
18.783 Elliptic Curves Spring 2019
Lecture #9 03/06/2019

9 Schoof’s algorithm

In the early 1980’s, René Schoof [3, 4] introduced the first polynomial-time algorithm to
compute #E(Fq). Extensions of Schoof’s algorithm remain the point-counting method of
choice when the characteristic of Fq is large (e.g., when q is a cryptographic size prime).1

Schoof’s basic strategy is simple: compute the the trace of Frobenius t modulo many
small primes ̀ and use the Chinese remainder theorem to uniquely determine t, which then
determines #E(Fq) = q + 1 − t. Here is a high-level version of the algorithm.

Algorithm 9.1. Given an elliptic curve E over a finite field Fq compute #E(Fq) as follows:

1. Initialize M ← 1 and t ← 0.

2. While M ≤ 4
√
q, for increasing primes ̀ = 2, 3, 5, . . . that do not divide q:

a. Compute t` = tr π mod `. � �
b. Set t ← M(M−1 mod `)t` + `(`−1 mod M)t mod `M and then M ← `M .

3. If t > M/2 then set t ← t − M .

4. Output q + 1 − t.

Step 2b uses an iterative version of the Chinese remainder theorem to ensure that

t ≡ tr πE mod M

holds throughout.2 This invariant holds trivially after step 1, modulo M = 1, and is
maintained in step 2b: note that the integer M(M−1 mod `) is congruent to 1 mod ` and
0 mod M , while the integer ̀ (`−1 mod M) is congruent to 0 mod ` and 1 mod M .

Once M exceeds 4
√
q, the value of t ∈ Z/MZ uniquely determines tr πE ∈ Z: by Hasse’s √ theorem, | tr πE | ≤ 2 q < M/2, and this allows us to determine the sign of tr πE in step 3.

The key to the algorithm is the implementation of step 2a, which is described in the next
section, but let us first consider the primes ̀ that the algorithm uses. Let ̀ max be the largest
prime ̀ for which the algorithm computes t`. The Prime Number Theorem implies3 X

log ̀ ∼ x,
primes `≤x

n so ̀ max ≈ log 4
√
q ≈ 2

1 n = O (n), and we need O(log n) primes ̀ (as usual, n = log q). The
cost of updating t and M is bounded by O(M(n) log n), thus if we can compute t` in time
bounded by a polynomial in n and ̀ , then the whole algorithm will run in polynomial time.

9.1 Computing the trace of Frobenius modulo 2.

We first consider the case ̀ = 2. Assuming q is odd (which we do), t = q + 1 − #E(Fq)
is divisible by 2 if and only if #E(Fq) is divisible by 2, equivalently, if and only if E(Fq)

2 contains a point of order 2. If E has Weierstrass equation y = f(x), then the points of
1There are deterministic p-adic algorithms for computing #E(Fq) that are faster than Schoof’s algorithm

when the characteristic p of Fq is very small; see [2]. But their running times are exponential in log p.
2There are faster ways to apply the Chinese remainder theorem; see [1, §10.3]. They are not relevant

here because the complexity is overwhelmingly dominated by step 2a.
3In fact we only need Chebyshev’s Theorem to get this.

Lecture by Andrew Sutherland

order 2 in E(Fq) are precisely those of the form (x0, 0), where x0 ∈ Fq is a root f(x). Recall
from Lecture 4 that the distinct roots of f in Fq are precisely the roots of gcd(xq − x, f(x)).
We can thus compute t2 := tr πE mod 2 as (� �

0 if deg gcd(f(x), xq − x) > 0;
t2 =

1 otherwise.

Note that is a deterministic computation (we need randomness to eÿciently find the roots
of g(x), but not to count them), and it takes O(n M(n)) time.

Having addressed the case ̀ = 2 we henceforth assume that ̀ is odd.

9.2 The characteristic equation of Frobenius modulo `

Recall that for E/Fq, the Frobenius endomorphism πE ∈ End(E) is defined by the rational
q map (x : y : z) 7→ (x : yq : zq). By Theorem 7.18, it satisfies the characteristic equation

πE
2 − tπE + q = 0,

with t = tr π and q = deg π. Restricting to the ̀ -torsion subgroup E [`] yields

π2 − t`π` + q` = 0, (1) `

which we view as an identity in End(E[`]). Here t` ≡ t mod ` and q` ≡ q mod ` can
be viewed either as restrictions of the scalar multiplication maps [t] and [q], or simply as
scalars in Z/`Z multiplied by [1]`, the restriction of [1] ∈ End(E) to E[`] (equivalently the
multiplicative identity in the ring End(E[`])). We shall take the latter view, regarding

q` = q` · [1]` = [1]` + · · · + [1]`

as the sum of q` copies of [1]`, and similarly for t`. We can eÿciently compute q` using our
usual double-and-add method to perform scalar multiplication by q`, provided that we know
how to explicitly represent and perform ring operations on elements of End(E[`]); this is
the topic of the next section.

Our strategy for determining t` is simple: for c = 0, 1, . . . , ` − 1 compute π2 − cπ` + q` `
and check whether it is equal to 0. The following lemma shows that whenever this occurs
(which it must, since (1) guarantees this for c = t`) we must have c = t` ∈ Z/`Z. In fact we
will prove something stronger.

Lemma 9.2. Let E/Fq be an elliptic curve with Frobenius endomorphism π, let ̀ be a prime
not dividing q, and let P ∈ E[`] be nonzero. Suppose that for some integer c the equation

π`
2(P) − cπ`(P) + q`(P) = 0

holds. Then c ≡ t` = tr π mod `.

Proof. From equation (1) we have

π`
2(P) − t`π`(P) + q`P = 0,

and we are assuming that
π`
2(P) − cπ`(P) + q`P = 0.

Subtracting these equations yields (c − t`)π`(P) = 0. Since π`P is a nonzero element of E[`]
and ̀ is prime, the point π`(P) has order ̀ , which must divide c − t`. So c ≡ t` mod `.

18.783 Spring 2019, Lecture #9, Page 2

http://math.mit.edu/classes/18.783/2017/LectureNotes7.pdf#theorem.2.18

9.3 Arithmetic in End(E[`])

Let h = ψ`(x, y) be the ̀ th division polynomial of E. We have assumed that ̀ is odd, so by
Lemma 6.20, we in fact have h ∈ Fq[x] (no dependence on y). As we proved in Lecture 6, a
nonzero point P = (x0, y0) ∈ E(Fq) lies in E[`] if and only if h(x0) = 0; this follows from
Corollary 5.27 and Theorem 6.21. To represent elements of End(E[`]) as rational maps, we
can thus treat the polynomials appearing in these maps as elements of the ring

Fq [x, y] /(h(x), y 2 − f(x)),

2 3 where y = f(x) = x + Ax + B is the Weierstrass equation for E.
In the case of the Frobenius endomorphism, we have � �

π` = xq mod h(x), yq mod (h(x), y 2 − f(x)) � � � �
= xq mod h(x), f(x)(q−1)/2 mod h(x) y , (2)

and we also note that
[1]` = (x mod h(x), (1 mod h(x)) y).

We can thus represent all of the nonzero endomorphisms that appear in equation (1) in the
form (a(x), b(x) y), where a and b are elements of the polynomial ring R = Fq[x]/(h(x)) that
we may uniquely represent as polynomials in Fq[x] of degree less than deg h = (`2 − 1)/2 by
taking their remainders modulo h.

9.3.1 Multiplication in End(E[`]).

We multiply endomorphisms by composition. If α1 = (a1(x), b1(x)y) and α2 = (a2(x), b2(x)y)
are two elements of End(E[`]), then the product α1α2 in End(E[`]) is given by

α1 ◦ α2 = (a1(a2(x)), b1(a2(x))b2(x) y) ,

where we may reduce a3(x) = a1(a2(x)) and b3(x) = b1(a2(x))b2(x) modulo h(x).

9.3.2 Addition in End(E[`]).

Addition of endomorphisms is defined pointwise in terms of addition on the elliptic curve.
Given α1 = (a1(x), b1(x)y) and α2 = (a2(x), b2(x)y), to compute α3 = α1 + α2, we simply
apply the formulas for point addition to the coordinate functions of α1 and α2. Recall that
the general formula for addition of non-opposite aÿne points (x3, y3) = (x1, y1) + (x2, y2)

2 3 on the elliptic curve E : y = x + Ax + B is given by the formulas

x3 = m 2 − x1 − x2, y3 = m(x1 − x3) − y1,

where
2 y1 − y2 3x1 + A

m = (if x1 6= x2), m = (if x1 = x2).
x1 − x2 2y1

Using the coordinate functions x1 = a1(x), x2 = a2(x), y1 = b1(x)y, y2 = b2(x)y, in the
case x1 6= x2 we have

b1(x) − b2(x)
m(x, y) = y = r(x)y,

a1(x) − a2(x)

18.783 Spring 2019, Lecture #9, Page 3

http://math.mit.edu/classes/18.783/2017/LectureNotes6.pdf#theorem.2.20
http://math.mit.edu/classes/18.783/2017/LectureNotes5.pdf#theorem.2.27
http://math.mit.edu/classes/18.783/2017/LectureNotes6.pdf#theorem.2.21

where r = (b1 − b2)/(a1 − a2), and when x1 = x2 we have

3a1(x)
2 + A 3a1(x)

2 + A
m(x, y) = = y = r(x)y,

2b1(x)y 2b1(x)f(x)

2 where now r = (3a1 + A)/(2b1f). Noting that m(x, y)2 = (r(x)y)2 = r(x)2f(x), the sum
α1 + α2 = α3 = (a3(x), b3(x)y) is defined by

a3 = r 2f − a1 − a2,

b3 = r(a1 − a3) − b1.

In both cases, provided that the polynomial v in the denominator of the rational function
r = u/v is invertible in the ring Fq[x]/(h(x)), we can express r as a polynomial uv−1 mod h
and write α3 = (a3(x), b3(x)y) in our desired form, with a3, b3 ∈ Fq[x]/(h(x)) uniquely
represented by polynomials in Fq[x] of degree less than the degree of h.

But this may not always possible, because the ̀ -division polynomial h(x) need not be
irreducible. Indeed, if ̀ divides #E(Fq) it certainly will not be irreducible, since h(x) will
then have rational roots corresponding to the x-coordinates of rational points of order ̀ ,
and even when ̀ 6 | #E(Fq), if E admits a rational isogeny α of degree ̀ then h(x) will be
divisible by the polynomial of degree (` − 1)/2 whose roots are the x-coordinates of the
nonzero points in the kernel of α. Thus the the ring Fq[x]/(h(x)) is not necessarily a field;
it may contain zero divisors, and these elements are not invertible.

At first glance this might appear to be a problem, but in fact it can only help us. If we
encounter a rational function r = u/v whose denominator v is not invertible in Fq[x]/(h(x))
then we can obtain a non-trivial factor of h by computing gcd(v, h): if v = a1 − a2 then v
is nonzero and has degree less than h, since in this case a1 6= a2 and deg(a1 − a2) < deg(h),
and if v = 2b1f then gcd(v, h) must divide b1, because h and f cannot share a common
factor (the roots of f(x) in Fq are x-coordinates of 2-torsion points, the roots of h(x) in Fq

are x-coordinates of ̀ -torsion points, and ̀ =6 2), and b1 =6 0 has degree less than h.
Our strategy in this situation is to simply replace h by g = gcd(v, h) and compute t` by

working in the smaller quotient ring Fq[x]/(g(x)), which will be faster because deg g < deg h;
in fact in this situation we will always have deg g ≤ (` − 1)/2, which is much smaller than
deg h = (`2 − 1)/2. Lemma 9.2 implies that we can restrict our attention to the action of
π` on points P ∈ E[`] whose x-coordinates are roots of g(x), even if deg g = 1.

9.4 Algorithm to compute the trace of Frobenius modulo `

We now give an algorithm to compute t`, the trace of Frobenius modulo ̀ .

2 Algorithm 9.3. Given E : y = f(x) over Fq and an odd prime ̀ , compute t` as follows:

1. Compute the ̀ th division polynomial h = ψ` ∈ Fq[x] for E.

2. Compute π` = (xq mod h, (f (q−1)/2 mod h)y) and π2 = π` ◦ π`. `

3. Use scalar multiplication to compute q` = q`[1]`, and then compute π2 + q`. `
(If a non-invertible denominator arises, update h and return to step 2).

4. Compute 0, πl, 2πl, 3πl, . . . , cπ`, until cπl = π2 + ql. l
(If a non-invertible denominator arises, update h and return to step 2).

5. Output t` = c.

18.783 Spring 2019, Lecture #9, Page 4

Throughout the algorithm, elements of End(E[`]) are represented in the form (a(x), b(x)y),
with a, b ∈ R = Fq[x]/(h(x)), and all polynomial operations take place in the ring R. If a
non-invertible denominator v is found in either steps 3 or 4 we replace h with whichever of
gcd(h, v) and h/ gcd(h, v) has lower degree; this guarantees that the degree of h is reduced
by at least a factor of 2 (but see the next section for a further discussion).

The correctness of the algorithm follows from equation (1) and Lemma 9.2. The algo-
rithm is guaranteed to find some cπl = π2 + ql in step 4 with c < `, since we know that l
c = t` works. Although we may be working modulo a proper factor g of h, every root x0 of
g is a root of h and therefore corresponds to a pair of nonzero points P = (x0, ±y0) ∈ E[`]
for which π2(P) − cπ`(P) + q`P = 0 holds (there is at least one such root, since deg g > 0), `
and Lemma 9.2 implies that we must have c = t`.

The computation of the division polynomial in step 1 of the algorithm can be eÿciently
accomplished using the double-and-add approach described in Problem Set 3. You will have
the opportunity to do a careful complexity analysis Algorithm 9.3 in the next problem set,
but it is easy to see that its running time is polynomial in n = log q and ̀ : every operation
involves polynomials over Fq of degree less then ̀ 2 , in step 4 we can have at most ̀ iterations,
and we can return to step 2 at most 2 log ̀ times (in fact this can happen only once). A
simple implementation of the algorithm can be found in this Sage worksheet.

9.5 Factors of the division polynomial

As we saw when running our implementation of Schoof’s algorithm in Sage, we do occa-
sionally encounter non-invertible denominators and thereby obtain a proper factor g of the
`-division polynomial h = ψ`. This is not too surprising, since there is no reason why h
should necessarily be irreducible, but it is worth noting that whenever this occurs the degree
of g is always exactly (` − 1)/2. Why is this the case?

Any point P = (x0, y0) ∈ E(Fq) for which g(x0) = 0 lies both in E[`] and in the kernel of
an endomorphism α (since x0 is a root of the denominator of a rational function defining α).
The point P is nonzero, so it generates a cyclic group C of order ̀ which must be a subgroup
of ker α. It follows that over Fq the polynomial g has at least (` − 1)/2 roots, one for each
pair of nonzero points (xi, ±yi) in C (note that ̀ is odd). If g has any other roots, then
there is point Q that lies in the intersection of E[`] ∩ ker α but not in C, in which case we
must have ker α = E[`], since E[`] has ̀ -rank 2; but this is impossible because g is a proper
factor of the ̀ -division polynomial h (whose roots are distinct because ̀ - q). So g must
have exactly (` − 1)/2 roots in Fq. Reducing the polynomials that define our endomorphism
modulo g corresponds to working in the subring End(C) of End(E[`]).

If we are lucky enough to find such a proper factor g of h, our algorithm then speeds
up by at least a factor of ̀ , since we are working modulo a polynomial of degree (` − 1)/2
rather than (`2 − 1)/2. While we are fairly unlikely to stumble across such a g by chance, it
turns out that in fact such a g exists for half of the primes ̀ (asymptotically speaking). Not
long after Schoof published his result, Noam Elkies found a way to directly compute these
polynomials, whose roots are the x-coordinates of points P = (x0, y0) that lie in the kernel
of a rational isogeny of degree ̀ . We will learn about Elkies’ technique later in the course
when we discuss modular polynomials. There is another optimization due to A.O.L. Atkin
that applies to primes ̀ for which Elkies’ optimization does not; together these yield what
is known as the Schoof-Elkies-Atkin (SEA) algorithm.

18.783 Spring 2019, Lecture #9, Page 5

https://share.cocalc.com/share/bec670ef-3089-49ad-a790-f587e6579df9/18.783%20Lecture%209%20Schoof's%20algorithm.sagews?viewer=share

9.6 Some historical remarks

When Schoof originally developed this algorithm, it was not clear to him that it had any
practical use. This is in part because he (and others) were unduly pessimistic about its
practical eÿciency, in part because robust implementations of fast integer and polynomial
arithmetic were not as widely available then as they are now. Even the simple Sage imple-
mentation given in the worksheet is already noticeably faster than the baby-steps giant-steps
algorithm for q ≈ 280 and can readily handle computations over fields of cryptographic size
(it might take a day or two for q ≈ 2256 , but this could be improved by at least an order of
magnitude using a lower-level implementation in C or C++).

To better motivate his algorithm, Schoof gave an application that is of purely theoretical
interest: he showed that it could be used to deterministically compute the square root of an
integer a modulo a prime p in time that grows polynomially in log p when a is held fixed;
we will see exactly how this works when we cover the theory of complex multiplication.
Previously, no deterministic polynomial-time algorithm was known for this problem, unless
one assumes the extended Riemann hypothesis. But Schoof’s square-root application is
really of no practical use; as we have seen, there are fast probabilistic algorithms to compute
square roots modulo a prime, and unless the extended Riemann hypothesis is false, there
are even deterministic algorithms that are much faster than Schoof’s approach.

By contrast, in showing how to compute #E(Fq) in polynomial-time, Schoof solved a
practically important problem for which the best previously known algorithms were fully
exponential (including randomized algorithms), despite the e˙orts of many experts working
in the field. While perhaps not fully appreciated at the time, this has to be regarded as a
major breakthrough, both from a theoretical and practical perspective. Improved versions
of Schoof’s algorithm (the SEA algorithm) are now the method of choice for computing
#E(Fq) in fields of large characteristic. In particular, the PARI library that is used by Sage
includes an implementation of the SEA algorithm, and over 256-bit fields it takes only a
few seconds to compute #E(Fq). Today it is feasible to compute #E(Fq) even when q is a
prime with 5,000 decimal digits (over 16,000 bits), which represents the current record [5].

9.7 The discrete logarithm problem

We now turn to a problem that is generally believed not to have a polynomial-time solution.4

In its most standard form, the discrete logarithm problem in a finite group G can be stated
as follows:

Given α ∈ G and β ∈ hαi, find the least positive integer x such that αx = β.

In additive notation (which we will often use), this means xα = β. In either case, we call
x the discrete logarithm of β with respect to the base α and denote it logα β. 5 Note that
in the form stated above, where x is required to be positive, the discrete logarithm problem
includes the problem of computing the order of α as a special case: |α| = logα 1G.

We can also formulate a slightly stronger version of the problem:

Given α, β ∈ G, compute logα β if β ∈ hαi and otherwise report that β 6∈ hαi.
4Here we restrict our attention to classical models of computation (e.g. Turing machines). Under a

quantum computing model, polynomial-time algorithms for the discrete logarithm problem are known.
5The multiplicative terminology stems from the fast that most of the early work on computing discrete

logarithms focused on the case where G is the multiplicative group of a finite field.

18.783 Spring 2019, Lecture #9, Page 6

http://pari.math.u-bordeaux.fr/

This can be a significantly harder problem. For example, if we are using a Las Vegas
algorithm, when β lies in hαi we are guaranteed to eventually find logα β, but if not, we will
never find it and it may be impossible to tell whether we are just very unlucky or β 6∈ hαi. On
the other hand, with a deterministic algorithm such as the baby-steps giant-steps method,
we can unequivocally determine whether β lies in hαi or not.

There is also a generalization called the extended discrete logarithm:

Given α, β ∈ G, determine the least positive integer y such that βy ∈ hαi, and
then output the pair (x, y), where x = logα β

y.

This yields positive integers x and y satisfying βy = αx , where we minimize y first and x
second. Note that there is always a solution: in the worst case x = |α| and y = |β|.

Finally, one can also consider a vector form of the discrete logarithm problem:

Given α1, . . . αr ∈ G and n1, . . . , nr ∈ Z such that every β ∈ G can be writ-
αe1 αer ten uniquely as β = · · · with ei ∈ [1, ni], compute the exponent vector 1 r

(e1, . . . , er) associated to a given β.

Note that the group G need not be abelian in order for the hypothesis to apply, it suÿces
for G to by polycyclic (this means it admits a subnormal series with cyclic quotients).

The extended discrete and vector forms of the discrete logarithm problem play an impor-
tant role in algorithms to compute the structure of a finite abelian group, but in the lectures
we will focus primarily on the standard form of the discrete logarithm problem (which we
may abbreviate to DLP).

Example 9.4. Suppose G = F×
101. Then log3 37 = 24, since 324 ≡ 37 mod 101.

Example 9.5. Suppose G = F+
101. Then log3 37 = 46, since 46 · 3 ≡ 37 mod 101.

Both of these examples involve groups where the discrete logarithm is easy to compute
(and not just because 101 is a small number), but for very di˙erent reasons. In Example 9.4
we are working in a group of order 100 = 22 · 52 . As we will see in the next lecture, when
the group order is a product of small primes (i.e. smooth), it is easy to compute discrete
logarithms. In Example 9.5 we are working in a group of order 101, which is prime, and in
terms of the group structure, this represents the hardest case. But in fact it is very easy
to compute discrete logarithms in the additive group of a finite field! All we need to do is
compute the multiplicative inverse of 3 modulo 101 (which is 34) and multiply by 37. This
is a small example, but even if the field size is very large, we can use the extended Euclidean
algorithm to compute multiplicative inverses in quasi-linear time.

So while the DLP is generally considered a “hard problem", its diÿculty really depends
not on the order of the group (or its structure), but on how the group is explicitly rep-
resented. Every group of prime order p is isomorphic to Z/pZ; computing the discrete
logarithm amounts to computing this isomorphism. The reason it is easy to compute dis-
crete logarithms in Z/pZ has nothing to do with the structure of Z/pZ as an additive group,
rather it is the fact that Z/pZ also use a ring structure; in particular, it is a Euclidean
domain, which allows us to use the extended Euclidean algorithm to compute multiplicative
inverses. This involves operations (multiplication) other than the standard group operation
(addition), which is in some sense “cheating".

Even when working in the multiplicative group of a finite field, where the DLP is believed
to be much harder, we can do substantially better than in a generic group. As we shall see,
there are sub-exponential time algorithms for this problem, whereas in the generic setting
defined below, only exponential time algorithms exist, as we will prove in the next lecture.

18.783 Spring 2019, Lecture #9, Page 7

9.8 Generic group algorithms

In order to formalize the notion of “not cheating", we define a generic group algorithm (or
just a generic algorithm) to be one that interacts with an abstract group G solely through
a black box (sometimes called an oracle). All group elements are opaquely encoded as bit-
strings via a map id : G → {0, 1}m chosen by the black box. The black box supports the
following operations.

1. identity: output id(1G).

2. inverse: given input id(α), output id(α−1).

3. composition: given inputs id(α) and id(β), output id(αβ).

4. random: output id(α) for a uniformly distributed random element α ∈ G.

In the description above we used multiplicative notation; in additive notation we would have
outputs id(0G), id(−α), id(α − β) for the operations identity, inverse, composition,
respectively.

Some models for generic group algorithms also include a black box operation for testing
equality of group elements, but we will instead assume that group elements are uniquely
identified ; this means that the identification map id : G → {0, 1}m used by the black box is
injective. With uniquely identified group elements we can test equality by simply comparing
identifiers, without needing to consult the black box.6

The black box is allowed to use any injective identification map (e.g., a random one). A
generic algorithm cannot depend on a particular choice of the identification map; this pre-
vents it from taking advantage of how group elements are represented. We have already seen
several examples of generic group algorithms, including various exponentiation algorithms,
fast order algorithms, and the baby-steps giant-steps method.

We measure the time complexity of a generic group algorithm by counting group oper-
ations, the number of interactions with the black box. This metric has the virtue of being
independent of the actual software and hardware implementation, allowing one to make com-
parisons the remain valid even as technology improves. But if we want to get a complete
measure of the complexity of solving a problem in a particular group, we need to multiply
the group operation count by the bit-complexity of each group operation, which of course
depends on the black box. To measure the space complexity, we count the total number of
group identifiers stored at any one time (i.e. the maximum number of group identifiers the
algorithm ever has to remember).

These complexity metrics do not account for any other work done by the algorithm. If
the algorithm wants to compute a trillion digits of pi, or factor some huge integer, it can
e˙ectively do so “for free". But the implicit assumption is that the cost of any auxiliary
computation is at worst proportional to the number of group operations — this is true of
all the algorithms we will consider.

References

[1] Joachim von zur Gathen and Jürgen Garhard, Modern computer algebra, third edition,
Cambridge University Press, 2013.

6We can also sort bit-strings or index them with a hash table or other data structure; this is essential to
an eÿcient implementation of the baby-steps giant-steps algorithm.

18.783 Spring 2019, Lecture #9, Page 8

http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139856065

[2] Takakazu Satoh, On p-adic point counting algorithms for elliptic curves over finite fields,
ANTS V, LNCS 2369 (2002), 43–66.

[3] René Schoof, Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation 44 (1985), 483–495.

[4] René Schoof, Counting points on elliptic curves over finite fields , Journal de Théorie des
Nombres de Bordeaux 7 (1995), 219–254.

[5] Andrew V. Sutherland, On the evaluation of modular polynomials, in Proceedings of
the Tenth Algorithmic Number Theory Symposium (ANTS X), Open Book Series 1,
Mathematical Science Publishers, 2013, 531–555.

18.783 Spring 2019, Lecture #9, Page 9

http://link.springer.com/chapter/10.1007%2F3-540-45455-1_5
http://www.jstor.org/stable/2007968
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://msp.org/obs/2013/1-1/p26.xhtml

MIT OpenCourseWare
https://ocw.mit.edu

18.783 Elliptic Curves
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	
	Schoof's algorithm
	Computing the trace of Frobenius modulo 2.
	The characteristic equation of Frobenius modulo l
	Arithmetic in End[l]
	Multiplication in End(E[l].
	Addition in End(E[l].

	Algorithm to compute the trace of Frobenius modulo l
	Factors of the division polynomial
	Some historical remarks
	The discrete logarithm problem
	Generic group algorithms

