10 Extensions of complete DVRs

Recall that in our $A K L B$ setup, A is a Dedekind domain with fraction field K, the field L is a finite separable extension of K, and B is the integral closure of A in L; as we proved in Theorem 5.25, this implies that B is also a Dedekind domain (with L as its fraction field). We now want to consider the special case where A is a complete DVR; in this case B is also a complete DVR, but this will take a little bit of work to prove. We first show that B is a DVR.

Theorem 10.1. Assume $A K L B$ and that A is a complete $D V R$ with maximal ideal \mathfrak{p}. Then B is a DVR whose maximal ideal \mathfrak{q} is necessarily the unique prime above \mathfrak{p}.

Proof. We first show that $\#\{\mathfrak{q} \mid \mathfrak{p}\}=1$. At least one prime \mathfrak{q} of B lies above \mathfrak{p}, since the factorization of $\mathfrak{p} B \subsetneq B$ is non-trivial. Now suppose for the sake of contradiction that $\mathfrak{q}_{1}, \mathfrak{q}_{2} \in\{\mathfrak{q} \mid \mathfrak{p}\}$ with $\mathfrak{q}_{1} \neq \mathfrak{q}_{2}$. Choose $b \in \mathfrak{q}_{1}-\mathfrak{q}_{2}$ and consider the ring $A[b] \subseteq B$. The ideals $\mathfrak{q}_{1} \cap A[b]$ and $\mathfrak{q}_{2} \cap A[b]$ are distinct prime ideals of $A[b]$ containing $\mathfrak{p} A[b]$, and both are maximal, since they are nonzero and $\operatorname{dim} A[b]=\operatorname{dim} A=1$ (note that $A[b]$ is integral over A and therefore has the same dimension). The quotient ring $A[b] / \mathfrak{p} A[b]$ thus has at least two maximal ideals. Let $f \in A[x]$ be the minimal polynomial of b over K, and let $\bar{f} \in(A / \mathfrak{p})[x]$ be its reduction to the residue field A / \mathfrak{p}.

$$
\frac{(A / \mathfrak{p})[x]}{(\bar{f})} \simeq \frac{A[x]}{(\mathfrak{p}, f)} \simeq \frac{A[b]}{\mathfrak{p} A[b]},
$$

thus the $\operatorname{ring}(A / \mathfrak{p})[x] /(\bar{f})$ has at least two maximal ideals, which implies that \bar{f} is divisible by two distinct irreducible polynomials (because $(A / \mathfrak{p})[x]$ is a PID). We can thus factor $\bar{f}=\bar{g} \bar{h}$ with \bar{g} and \bar{h} coprime. By Hensel's Lemma 9.19, we can lift this to a non-trivial factorization $f=g h$ of f in $A[x]$, contradicting the irreducibility of f.

Every maximal ideal of B lies above a maximal ideal of A, but A has only the maximal ideal \mathfrak{p} and $\#\{\mathfrak{q} \mid \mathfrak{p}\}=1$, so B has a unique (nonzero) maximal ideal \mathfrak{q}. Thus B is a local Dedekind domain, hence a local PID, and not a field, so B is a DVR, by Theorem 1.16.

Remark 10.2. The assumption that A is complete is necessary. For example, if A is the DVR $\mathbb{Z}_{(5)}$ with fraction field $K=\mathbb{Q}$ and we take $L=\mathbb{Q}(i)$, then the integral closure of A in L is $B=\mathbb{Z}_{(5)}[i]$, which is a PID but not a DVR: the ideals $(1+2 i)$ and $(1-2 i)$ are both maximal (and not equal). But if we take completions we get $A=\mathbb{Z}_{5}$ and $K=\mathbb{Q}_{5}$, and now $L=\mathbb{Q}_{5}(i)=\mathbb{Q}_{5}=K$, since $x^{2}+1$ has a root in $\mathbb{F}_{5} \simeq \mathbb{Z}_{5} / 5 \mathbb{Z}_{5}$ that we can lift to \mathbb{Z}_{5} via Hensel's lemma; thus if we complete A then $B=A$ is a DVR as required.

Definition 10.3. Let K be a field with absolute value $\|$ and let V be a K-vector space. A norm on V is a function $\left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ such that

- $\|v\|=0$ if and only if $v=0$.
- $\|\lambda v\|=|\lambda|\|v\|$ for all $\lambda \in K$ and $v \in V$.
- $\|v+w\| \leq\|v\|+\|w\|$ for all $v, w \in V$.

Each norm $\|\|$ induces a topology on V via the distance metric $d(v, w):=\| v-w \|$.
Example 10.4. Let V be a K-vector space with basis $\left(e_{i}\right)$, and for $v \in V$ let $v_{i} \in K$ denote the coefficient of e_{i} in $v=\sum_{i} v_{i} e_{i}$. The sup-norm $\|v\|_{\infty}:=\sup \left\{\left|v_{i}\right|\right\}$ is a norm on V (thus
every vector space has at least one norm). If V is also a K-algebra, an absolute value $\|\|$ on V (as a ring) is a norm on V (as a K-vector space) if and only if it extends the absolute value on K (fix $v \neq 0$ and note that $\|\lambda\|\|v\|=\|\lambda v\|=|\lambda|\|v\| \Leftrightarrow\|\lambda\|=|\lambda|$).

Proposition 10.5. Let V be a vector space of finite dimension over a complete field K. Every norm on V induces the same topology, in which V is a complete metric space.

Proof. See Problem Set 5.
Theorem 10.6. Let A be a complete $D V R$ with fraction field K, maximal ideal \mathfrak{p}, discrete valuation $v_{\mathfrak{p}}$, and absolute value $|x|_{\mathfrak{p}}:=c^{v_{\mathfrak{p}}(x)}$, with $0<c<1$. Let L / K be a finite extension of degree n. The following hold.
(i) There is a unique absolute value $|x|:=\left|\mathrm{N}_{L / K}(x)\right|_{\mathfrak{p}}^{1 / n}$ on L that extends $\left|\left.\right|_{\mathfrak{p}}\right.$;
(ii) The field L is complete with respect to $|\mid$, and its valuation ring $\{x \in L:|x| \leq 1\}$ is equal to the integral closure B of A in L;
(iii) If L / K is separable then B is a complete $D V R$ whose maximal ideal \mathfrak{q} induces

$$
|x|=|x|_{\mathfrak{q}}:=c^{\frac{1}{e_{\mathfrak{q}}} v_{\mathfrak{q}}(x)}
$$

where $e_{\mathfrak{q}}$ is the ramification index of \mathfrak{q}, that is, $\mathfrak{p} B=\mathfrak{q}^{e_{\mathfrak{q}}}$.
Proof. Assuming for the moment that | | is actually an absolute value (which is not obvious!), for any $x \in K$ we have

$$
|x|=\left|\mathrm{N}_{L / K}(x)\right|_{\mathfrak{p}}^{1 / n}=\left|x^{n}\right|_{\mathfrak{p}}^{1 / n}=|x|_{\mathfrak{p}},
$$

so $\left.|\mid$ extends $|\right|_{\mathfrak{p}}$ and is therefore a norm on L. The fact that $\left|\left.\right|_{\mathfrak{p}}\right.$ is nontrivial means that $|x|_{\mathfrak{p}} \neq 1$ for some $x \in K^{\times}$, and $|x|^{a}=|x|_{\mathfrak{p}}=|x|$ only for $a=1$, which implies that $|\mid$ is the unique absolute value in its equivalence class extending | $\left.\right|_{\mathfrak{p}}$. Every norm on L induces the same topology (by Proposition 10.5), so \| | is the only absolute value on L that extends $\left|\left.\right|_{\mathfrak{p}}\right.$.

We now show || is an absolute value. Clearly $|x|=0 \Leftrightarrow x=0$ and || is multiplicative; we only need to check the triangle inequality. It suffices to show $|x| \leq 1 \Rightarrow|x+1| \leq|x|+1$, since we always have $|y+z|=|z||y / z+1|$ and $|y|+|z|=|z|(|y / z|+1)$, and without loss of generality we assume $|y| \leq|z|$. In fact the stronger implication $|x| \leq 1 \Rightarrow|x+1| \leq 1$ holds:
$|x| \leq 1 \Longleftrightarrow\left|\mathrm{~N}_{L / K}(x)\right|_{\mathfrak{p}} \leq 1 \Longleftrightarrow N_{L / K}(x) \in A \Longleftrightarrow x \in B \Longleftrightarrow x+1 \in B \Longleftrightarrow|x+1| \leq 1$.
The first biconditional follows from the definition of ||, the second follows from the definition of $\left|\left.\right|_{\mathfrak{p}}\right.$, the third is Corollary 9.21, the fourth is obvious, and the fifth follows from the first three after replacing x with $x+1$. This completes the proof of (i), and also proves (ii).

We now assume L / K is separable. Then B is a DVR, by Theorem 10.1, and it is complete because it is the valuation ring of L. Let \mathfrak{q} be the unique maximal ideal of B. The valuation $v_{\mathfrak{q}}$ extends $v_{\mathfrak{p}}$ with index $e_{\mathfrak{q}}$, by Theorem 8.20 , so $v_{\mathfrak{q}}(x)=e_{\mathfrak{q}} v_{\mathfrak{p}}(x)$ for $x \in K^{\times}$. We have $0<c^{1 / e_{\mathfrak{q}}}<1$, so $|x|_{\mathfrak{q}}:=\left(c^{1 / e_{\mathfrak{q}}}\right)^{v_{\mathfrak{q}}(x)}$ is an absolute value on L induced by $v_{\mathfrak{q}}$. To show it is equal to $\left.|\mid$, it suffices to show that it extends $|\right|_{\mathfrak{p}}$, since we already know that || is the unique absolute value on L with this property. For $x \in K^{\times}$we have

$$
|x|_{\mathfrak{q}}=c^{\frac{1}{e_{\mathfrak{q}}} v_{\mathfrak{q}}(x)}=c^{\frac{1}{e_{\mathfrak{q}}} e_{\mathfrak{q}} v_{\mathfrak{p}}(x)}=c^{v_{\mathfrak{p}}(x)}=|x|_{\mathfrak{p}}
$$

and the theorem follows.

Remark 10.7. The transitivity of $\mathrm{N}_{L / K}$ in towers (Corollary 4.52) implies that we can uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic closure \bar{K}. In fact, this is another form of Hensel's lemma in the following sense: one can show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute value of its fraction field K can be uniquely extended to \bar{K}; see [4, Theorem 6.6].

Corollary 10.8. Assume $A K L B$ and that A is a complete $D V R$ with maximal ideal \mathfrak{p} and let $\mathfrak{q} \mid \mathfrak{p}$. Then $v_{\mathfrak{q}}(x)=\frac{1}{f_{\mathfrak{q}}} v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}(x)\right)$ for all $x \in L$.

Proof. $v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}(x)\right)=v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}((x))\right)=v_{\mathfrak{p}}\left(\mathrm{N}_{L / K}\left(\mathfrak{q}^{v_{\mathfrak{q}}(x)}\right)\right)=v_{\mathfrak{p}}\left(\mathfrak{p}^{f_{\mathfrak{q}} v_{\mathfrak{q}}(x)}\right)=f_{\mathfrak{q}} v_{\mathfrak{q}}(x)$.
Remark 10.9. One can generalize the notion of a discrete valuation to a valuation, a surjective homomorphism $v: K^{\times} \rightarrow \Gamma$, in which Γ is a (totally) ordered abelian group and $v(x+y) \geq \min (v(x), v(y))$; we extend v to K by defining $v(0)=\infty$ to be strictly greater than any element of Γ. In the $A K L B$ setup with A a complete DVR, one can then define a valuation $v(x)=\frac{1}{e_{\mathfrak{q}}} v_{\mathfrak{q}}(x)$ with image $\frac{1}{e_{\mathfrak{q}}} \mathbb{Z}$ that restricts to the discrete valuation $v_{\mathfrak{p}}$ on K. The valuation v then extends to a valuation on \bar{K} with $\Gamma=\mathbb{Q}$. Some texts take this approach, but we will generally stick with discrete valuations (so our absolute value on L restricts to K, but our discrete valuations on L do not restrict to discrete valuations on K, they extend them with index $e_{\mathfrak{q}}$).

Remark 10.10. Recall that a valuation ring is an integral domain A with fraction field K such that for every $x \in K^{\times}$either $x \in A$ or $x^{-1} \in A$ (possibly both). As you will show on Problem Set 6 , if A is a valuation ring, then there exists a valuation $v: K \rightarrow \Gamma \cup\{\infty\}$ for some totally ordered abelian group Γ such that $A=\{x \in K: v(x) \geq 0\}$ is the valuation ring of K with respect to this valuation.

10.1 The Dedekind-Kummer theorem in a local setting

Recall that the Dedekind-Kummer theorem (Theorem 6.14) allows us to factor primes in our $A K L B$ setting by factoring polynomials over the residue field, provided that B is monogenic (of the form $A[\alpha]$ for some $\alpha \in B$), or the prime of interest does not contain the conductor. We now show that in the special case where A and B are DVRs and the residue field extension is separable, B is always monogenic; this holds, for example, whenever K is a local field. To prove this, we first recall a form of Nakayama's lemma.

Lemma 10.11 (Nakayama's Lemma). Let A be a local ring with maximal ideal \mathfrak{p}, and let M be a finitely generated A-module. If the images of $x_{1}, \ldots, x_{n} \in M$ generate $M / \mathfrak{p} M$ as an (A / \mathfrak{p})-vector space then x_{1}, \ldots, x_{n} generate M as an A-module.

Proof. See [1, Corollary 4.8b].
Before proving our theorem on local monogenicity, we record a few corollaries of Nakayama's Lemma that will be useful later.

Corollary 10.12. Let A be a local noetherian ring with maximal ideal \mathfrak{p}, let $g \in A[x]$, and let $B:=A[x] /(g(x))$. Every maximal ideal \mathfrak{m} of B contains the ideal $\mathfrak{p} B$.

Proof. Suppose not. Then $\mathfrak{m}+\mathfrak{p} B=B$ for some maximal ideal \mathfrak{m} of B. The ring B is finitely generated over the noetherian ring A, hence a noetherian A-module, so its A-submodules are all finitely generated. Let z_{1}, \ldots, z_{n} be A-module generators for \mathfrak{m}. Every coset of $\mathfrak{p} B$
in B can be written as $z+\mathfrak{p} B$ for some A-linear combination z of z_{1}, \ldots, z_{n}, so the images of z_{1}, \ldots, z_{n} generate $B / \mathfrak{p} B$ as an (A / \mathfrak{p})-vector space. By Nakayama's lemma, z_{1}, \ldots, z_{n} generate B, in which case $\mathfrak{m}=B$, a contradiction.

As a corollary, we immediately obtain a local version of the Dedekind-Kummer theorem that does not even require A and B to be Dedekind domains.

Corollary 10.13. Let A be a local noetherian ring with maximal ideal \mathfrak{p}, let $g \in A[x]$ be a polynomial with reduction $\bar{g} \in(A / \mathfrak{p})[x]$, and let α be the image of x in the ring $B:=A[x] /(g(x))=A[\alpha]$. The maximal ideals of B are $\left(\mathfrak{p}, g_{i}(\alpha)\right)$, where $g_{1}, \ldots, g_{m} \in A[x]$ are lifts of the distinct irreducible polynomials $\bar{g}_{i} \in(A / \mathfrak{p})[x]$ that divide \bar{g}.

Proof. By Corollary 10.12, the quotient map $B \rightarrow B / \mathfrak{p} B$ gives a one-to-one correspondence between maximal ideals of B and maximal ideals of $B / \mathfrak{p} B$, and we have

$$
\frac{B}{\mathfrak{p} B} \simeq \frac{A[x]}{(\mathfrak{p}, g(x))} \simeq \frac{(A / \mathfrak{p})[x]}{(\bar{g}(x))}
$$

Each maximal ideal of $(A / \mathfrak{p})[x] /(\bar{g}(x))$ is the reduction of an irreducible divisor of \bar{g}, hence one of the \bar{g}_{i} (because $(A / \mathfrak{p})[x]$ is a PID). The corollary follows.

Theorem 10.14. Assume $A K L B$, with A and B DVRs with residue fields $k:=A / \mathfrak{p}$ and $l:=B / \mathfrak{q}$. If l / k is separable then $B=A[\alpha]$ for some $\alpha \in B$; if L / K is unramified this holds for every lift α of any generator $\bar{\alpha}$ for $l=k(\bar{\alpha})$.

Proof. Let $\mathfrak{p} B=\mathfrak{q}^{e}$ be the factorization of $\mathfrak{p} B$ and let $f=[l: k]$ be the residue field degree, so that ef $=n:=[L: K]$. The extension l / k is separable, so we may apply the primitive element theorem to write $l=k\left(\alpha_{0}\right)$ for some $\alpha_{0} \in l$ whose minimal polynomial \bar{g} is separable of degree equal to f. Let $g \in A[x]$ be a monic lift of \bar{g}, and let α_{0} be any lift of $\bar{\alpha}_{0}$ to B. If $v_{\mathfrak{q}}\left(g\left(\alpha_{0}\right)\right)=1$ then let $\alpha:=\alpha_{0}$. Otherwise, let π_{0} be any uniformizer for B and let $\alpha:=\alpha_{0}+\pi_{0} \in B\left(\right.$ so $\left.\alpha \equiv \bar{\alpha}_{0} \bmod \mathfrak{q}\right)$ Writing $g\left(x+\pi_{0}\right)=g(x)+\pi_{0} g^{\prime}(x)+\pi_{0}^{2} h(x)$ for some $h \in A[x]$ via Lemma 9.11, we have

$$
v_{\mathfrak{q}}(g(\alpha))=v_{\mathfrak{q}}\left(g\left(\alpha_{0}+\pi_{0}\right)\right)=v_{\mathfrak{q}}\left(g\left(\alpha_{0}\right)+\pi_{0} g^{\prime}\left(\alpha_{0}\right)+\pi_{0}^{2} h\left(\alpha_{0}\right)\right)=1,
$$

so $\pi:=g(\alpha)$ is also a uniformizer for B.
We now claim $B=A[\alpha]$, equivalently, that $1, \alpha, \ldots, \alpha^{n-1}$ generate B as an A-module. By Nakayama's lemma, it suffices to show that the reductions of $1, \alpha, \ldots, \alpha^{n-1}$ span $B / \mathfrak{p} B$ as an k-vector space. We have $\mathfrak{p}=\mathfrak{q}^{e}$, so $\mathfrak{p} B=\left(\pi^{e}\right)$. We can represent each element of $B / \mathfrak{p} B$ as a coset

$$
b+\mathfrak{p} B=b_{0}+b_{1} \pi+b_{2} \pi \cdots+b_{e-1} \pi^{e-1}+\mathfrak{p} B
$$

where b_{0}, \ldots, b_{e-1} are determined up to equivalence modulo πB. Now $1, \bar{\alpha}, \ldots, \bar{\alpha}^{f-1}$ are a basis for $B / \pi B=B / \mathfrak{q}$ as a k-vector space, and $\pi=g(\alpha)$, so we can rewrite this as

$$
\begin{aligned}
b+\mathfrak{p} B= & \left(a_{0}+a_{1} \alpha+\cdots a_{f-1} \alpha^{f-1}\right) \\
& +\left(a_{f}+a_{f+1} \alpha+\cdots a_{2 f-1} \alpha^{f-1}\right) g(\alpha) \\
& +\cdots \\
& +\left(a_{e f-f+1}+a_{e f-f+2} \alpha+\cdots a_{e f-1} \alpha^{f-1}\right) g(\alpha)^{e-1}+\mathfrak{p} B .
\end{aligned}
$$

Since $\operatorname{deg} g=f$, and $n=e f$, this expresses $b+\mathfrak{p} B$ in the form $b^{\prime}+\mathfrak{p} B$ with b^{\prime} in the A-span of $1, \ldots, \alpha^{n-1}$. Thus $B=A[\alpha]$.

We now note that if L / K is unramified then l / k is separable (this is part of the definition of unramified), and $e=1, f=n$, in which case there is no need to require $g(\alpha)$ to be a uniformizer and we can just take $\alpha=\alpha_{0}$ to be any lift of any $\bar{\alpha}_{0}$ that generates l over k.

In our $A K L B$ setup, if A is a complete DVR with maximal ideal \mathfrak{p} then B is a complete DVR with maximal ideal $\mathfrak{q} \mid \mathfrak{p}$ and the formula $[L: K]=\sum_{\mathfrak{q} \mid \mathfrak{p}} e_{\mathfrak{q}} f_{\mathfrak{q}}$ given by Theorem 5.35 has only one term $e_{\mathfrak{q}} f_{\mathfrak{q}}$. We now simplify matters even further by reducing to the two extreme cases $f_{\mathfrak{q}}=1$ (a totally ramified extension) and $e_{\mathfrak{q}}=1$ (an unramified extension, provided that the residue field extension is separable). ${ }^{1}$

10.2 Unramified extensions of a complete DVR

Let A be a complete DVR with fraction field K and residue field k. Associated to any finite unramified extension of L / K of degree n is a corresponding finite separable extension of residue fields l / k of the same degree n. Given that the extensions L / K and l / k are finite separable extensions of the same degree, we might wonder how they are related. More precisely, if we fix K with residue field k, what is the relationship between finite unramified extensions L / K of degree n and finite separable extensions l / k of degree n ? Each L / K uniquely determines a corresponding l / k, but what about the converse?

This question has a surprisingly nice answer. The finite unramified extensions L of K form a category $\mathcal{C}_{K}^{\text {unr }}$ whose morphisms are K-algebra homomorphisms, and the finite separable extensions l of k form a category $\mathcal{C}_{k}^{\text {sep }}$ whose morphisms are k-algebra homomorphisms. These two categories are equivalent.
Theorem 10.15. Let A be a complete $D V R$ with fraction field K and residue field $k:=A / \mathfrak{p}$. The categories $\mathcal{C}_{K}^{\mathrm{unr}}$ and $\mathcal{C}_{k}^{\text {sep }}$ are equivalent via the functor $\mathcal{F}: \mathcal{C}_{K}^{\mathrm{unr}} \rightarrow \mathcal{C}_{k}^{\text {sep }}$ that sends each unramified extension L of K to its residue field l, and each K-algebra homomorphism $\varphi: L_{1} \rightarrow L_{2}$ to the k-algebra homomorphism $\bar{\varphi}: l_{1} \rightarrow l_{2}$ defined by $\bar{\varphi}(\bar{\alpha}):=\overline{\varphi(\alpha)}$, where α is any lift of $\bar{\alpha} \in l_{1}:=B_{1} / \mathfrak{q}_{1}$ to B_{1} and $\varphi(\alpha)$ is the reduction of $\varphi(\alpha) \in B_{2}$ to $l_{2}:=B_{2} / \mathfrak{q}_{2}$; here $\mathfrak{q}_{1}, \mathfrak{q}_{2}$ are the maximal ideals of the valuation rings B_{1}, B_{2} of L_{1}, L_{2}, respectively.

In particular, \mathcal{F} gives a bijection between the isomorphism classes in $\mathcal{C}_{K}^{\text {unr }}$ and $\mathcal{C}_{k}^{\text {sep }}$, and if L_{1}, L_{2} and have residue fields l_{1}, l_{2} then \mathcal{F} induces a bijection of finite sets

$$
\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right) .
$$

Proof. Let us first verify that \mathcal{F} is well-defined. It is clear that it maps finite unramified extensions L / K to finite separable extensions l / k, but we should check that the map on morphisms does not depend on the lift α of $\bar{\alpha}$ we pick. So let $\varphi: L_{1} \rightarrow L_{2}$ be a K-algebra homomorphism, and for $\bar{\alpha} \in l_{1}$, let α and α^{\prime} be two lifts of $\bar{\alpha}$ to B_{1}. Then $\alpha-\alpha^{\prime} \in \mathfrak{q}_{1}$, and this implies that $\varphi\left(\alpha-\alpha^{\prime}\right) \in \varphi\left(\mathfrak{q}_{1}\right)=\varphi\left(B_{1}\right) \cap \mathfrak{q}_{2} \subseteq \mathfrak{q}_{2}$, and therefore $\overline{\varphi(\alpha)}=\overline{\varphi\left(\alpha^{\prime}\right)}$. The identity $\varphi\left(\mathfrak{q}_{1}\right)=\varphi\left(B_{1}\right) \cap \mathfrak{q}_{2} \subseteq \mathfrak{q}_{2}$ follows from the fact that φ restricts to an injective ring homomorphism $B_{1} \rightarrow B_{2}$ and $B_{2} / \varphi\left(B_{1}\right)$ is a finite extension of DVRs in which \mathfrak{q}_{2} lies over the prime $\varphi\left(\mathfrak{q}_{1}\right)$ of $\varphi\left(B_{1}\right)$. It's easy to see that \mathcal{F} sends identity morphisms to identity morphisms and that it is compatible with composition, so we have a well-defined functor.

To show that \mathcal{F} is an equivalence of categories we need to prove two things:

[^0]- \mathcal{F} is essentially surjective: each separable l / k is isomorphic to the residue field of some unramified L / K
- \mathcal{F} is full and faithful: the induced map $\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \rightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ is a bijection.

We first show that \mathcal{F} is essentially surjective. Given a finite separable extension l / k, we may apply the primitive element theorem to write

$$
l \simeq k(\bar{\alpha})=\frac{k[x]}{(\bar{g}(x))},
$$

for some $\bar{\alpha} \in l$ whose minimal polynomial $\bar{g} \in k[x]$ is necessarily monic, irreducible, separable, and of degree $n:=[l: k]$. Let $g \in A[x]$ be any monic lift of \bar{g}; then g is also irreducible, separable, and of degree n. Now let

$$
L:=\frac{K[x]}{(g(x))}=K(\alpha)
$$

where α is the image of x in $K[x] / g(x)$. Then L / K is a finite separable extension, and by Corollary 10.13, $(\mathfrak{p}, g(\alpha))$ is the unique maximal ideal of $A[\alpha]$ (since \bar{g} is irreducible) and

$$
\frac{B}{\mathfrak{q}} \simeq \frac{A[\alpha]}{(\mathfrak{p}, g(\alpha))} \simeq \frac{A[x]}{(\mathfrak{p}, g(x))} \simeq \frac{(A / \mathfrak{p})[x]}{(\bar{g}(x))} \simeq l .
$$

We thus have $[L: K]=\operatorname{deg} g=[l: k]=n$, and it follows that L / K is an unramified extension of degree $n=f:=[l: k]$: the ramification index of \mathfrak{q} is necessarily $e=n / f=1$, and the extension l / k is separable by assumption (so in fact $B=A[\alpha]$, by Theorem 10.14).

We now show that the functor \mathcal{F} is full and faithful. Given finite unramified extensions L_{1}, L_{2} with valuation rings B_{1}, B_{2} and residue fields l_{1}, l_{2}, we have induced maps

$$
\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{A}\left(B_{1}, B_{2}\right) \longrightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)
$$

The first map is given by restriction from L_{1} to B_{1}, and since tensoring with K gives an inverse map in the other direction, it is a bijection. We need to show that the same is true of the second map, which sends $\varphi: B_{1} \rightarrow B_{2}$ to the k-homomorphism $\bar{\varphi}$ that sends $\bar{\alpha} \in l_{1}=B_{1} / \mathfrak{q}_{1}$ to the reduction of $\varphi(\alpha)$ modulo \mathfrak{q}_{2}, where α is any lift of $\bar{\alpha}$.

As above, use the primitive element theorem to write $l_{1}=k(\bar{\alpha})=k[x] /(\bar{g}(x))$ for some $\bar{\alpha} \in l_{1}$. If we now lift $\bar{\alpha}$ to $\alpha \in B_{1}$, we must have $L_{1}=K(\alpha)$, since $\left[L_{1}: K\right]=\left[l_{1}: k\right]$ is equal to the degree of the minimal polynomial \bar{g} of $\bar{\alpha}$ which cannot be less than the degree of the minimal polynomial g of α (both are monic). Moreover, we also have $B_{1}=A[\alpha]$, since this is true of the valuation ring of every finite unramified extension in our category.

Each A-module homomorphism in

$$
\operatorname{Hom}_{A}\left(B_{1}, B_{2}\right)=\operatorname{Hom}_{A}\left(\frac{A[x]}{(g(x))}, B_{2}\right)
$$

is uniquely determined by the image of x in B_{2}. Thus gives us a bijection between $\operatorname{Hom}_{A}\left(B_{1}, B_{2}\right)$ and the roots of g in B_{2}. Similarly, each k-algebra homomorphism in

$$
\operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)=\operatorname{Hom}_{k}\left(\frac{k[x]}{(\bar{g}(x))}, l_{2}\right)
$$

is uniquely determined by the image of x in l_{2}, and there is a bijection between $\operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ and the roots of \bar{g} in l_{2}. Now \bar{g} is separable, so every root of \bar{g} in $l_{2}=B_{2} / \mathfrak{q}_{2}$ lifts to a unique root of g in B_{2}, by Hensel's Lemma 9.15. Thus the map $\operatorname{Hom}_{A}\left(B_{1}, B_{2}\right) \longrightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ induced by \mathcal{F} is a bijection.

Remark 10.16. In the proof above we actually only used the fact that L_{1} / K is unramified. The map $\operatorname{Hom}_{K}\left(L_{1}, L_{2}\right) \rightarrow \operatorname{Hom}_{k}\left(l_{1}, l_{2}\right)$ is a bijection even if L_{2} / K is not unramified.

Let us note the following corollary, which follows from our proof of Theorem 10.15.
Corollary 10.17. Assume $A K L B$ with A a complete $D V R$ with residue field k. Then L / K is unramified if and only if $B=A[\alpha]$ for some $\alpha \in L$ whose minimal polynomial $g \in A[x]$ has separable image \bar{g} in $k[x]$.
Proof. The forward direction was proved in the proof of the theorem, and for the reverse direction note that \bar{g} must be irreducible, since otherwise we could use Hensel's lemma to lift a non-trivial factorization of \bar{g} to a non-trivial factorization of g, so the residue field extension is separable and has the same degree as L / K, so L / K is unramified.

Corollary 10.18. Let A be a complete $D V R$ with fraction field K and residue field k, and let ζ_{n} be a primitive nth root of unity in some algebraic closure of K, with n prime to the characteristic of k. The extension $K\left(\zeta_{n}\right) / K$ is unramified.

Proof. The field $K\left(\zeta_{n}\right)$ is the splitting field of $f(x)=x^{n}-1$ over K. The image \bar{f} of f in $k[x]$ is separable when $p \nmid n$, since $\operatorname{gcd}\left(\bar{f}, \bar{f}^{\prime}\right) \neq 1$ only when $\bar{f}^{\prime}=n x^{n-1}$ is zero, equivalently, only when $p \mid n$. When f is separable, so are all of its divisors, including the reduction of the minimal polynomial of ζ_{n}, which must be irreducible since otherwise we could obtain a contradiction by lifting a non-trivial factorization via Hensel's lemma. It follows that the residue field of $K\left(\zeta_{n}\right)$ is a separable extension of k, thus $K\left(\zeta_{n}\right) / K$ is unramified.

When the residue field k is finite (always the case if K is a local field), we can give a precise description of the finite unramified extensions L / K.

Corollary 10.19. Let A be a complete $D V R$ with fraction field K and finite residue field \mathbb{F}_{q}, and let L be a degree n extension of K. Then L / K is unramified if and only if $L \simeq K\left(\zeta_{q^{n}-1}\right)$. When this holds, $A\left[\zeta_{q^{n}-1}\right]$ is the integral closure of A in L and L / K is a Galois extension with $\operatorname{Gal}(L / K) \simeq \mathbb{Z} / n \mathbb{Z}$.

Proof. The reverse implication is implied by Corollary 10.18; note that $K\left(\zeta_{q^{n}-1}\right)$ has degree n over K because its residue field is the splitting field of $x^{q^{n}-1}-1$ over \mathbb{F}_{q}, which is an extension of degree n (indeed, one can take this as the definition of $\mathbb{F}_{q^{n}}$).

Now suppose L / K is unramified. The residue field has degree n and is thus isomorphic to $\mathbb{F}_{q^{n}}$, so its multiplicative group is a cyclic of order $q^{n}-1$ generated by some $\bar{\alpha}$. The minimal polynomial $\bar{g} \in \mathbb{F}_{q}[x]$ of $\bar{\alpha}$ divides $x^{q^{n}-1}-1$, and since \bar{g} is irreducible, it is coprime to the quotient $\left(x^{q^{n}-1}-1\right) / \bar{g}$. By Hensel's Lemma 9.19, we can lift \bar{g} to a polynomial $g \in A[x]$ that divides $x^{q^{n}-1}-1 \in A[x]$, and by Hensel's Lemma 9.15 we can lift $\bar{\alpha}$ to a root α of g, in which case α is also a root of $x^{q^{n}-1}-1$; it must be a primitive ($q^{n}-1$)-root of unity because its reduction $\bar{\alpha}$ is.

Let B be the integral closure of A in L. We have $B \simeq A\left[\zeta_{q^{n}-1}\right]$ by Theorem 10.14, and L is the splitting field of $x^{q^{n}-1}-1$, since its residue field $\mathbb{F}_{q^{n}}$ is (we can lift the factorization of $x^{q^{n}-1}-1$ from $\mathbb{F}_{q^{n}}$ to L via Hensel's lemma). It follows that L / K is Galois, and the bijection between $\left(q^{n}-1\right)$-roots of unity in L and $\mathbb{F}_{q^{n}}$ induces an isomorphism $\operatorname{Gal}(L / K) \simeq \operatorname{Gal}(l / k)=\operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right) \simeq \mathbb{Z} / n \mathbb{Z}$.

Corollary 10.20. Let A be a complete $D V R$ with fraction field K and finite residue field of characteristic p, and suppose that K does not contain a primitive pth root of unity. The extension $K\left(\zeta_{m}\right) / K$ is ramified if and only if p divides m.

Proof. If p does not divide m then Corollary 10.18 implies that $K\left(\zeta_{m}\right) / K$ is unramified. If p divides m then $K\left(\zeta_{m}\right)$ contains $K\left(\zeta_{p}\right)$, which by Corollary 10.19 is unramified if and only if $K\left(\zeta_{p}\right) \simeq K\left(\zeta_{p^{n}-1}\right)$ with $n:=\left[K\left(\zeta_{p}\right): K\right]$, which occurs if and only if p divides $p^{n}-1$ (since $\left.\zeta_{p} \notin K\right)$, which it does not; thus $K\left(\zeta_{p}\right)$ and therefore $K\left(\zeta_{m}\right)$ is ramified when $p \mid m$.

Example 10.21. Consider $A=\mathbb{Z}_{p}, K=\mathbb{Q}_{p}, k=\mathbb{F}_{p}$, and fix $\overline{\mathbb{F}}_{p}$ and $\overline{\mathbb{Q}}_{p}$. For each positive integer n, the finite field \mathbb{F}_{p} has a unique extension of degree n in $\overline{\mathbb{F}}_{p}$, namely, $\mathbb{F}_{p^{n}}$. Thus for each positive integer n, the local field \mathbb{Q}_{p} has a unique unramified extension of degree n; it can be explicitly constructed by adjoining a primitive root of unity $\zeta_{p^{n}-1}$ to \mathbb{Q}_{p}. The element $\zeta_{p^{n}-1}$ will necessarily have minimal polynomial of degree n dividing $x^{p^{n}-1}-1$.

Another useful consequence of Theorem 10.15 that applies when the residue field is finite is that the norm map $\mathrm{N}_{L / K}$ restricts to a surjective map $B^{\times} \rightarrow A^{\times}$on unit groups; in fact, this property characterizes unramified extensions.

Theorem 10.22. Assume $A K L B$ with A a complete $D V R$ with finite residue field. Then L / K is unramified if and only if $\mathrm{N}_{L / K}\left(B^{\times}\right)=A^{\times}$.

Proof. See Problem Set 6.
Definition 10.23. Let L / K be a separable extension. The maximal unramified extension of K in L is the subfield

$$
\bigcup_{\substack{K \subseteq E \subseteq L \\ / K \text { fin. unram. }}} E \subseteq L
$$

where the union is over finite unramified subextensions E / K. When $L=K^{\text {sep }}$ is the separable closure of K, this is the maximal unramified extension of K, denoted K^{unr}.

Example 10.24. The field $\mathbb{Q}_{p}^{\text {unr }}$ is an infinite extension of \mathbb{Q}_{p} with Galois group

$$
\operatorname{Gal}\left(\mathbb{Q}_{p}^{\text {unr }} / \mathbb{Q}_{p}\right) \simeq \operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)={\underset{\hbar}{n}}_{\lim _{n}} \operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right) \simeq \underset{{ }_{n}}{\lim } \mathbb{Z} / n \mathbb{Z}=: \hat{\mathbb{Z}}
$$

where the inverse limit is taken over positive integers n ordered by divisibility. The ring $\hat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z}. The field $\mathbb{Q}_{p}^{\text {unr }}$ has value group \mathbb{Z} and residue field $\overline{\mathbb{F}}_{p}$.

Theorem 10.25. Assume $A K L B$ with A a complete $D V R$ and separable residue field extension l / k. Let $e_{L / K}$ and $f_{L / K}$ be the ramification index and residue field degrees, respectively. The following hold:
(i) There is a unique intermediate field extension E / K that contains every unramified extension of K in L and it has degree $[E: K]=f_{L / K}$.
(ii) The extension L / E is totally ramified and has degree $[L: E]=e_{L / K}$.
(iii) If L / K is Galois then $\operatorname{Gal}(L / E)=I_{L / K}$, where $I_{L / K}=I_{\mathfrak{q}}$ is the inertia subgroup of $\operatorname{Gal}(L / K)$ for the unique prime \mathfrak{q} of B.

Proof. (i) Let E / K be the finite unramified extension of K in L corresponding to the finite separable extension l / k given by Theorem 10.15; then $[E: K]=[l: k]=f_{L / K}$ as desired. The maximal unramified extension E^{\prime} of K in L has the same residue field l as L, which is also the residue field of E, and equivalence of categories given by Theorem 10.15 implies that the trivial isomorphism $\ell \simeq \ell$ corresponds to an isomorphism $E \simeq E^{\prime}$ that allows us to
view E as a subfield of L; the same applies to any unramified extension of K with residue field l, so E is unique up to isomorphism.
(ii) We have $f_{L / E}=[l: l]=1$, so $e_{L / E}=[L: E]=[L: K] /[E: K]=e_{L / K}$.
(iii) By Proposition 7.13, we have $I_{L / E}=\operatorname{Gal}(L / E) \cap I_{L / K}$, and these three groups all have the same order $e_{L / K}$ so they must coincide.

References

[1] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer, 1995.
[2] N. Koblitz, p-adic numbers, p-adic analysis, and zeta functions, Springer, 1984.
[3] S. Lang, Algebraic number theory, second edition, Springer, 1994.
[4] J. Neukirch, Algebraic number theory, Springer, 1999.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Recall from Definition 5.37 that separability of the residue field extension is part of the definition of an unramified extension. If the residue field is perfect (as when K is a local field, for example), the residue field extension is automatically separable, but in general it need not be, even when L / K is unramified.

