 18.23. Let f, g, and h be functions on [a, b] and let c1 and c2 be constants.
The following hold:

• If f, g ∈ S(h) then
∫ b
a (c1f + c2g) dh = c1

∫ b
a f dh+ c2

∫ b
a g dh.

• If f ∈ S(g), S(h) then
∫ b
a f d(c1g + c2h) = ci

∫ b
a f dg + c2

∫ b
a f dh.

• If f ∈ S(g) then for any c ∈ [a, b] we have
∫ b
a f dg =

∫ c
a f dg +

∫ b
c f dg.

• If f ∈ S(g) then g ∈ S(f) and
∫ b
a f dg +

∫ b
a g df = f(b)g(b)− f(a)g(a).

• If f = f1 + if2 and g = g1 + ig2 with f1, f2 ∈ S(g1), S(g2) then∫ b

a
f dg =

(∫ b

a
f1 dg1 −

∫ b

a
f2 dg2

)
+ i

(∫ b

a
f2 dg1 +

∫ b

a
f1 dg2

)
.

Proof. See [1, Thm. 7.2-7,7.50].

The last identity allows us to reduce complex-valued integrals to real-valued integrals.
The following proposition allows us to reduce Stieltjes integrals to Riemann integrals.

Proposition 18.24. Let f and g be real-valued functions on [a, b] and suppose g has a
continuous derivative g′ on [a, b]. Then∫ b

a
f dg =

∫ b

a
f(x)g′(x)dx.

Proof. See [1, Thm. 7.8].

A key advantage of the Stieltjes integral
∫ b
a f dg is that neither the integrand f nor

the integrator g is required to be continuous. It suffices for f and g to be of bounded
variation and not share any discontinuities (and they can even share certain discontinuities,
see Theorem 18.26).

Definition 18.25. Let f be a (real or complex valued) function defined on a nonempty
real interval [a, b]. Then f is of bounded variation if there exists a real number M such that

n−1∑
i=0

|f(xi+1)− f(xi)| < M

9This definition (due to Pollard) is more general than that originally given by Stieltjes but is now standard.
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for every partition P = (x0, . . . , xn) of [a, b]. If f has a continuous derivative f ′ on [a, b]

this is equivalent to requiring
∫ b
a |f

′(x)|dx < ∞. Every piecewise monotone function is of
bounded variation. In particular, any step function with finitely many discontinuities on
[a, b] is of bounded variation.

Theorem 18.26. Let f and g be functions on [a, b] of bounded variation such that for every
c ∈ [a, b] the function f is continuous from the left at c and the function g is continuous

from the right at c. Then
∫ b
a f dg and

∫ b
a g df both exist.

Proof. See [2, Thm. 3.7].

Corollary 18.27. Let f and g be functions on [a, b] such that f and g are not both discon-
tinuous from the left or from the right at integers n ∈ [a, b], and let G(x) =

∑
a<n≤x g(n).

Then ∑
a<n≤b

f(n)g(n) =

∫ b

a
f(x) dG(x).

In particular, the integral on the RHS always exists.

Proof. See [1, Thm. 7.11].

As an example of using Stieltjes integrals, let us derive an asymptotic estimate for the
the harmonic sum

H(x) :=
∑

1≤n≤x

1

n
.

Theorem 18.28. For x ∈ R≥1, as x→∞ we have

H(x) = log x+ γ +O
(
1
x

)
where γ = limx→∞(H(x)− log x) = 0.577216 . . . is Euler’s constant.

Proof. Let [t] denote the greatest integer function. Applying Corollary 18.27 with g(t) = 1
and G(t) =

∑
1≤n≤t 1 = [t], we have

H(x) =
∑

1≤n≤x

1

n
=

∫ x

1−

1

t
d[t]

=
[t]

t

∣∣∣∣x
1−
−
∫ x

1−
[t] d

1

t

=
[x]

x
+

∫ x

1−

[t]

t2
dt

=
[x]

x
+

∫ x

1−

1

t
dt−

∫ x

1−

t− [t]

t2
dt

=
[x]

x
+ log x−

∫ x

1−

t− [t]

t2
dt,

where we used integration by parts in the second line and applied Proposition 18.24 to get
the third line. Now let γ = 1−

∫∞
1−(t− [t])/t2 dt. Then

H(x) =
[x]

x
+ log x− 1 + γ +

∫ ∞
x

t− [t]

t2
dt

= log x+ γ +

(
[x]− x
x

+

∫ ∞
x

t− [t]

t2
dt

)
. (2)
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Both summands in the parenthesized quantity in (2) are clearly O( 1x); thus

γ = lim
x→∞

(H(x)− log x) ,

and the theorem follows.

Remark 18.29. We can refine this estimate by applying a similar analysis to the paren-
thesized quantity in (2); the key point is that the error term is an exact expression, not
an asymptotic estimate, and we can continue this process until we obtain an asymptotic
expansion to whatever precision we require. For example, one finds that

H(x) = log x+ γ +
1

2x
− 1

2x2
+

1

120x4
+O

(
1

x6

)
.

18.6 A quick recap of the character theory of finite abelian groups

In this section we recall some standard results on characters of finite abelian groups.

Definition 18.30. A character of a group G is a homomorphism χ : G → U(1).10 The
character group (or dual group) of G is the abelian group

Ĝ := Hom(G,U(1))

under pointwise multiplication: (χ1χ2)(g) := χ1(g)χ2(g). The inverse of χ is given by
complex conjugation: χ−1(g) = χ(g) := χ(g). The identity element of Ĝ is the trivial
character g 7→ 1.

Remark 18.31. This definition generalizes to locally compact abelian groups G, in which
case each character χ : G → U(1) is a homomorphism of topological groups and the dual
group Ĝ is locally compact under the compact-open topology which has a basis of neigh-
borhoods of the identity the sets U(C, V ) := {χ ∈ Ĝ : χ(C) ⊆ V }, where C ranges over
compact subsets of G and V ranges over open neighborhoods of the identity in U(1). The
locally compact group Ĝ is called the Pontryagin dual of G.11 When G is finite it necessarily
has the discrete topology (since it must be Hausdorff), every homomorphism G → U(1) is
automatically continuous, and the compact-open topology on Ĝ is also discrete.

Proposition 18.32. Let G be a finite abelian group with character group Ĝ. Then G ' Ĝ.

Proof. As a finite abelian group we can write G as a direct product of cyclic groups

G = 〈g1〉 × · · · × 〈gn〉 ' Z/n1Z× · · · × Z/nrZ,

with ni = |gi|, and each g ∈ G can be uniquely written as g =
∏
i g
ei
i with 0 ≤ ei < n1.

Now fix (not necessarily distinct) primitive ni-th roots of unity αi ∈ U(1) and for 1 ≤ i ≤ r
define χi ∈ Ĝ via

χi(gj) :=

{
αi if i = j,

1 if i 6= j.

10Some authors call these unitary characters, allowing characters to have image in C×. When G is finite
every character is a unitary character, so this distinction won’t concern us.

11Some authors define the topology on the Pontryagin duality using uniform convergence on compact sets;
for topological groups this is equivalent to the compact-open topology. The unitary group U(1) ' R/Z is
also referred to as the 1-torus or circle group and may be denoted T or S1 and viewed as an additive group.
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Then |χi| = |αi| = ni, and each χ ∈ Ĝ can be written uniquely as
∏
i χ

ei
i with 0 ≤ ei < ni,

where χ(gi) = αeii (because a character is completely determined by its values on generators
and the χi are clearly orthogonal). Therefore

Ĝ = 〈χ1〉 × · · · × 〈χn〉 ' Z/n1Z× · · · × Z/nrZ.

Corollary 18.33. Let G be a finite abelian group. Then g ∈ G is the identity if and only
if χ(g) = 1 for all χ ∈ Ĝ and χ ∈ Ĝ is the identity if and only if χ(g) = 1 for all g ∈ G.

The isomorphism in Proposition 18.32 is not canonical. Indeed, there are #Aut(G)
distinct ways to choose the αi used to construct the isomorphism G ' Ĝ. But there is a
canonical isomorphism from G to the character group of Ĝ, the double dual of G.

Corollary 18.34. Let G be a finite abelian group. The evaluation map

g 7→ (χ 7→ χ(g))

is a canonical isomorphism from G to its double dual.

Proof. It is clear that the map above is a homomorphism, and Proposition 18.32 implies that
G is isomorphic to its dual group Ĝ, which is in turn isomorphic to its dual group, the double
dual of G). So it suffices to show the map is injective, which follows from Corollary 18.33:
if g lies in the kernel then χ(g) = 1 for all χ ∈ Ĝ and g = 1G, by Corollary 18.33,

Corollary 18.34 allows us to view G as the character group of Ĝ by defining g(χ) := χ(g).

Remark 18.35. Corollary 18.34 is a special case of Pontryagin duality, which applies to
any locally compact abelian group G. For infinite groups, G and Ĝ need not be isomorphic;
for example, the character group of Z is isomorphic to U(1) (but in some cases they are,
as when G is R or Qp, or any local field, see [3, XV, Lemma 2.2.1]). But the canonical
isomorphism between G and its double dual always holds.

This is analogous to the situation with vector spaces: a finite dimensional vector space
(which may be an infinite abelian group) is non-canonically isomorphic to its dual space but
canonically isomorphic to its double dual via the evaluation map. We should note that for
a locally compact topological vector space V over a field k, the Pontryagin dual is not the
same thing as the vector space dual: the Pontryagin dual corresponds to Hom(V,U(1)) (mor-
phisms of locally compact groups) while the vector space dual corresponds to Homk(V, k)
(morphisms of topological k-vector spaces). For example, the vector space dual of Q is
isomorphic to Q, as is its double dual, but the Pontryagin dual of Q is uncountable (thus
not isomorphic to Q), even though the Pontryagin double dual is isomorphic to Q.

Proposition 18.36. Let G be a finite abelian group. For all g1, g2 ∈ G we have

〈g1, g2〉 :=
1

#G

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
1 if g1 = g2,

0 if g1 6= g2,

and for all χ1, χ2 ∈ Ĝ we have

〈χ1, χ2〉 :=
1

#G

∑
g∈G

χ1(g)χ2(g) =

{
1 if χ1 = χ2,

0 if χ1 6= χ2.

18.785 Fall 2019, Lecture #18, Page 14



Proof. By duality it suffices to consider 〈g1, g2〉. If g1 = g2 then χ(g1)χ(g2) = 1 for all
χ ∈ Ĝ and 〈g1, g2〉 = #Ĝ/#G = 1. If g1 6= g2 then by Corollary 18.33 there exists λ ∈ Ĝ
for which α := λ(g1)λ(g2) = λ(g1g

−1
2 ) 6= 1. We then have

α〈g1, g2〉 =
1

#G

∑
χ∈Ĝ

(λχ)(g1)(λχ)(g2) =
1

#G

∑
χ∈λĜ

χ(g1)χ(g2) = 〈g1, g2〉,

which implies 〈g1, g2〉 = 0, since α 6= 1.

Corollary 18.37. For χ ∈ Ĝ we have
∑

g∈G χ(g) 6= 0 if and only χ is the trivial character.
For g ∈ G we have

∑
χ∈Ĝ χ(g) 6= 0 if and only if g is the trivial element.

Remark 18.38. The orthogonality of characters given by Proposition 18.36 is a special case
of the orthogonality of characters one encounters in Fourier analysis on compact groups;
since G is finite, the weighted sum over G amounts to integrating against its Haar measure
(the counting measure µ normalized so that µ(G) = 1).

We conclude our discussion of character groups with a theorem analogous to the funda-
mental theorem of Galois theory.

Proposition 18.39. Let G be a finite abelian group. There is an inclusion reversing bijec-
tion ϕ between subgroups H of G and subgroups K of Ĝ defined by

ϕ(H) := {χ ∈ Ĝ : χ(h) = 1 for all h ∈ H}.

The inverse bijection φ is given by

φ(K) := {g ∈ G : χ(g) = 1 for all χ ∈ K},

and Ĥ ' Ĝ/ϕ(H) and K ' G/φ(K); in particular, #H = [Ĝ :ϕ(H)] and #K = [G :φ(K)].

Proof. Its clear from the definitions that ϕ and φ are inclusion reversing. Let H be a sub-
group of G. The group K = ϕ(H) consists of the characters of G whose kernel contains H.
It is clear that H ′ := φ(K) contains H, since it is equal to the intersection of these kernels,
and by duality it is similarly clear that K ′ := ϕ(H ′) contains K. We then have H ⊆ H ′

and ϕ(H) ⊆ ϕ(H ′), but ϕ is inclusion reversing so H = H ′; thus φ ◦ ϕ is the identity map,
and by duality, so is ϕ ◦ φ.

The restriction map Ĝ→ Ĥ defined by χ 7→ χ|H is a group homomorphism with kernel
K = ϕ(H). It is surjective because if we let χ1 := 1

Ĝ
then we have

#H#K =
∑
h∈H

∑
χ∈K

χ(h) =
∑
h∈H

∑
χ∈K

χ(h)χ1(h) =
∑
g∈G

∑
χ∈K

χ(g)χ1(g) = #G,

by Proposition 18.36, and therefore #Ĥ#K = #Ĝ (by Proposition 18.32). It follows that
Ĥ ' Ĝ/ϕ(H), and by duality, K ' G/φ(K).
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