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17 The functional equation

In the previous lecture we proved that the Riemann zeta function ζ(s) has an Euler product
and an analytic continuation to the right half-plane Re(s) > 0. In this lecture we complete
the picture by deriving a functional equation that relates the values of ζ(s) to those of
ζ(1− s). This will then also allow us to extend ζ(s) to a meromorphic function on C that
is holomorphic except for a simple pole at s = 1.

17.1 Fourier transforms and Poisson summation

A key tool we will use to derive the functional equation is the Poisson summation formula,
a result from harmonic analysis that we now recall.

Definition 17.1. A Schwartz function on R is a complex-valued C∞ function f : R → C
that decays rapidly to zero: for all m,n ∈ Z≥0 we have

sup
x∈R

∣∣∣xmf (n)(x)
∣∣∣ <∞,

where f (n) denotes the nth derivative of f . The Schwartz space S(R) of all Schwartz
functions on R is a (non-unital) C-algebra of infinite dimension.

Example 17.2. All compactly supported C∞ functions are Schwartz functions, as is the
Gaussian function g(x) := e−πx

2
. Non-examples include functions that do not tend to zero

as x → ±∞ (such as polynomials), and functions like (1 + x2n)−1 and e−x
2

sin(ex
2
) that

either do not tend to zero quickly enough, or have derivatives that do not tend to zero as
x→ ±∞.

Remark 17.3. For any p ∈ R≥1, the Schwartz space S(R) is contained in the space Lp(R)
of functions on f : R → C for which the Lebesgue integral

∫
R |f(x)|pdx exists. The space

Lp(R) is a complete normed C-vector space under the Lp-norm ‖f‖p := (
∫
R |f(x)|pdx)1/p,

and is thus a Banach space. The Schwartz space S(R) is not complete under the Lp-norm,
but it is dense in Lp(R) (in the subspace topology). One can equip the Schwartz space with
a translation-invariant metric of its own under which it is a complete metric space (and thus
a Fréchet space, since it is also locally convex), but the topology of S(R) will not concern
us here. Similar comments apply to S(Rn).

It follows immediately from the definition and standard properties of the derivative that
the Schwartz space S(R) is closed under differentiation, multiplication by polynomials, and
linear change of variable. It is also closed under convolution: for any f, g ∈ S(R) the
function

(f ∗ g)(x) :=

∫
R
f(y)g(x− y)dy

is also an element of S(R). Convolution is commutative, associative, and bilinear.

Definition 17.4. The Fourier transform of a Schwartz function f ∈ S(R) is the function

f̂(y) :=

∫
R
f(x)e−2πixydx,
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which is also a Schwartz function [1, Thm. 5.1.3]. We can recover f(x) from f̂(y) via the
inverse transform

f(x) =

∫
R
f̂(y)e+2πixydy;

see [1, Thm. 5.1.9] for a proof of this fact. The maps f 7→ f̂ and f̂ 7→ f are thus inverse
linear operators on S(R) (they are also continuous in the metric topology of S(R) and thus
homeomorphisms).

Remark 17.5. The invertibility of the Fourier transform on the Schwartz space S(R) is
a key motivation for its definition. For functions in L1(R) (the largest space of functions
for which our definition of the Fourier transform makes sense), the Fourier transform of a
smooth function decays rapidly to zero, and the Fourier transform of a function that decays
rapidly to zero is smooth; this leads one to consider the subspace S(R) of smooth functions
that decay rapidly to zero. One can show that S(R) is the largest subspace of L1(R) closed
under multiplication by polynomials on which the Fourier transform is invertible.1

The Fourier transform changes convolutions into products, and vice versa. We have

f̂ ∗ g = f̂ ĝ and f̂g = f̂ ∗ ĝ,

for all f, g ∈ S(R) (see Problem Set 8). One can thus view the Fourier transform as an
isomorphism of (non-unital) C-algebras that sends (S(R),+,×) to (S(R),+, ∗).

Lemma 17.6. For all a ∈ R>0 and f ∈ S(R), we have f̂(ax)(y) = 1
a f̂(ya).

Proof. Applying the substitution t = ax yields

f̂(ax)(y) =

∫
R
f(ax)e−2πixydx =

1

a

∫
R
f(t)e−2πity/adt =

1

a
f̂
(y
a

)
.

Lemma 17.7. For f ∈ S(R) we have d
dy f̂(y) = −2πi x̂f(x)(y) and d̂

dxf(x)(y) = 2πiyf̂(y).

Proof. Noting that xf ∈ S(R), the first identity follows from

d
dy f̂(y) = d

dy

(∫
R
f(x)e−2πixydx

)
=

∫
R
f(x)(−2πix)e−2πixydx = −2πi x̂f(x)(y),

since we may differentiate under the integral via dominated convergence. For the second,
we note that limx→±∞ f(x) = 0, so integration by parts yields

d̂
dxf(x)(y) =

∫
R
f ′(x)e−2πixydx = 0−

∫
R
f(x)(−2πiy)e−2πixydx = 2πiyf̂(y).

The Fourier transform is compatible with the inner product 〈f, g〉 :=
∫
R f(x)g(x)dx on

L2(R) (which contains S(R)). Indeed, we can easily derive Parseval’s identity:

〈f, g〉 =

∫
R
f(x)g(x)dx =

∫
R

∫
R
f̂(y)g(x)e+2πixydxdy =

∫
R
f̂(y)ĝ(y)dy = 〈f̂ , ĝ〉,

which when applied to g = f yields Plancherel’s identity:

‖f‖22 = 〈f, f〉 = 〈f̂ , f̂〉 = ‖f̂‖22,

where ‖f‖2 = (
∫
R |f(x)|2dx)1/2 is the L2-norm. For number-theoretic applications there is

an analogous result due to Poisson.

1I thank Keith Conrad and Terry Tao for clarifying this point.
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Theorem 17.8 (Poisson Summation Formula). For all f ∈ S(R) we have the identity∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. We first note that both sums are well defined; the rapid decay property of Schwartz
functions guarantees absolute convergence. Let F (x) :=

∑
n∈Z f(x + n). Then F is a

periodic C∞-function, so it has a Fourier series expansion

F (x) =
∑
n∈Z

cne
2πinx,

with Fourier coefficients

cn =

∫ 1

0
F (t)e−2πintdt =

∫ 1

0

∑
m∈Z

f(t+m)e−2πintdt =

∫
R
f(t)e−2πintdt = f̂(n).

We then note that ∑
n∈Z

f(n) = F (0) =
∑
n∈Z

cn =
∑
n∈Z

f̂(n).

Finally, we note that the Gaussian function e−πx
2

is its own Fourier transform.

Lemma 17.9. Let g(x) := e−πx
2
. Then ĝ(y) = g(y).

Proof. The function g(x) satisfies the first order ordinary differential equation

g′ + 2πxg = 0, (1)

with initial value g(0) = 1. Multiplying both sides by −i and taking Fourier transforms
yields

−i(ĝ′ + 2πx̂g) = −i(2πixĝ + iĝ′) = ĝ′ + 2πxĝ = 0,

via Lemma 17.7. So ĝ also satisfies (1), and ĝ(0) =
∫
R e
−πx2dx = 1, so ĝ = g.

17.1.1 Jacobi’s theta function

We now define the theta function2

Θ(τ) :=
∑
n∈Z

eπin
2τ .

The sum is absolutely convergent for im τ > 0 and thus defines a holomorphic function on
the upper half plane. It is easy to see that Θ(τ) is periodic modulo 2, that is,

Θ(τ + 2) = Θ(τ),

but it it also satisfies another functional equation.

Lemma 17.10. For all a ∈ R>0 we have Θ(ia) = Θ(i/a)/
√
a.

Proof. Put g(x) := e−πx
2

and h(x) := g(
√
ax) = e−πx

2a. Lemmas 17.6 and 17.9 imply

ĥ(y) = ̂g(
√
ax)(y) = ĝ

(
y/
√
a
)
/
√
a = g

(
y/
√
a
)
/
√
a.

Plugging τ = ia into Θ(τ) and applying Poisson summation (Theorem 17.8) yields

Θ(ia) =
∑
n∈Z

e−πn
2a =

∑
n∈Z

h(n) =
∑
n∈Z

ĥ(n) =
∑
n∈Z

g
(
n/
√
a
)
/
√
a = Θ(i/a)/

√
a.

2The function Θ(τ) we define here is a special case of one of four parameterized families of theta functions
Θi(z : τ) originally defined by Jacobi for i = 0, 1, 2, 3, which play an important role in the theory of elliptic
functions and modular forms; in terms of Jacobi’s notation, Θ(τ) = Θ3(0; τ).
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17.1.2 Euler’s gamma function

You are probably familiar with the gamma function Γ(s), which plays a key role in the
functional equation of not only the Riemann zeta function but many of the more general zeta
functions and L-series we wish to consider. Here we recall some of its analytic properties.
We begin with the definition of Γ(s) as a Mellin transform.

Definition 17.11. The Mellin transform of a function f : R>0 → C is the complex function
defined by

M(f)(s) :=

∫ ∞
0
f(t)ts−1dt,

whenever this integral converges. It is holomorphic on Re s ∈ (a, b) for any interval (a, b) in
which the integral

∫∞
0 |f(t)|tσ−1dt converges for all σ ∈ (a, b).

Definition 17.12. The Gamma function

Γ(s) :=M(e−t)(s) =

∫ ∞
0

e−tts−1dt,

is the Mellin transform of e−t. Since
∫∞

0 |e
−t|tσ−1dt converges for all σ > 0, the integral

defines a holomorphic function on Re(s) > 0.
Integration by parts yields

Γ(s) =
tse−t

s

∣∣∣∣∞
0

+
1

s

∫ ∞
0

e−ttsdt =
Γ(s+ 1)

s
,

thus Γ(s) has a simple pole at s = 0 with residue 1 (since Γ(1) =
∫∞

0 e−tdt = 1), and

Γ(s+ 1) = sΓ(s) (2)

for Re(s) > 0. Equation (2) allows us to extend Γ(s) to a meromorphic function on C with
simple poles at s = 0,−1,−2, . . ., and no other poles.

An immediate consequence of (2) is that for integers n > 0 we have

Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 1) = n(n− 1)(n− 2) · · · 2 · 1 · Γ(1) = n!,

thus the gamma function can be viewed as an extension of the factorial function. The
gamma function satisfies many useful identities in addition to (2), including the following.

Theorem 17.13 (Euler’s Reflection Formula). We have

Γ(s)Γ(1− s) =
π

sin(πs)
.

as meromorphic functions on C with simple poles at each integer s ∈ Z.

Proof. Let f(s) := Γ(s)Γ(1 − s) sin(πs). The function Γ(s)Γ(1 − s) has a simple pole at
each s ∈ Z and no other poles, while sin(πs) has a zero at each s ∈ Z and no poles, so f(s)
is holomorphic on C. We now note that

f(s+ 1) = Γ(s+ 1)Γ(−s) sin(πs+π) = −sΓ(s)Γ(−s) sin(πs) = Γ(s)Γ(1− s) sin(πs) = f(s),
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so f is periodic (with period 1). Using the substitution u = et we obtain

|Γ(s)| ≤
∫ ∞

0
|e−tts−1|dt =

∫ ∞
−∞
|e−eueu(s−1)|eudu =

∫ ∞
−∞

euRe(s)−eudu.

This implies |Γ(s)| is bounded on Re(s) ∈ [1, 2], hence on Re(s) ∈ [0, 1]∩ Im(s) ≥ 1, via (2).
It follows that in the strip Re(s) ∈ [0, 1] we have

|f(s)| = |Γ(s)||Γ(1− s)|| sin(πs)| = O(eIm(s)),

as Im(s) → ∞, since | sin(πs)| = 1
2 |e

is − eis̄| = O(eIm(s)). By Lemma 17.14 below, f(s) is
constant. To determine the constant, as s→ 0 we have Γ(s) ∼ 1

s and sin(πs) ∼ πs, thus

f(0) = lim
s→0

f(s) = lim
s→0

Γ(s)Γ(1− s) sin(πs) = lim
s→0

1

s
· 1 · πs = π,

and the theorem follows.

Lemma 17.14. Let f(s) be a holomorphic function on C such that f(s + 1) = f(s) and
|f(s)| = O(eIm(s)) as Im(s)→∞ in the vertical strip Re(s) ∈ [0, 1]. Then f is constant.

Proof. The function

g(s) =
f(s)− f(a)

sin(π(s− a))

is holomorphic on C, since f(s) − f(a) is holomorphic and vanishes at the zeros a + Z
of sin(π(s − a)) (all of which are simple). We also have g(s + 1) = g(s), and |g(s)| is
bounded on Re(s) ∈ [0, 1], since as Im(s) → ∞ we have |f(s) − f(a)| = O(eIm(s)) and
| sin(π(s−a))| ∼ eπ Im(s). It follows that g(s) is bounded on C, hence constant, by Liouville’s
theorem. We must have g = 0, since |g(s)| = O(e(1−π) Im(s)) = o(1) as Im(s)→∞, and this
implies f(s) = f(a) for all s ∈ C.

Example 17.15. Putting s = 1
2 in the reflection formula yields Γ(1

2)2 = π, so Γ(1
2) =

√
π.

Corollary 17.16. The function Γ(s) has no zeros on C.

Proof. Suppose Γ(s0) = 0. The RHS of the reflection formula Γ(s)Γ(1 − s) = π/ sin(πs)
is never zero, since sin(πs) has no poles, so Γ(1 − s) must have a pole at s0. Therefore
1 − s0 ∈ Z, equivalently, s0 ∈ Z, but for s0 ∈ Z>0 we have Γ(s0) = (s0 − 1)! 6= 0, and for
s0 ∈ Z≤0 we cannot have Γ(s0) = 0 because Γ(s) has a pole at all non-positive integers.

17.1.3 Completing the zeta function

Let us now consider the function

F (s) := π−sΓ(s)ζ(2s),

which is holomorphic on Re(s) > 1/2. In the region Re(s) > 1/2 we have an absolutely
convergent sum

F (s) = π−sΓ(s)
∑
n≥1

n−2s =
∑
n≥1

(πn2)−sΓ(s) =
∑
n≥1

∫ ∞
0

(πn2)−sts−1e−tdt,

18.785 Fall 2019, Lecture #17, Page 5



and the substitution t = πn2y with dt = πn2dy yields

F (s) =
∑
n≥1

∫ ∞
0

(πn2)−s(πn2y)s−1e−πn
2yπn2dy =

∑
n≥1

∫ ∞
0

ys−1e−πn
2ydy.

By the Fubini-Tonelli theorem, we can swap the sum and the integral to obtain

F (s) =

∫ ∞
0

ys−1
∑
n≥1

e−πn
2ydy.

We have Θ(iy) =
∑

n∈Z e
−πn2y = 1 + 2

∑
n≥1 e

−πn2y, thus

F (s) =
1

2

∫ ∞
0

ys−1(Θ(iy)− 1)dy

=
1

2

(∫ 1

0
ys−1Θ(iy)dy − 1

s
+

∫ ∞
1

ys−1(Θ(iy)− 1)dy

)
We now focus on the first integral on the RHS. The change of variable t = 1

y yields∫ 1

0
ys−1Θ(iy)dy =

∫ 1

∞
t1−sΘ(i/t)(−t−2)dt =

∫ ∞
1

t−s−1Θ(i/t)dt.

By Lemma 17.10, Θ(i/t) =
√
tΘ(it), and adding −

∫∞
1 t−s−1/2dt+

∫∞
1 t−s−1/2dt = 0 yields

=

∫ ∞
1

t−s−1/2
(
Θ(it)− 1

)
dt+

∫ ∞
1

t−s−1/2dt

=

∫ ∞
1

t−s−1/2
(
Θ(it)− 1

)
dt− 1

1/2− s
.

Plugging this back into our equation for F (s) we obtain the identity

F (s) =
1

2

∫ ∞
1

(
ys−1 + y−s−1/2

)(
Θ(iy)− 1

)
dy − 1

2s
− 1

1− 2s
,

valid on Re(s) > 1/2. We now observe that F (s) = F (1
2 − s) for s 6= 0, 1

2 , which allows us
to analytically extend F (s) to a meromorphic function on C with poles only at s = 0, 1/2.
Replacing s with s/2 leads us to define the completed zeta function

Z(s) := π
−s/2Γ( s2)ζ(s), (3)

which is meromorphic on C and satisfies the functional equation

Z(s) = Z(1− s). (4)

It has simple poles at 0 and 1 (and no other poles). The only zeros of Z(s) on Re(s) > 0
are the zeros of ζ(s), since by Corollary 17.16, the gamma function Γ(s) has no zeros (and
neither does π−s/2). Thus the zeros of Z(s) on C all lie in the critical strip 0 < Re(s) < 1.

The functional equation also allows us to analytically extend ζ(s) to a meromorphic
function on C whose only pole is a simple pole at s = 1; the pole of Z(s) at s = 0 comes
from the pole of Γ(s/2) at s = 0. The function Γ(s/2) also has poles at −2,−4, . . . where
Z(s) does not, so our extended ζ(s) must have zeros at −2,−4, . . .. These are trivial zeros;
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all the interesting zeros of ζ(s) lie in the critical strip and are conjectured to lie only on the
critical line Re(s) = 1/2 (this is the Riemann hypothesis).

We can compute ζ(0) using the functional equation. From (3) and (4) we have

ζ(s) =
Z(s)

π−s/2Γ( s2)
=

Z(1− s)
π−s/2Γ( s2)

=
π

(s−1)
2 Γ(1−s

2 )

π−s/2Γ( s2)
ζ(1− s) =

πs−1/2Γ(1−s
2 )

Γ( s2)
ζ(1− s). (5)

We know that ζ(s) has a simple pole with residue 1 at s = 1, so

1 = lim
s→1+

(s− 1)ζ(s) = lim
s→1+

(s− 1)πs−1/2Γ(1−s
2 )

Γ( s2)
ζ(1− s).

When s = 1, the denominator on the RHS is Γ(1
2) =

√
π, which cancels π1−1/2 =

√
π in the

numerator. Using Γ(z) = 1
zΓ(z + 1) to shift Γ(1−s

2 ) in the numerator yields

1 = lim
s→1+

(s− 1) 2
1−sΓ

(
3−s

2

)
ζ(1− s) = −2Γ(1)ζ(0) = −2ζ(0).

Thus ζ(0) = −1/2.
Using the reflection formula to replace Γ( s2) = π/(Γ(2−s

2 ) sin(πs2 )) in (5), we have

ζ(s) = πs−
3/2Γ(1−s

2 )Γ(2−s
2 ) sin(πs2 )ζ(1− s).

Applying the duplication formula Γ(2z) = π−1/222z−1Γ(z)Γ(z+ 1
2) with z = 1−s

2 then yields

ζ(s) = 2sπs−1 sin(πs2 )Γ(1− s)ζ(1− s), (6)

which is how one often sees the functional equation for ζ(s) written.

17.2 Gamma factors and a holomorphic zeta function

If we write out the Euler product for the completed zeta function, we have

Z(s) = π−
s/2Γ( s2) ·

∏
p

(1− p−s)−1.

One should think of this as a product over the places of the field Q; the leading factor

ΓR(s) := π−
s/2Γ( s2)

that distinguishes the completed zeta function Z(s) from ζ(s) corresponds to the real
archimedean place of Q. When we discuss Dedekind zeta functions in a later lecture we
will see that there are gamma factors ΓR and ΓC associated to each of the real and complex
places of a number field.

If we insert an additional factor of
(
s
2

)
:= s(s−1)

2 in Z(s) we can remove the poles at 0
and 1, yielding a function ξ(s) holomorphic on C. This yields Riemann’s seminal result.

Theorem 17.17 (Analytic Continuation II). The function

ξ(s) :=
(
s
2

)
ΓR(s)ζ(s)

is holomorphic on C and satisfies the functional equation

ξ(s) = ξ(1− s).

The zeros of ξ(s) all lie in the critical strip 0 < Re(s) < 1.

Remark 17.18. We will usually work with Z(s) and deal with the poles rather than making
it holomorphic by introducing additional factors; some authors use ξ(s) to denote our Z(s).
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17.3 Zeros in the critical strip

The zeros of ξ(s) in the critical strip are precisely the zeros of ζ(s) in the critical strip. Let
N(T ) denote the number of zeros of ξ(s) in the critical strip that satisfy 0 < im s < T .
If we fix ε > 0 and let R be the rectangle {−ε ≤ Re(s) ≤ 1 + ε, 0 ≤ im s ≤ T}, we can
compute N(T ) using Cauchy’s argument principle via

N(T ) =
1

2πi

∫
∂R

ξ′(s)

ξ(s)
ds,

provided that there are no zeros on the lines im s = 0 and im s = T . From this formula and
the functional equation one derive the asymptotic formula

N(T ) ∼ 1

2π
T log

(
T

2πe

)
,

along with an explicit error term that allows one to compute the integer N(T ) exactly.
Note that this formula implies that there are infinitely many zeros in the critical strip. The
Riemann hypothesis states that all of these zeros lie on the critical line im s = 1/2.

One can count zeros on the critical line by counting zeros of the Hardy Z-function

eiθ(t)ζ(1/2 + it)

in a region 0 ≤ t ≤ T , where θ(t) is the Riemann-Siegel function

θ(t) := arg

(
Γ

(
2it+ 1

4

))
− log π

2
t.

There are asymptotic expansions of the Hardy Z-function that allow one to do this efficiently 
(one counts sign changes and checks for multiple roots). By comparing the result to N(T ) 
one can determine whether all the zeros in the critical strip with 0 < im s < T lie on the 
critical line or not. This has been done for values of T exceeding 1013; more precisely, it 
has been verified that when ordered by their imaginary parts, the first 1013 zeros above the 
real axis all lie on the critical line; see [2] for details.
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