
18.783 Elliptic Curves Spring 2019
Lecture #4 02/19/2019

4 Finite field arithmetic

We saw in Lecture 3 how to eÿciently multiply integers, and, using Kronecker substitution,
how to eÿciently multiply polynomials with integer coeÿcients. This gives us what we need
to multiply elements in finite fields, provided we can eÿciently reduce the results to our
standard representations of Fp ' Z/pZ and Fq ' Fp[x]/(f), using integers in [0, p − 1] and
polynomials of degree less than deg f , respectively. In both cases we use Euclidean division.

4.1 Euclidean division

Given integers a, b > 0, we wish to compute the unique integers q, r ≥ 0 for which

a = bq + r (0 ≤ r < b).

We have q = ba/bc and r = a mod b. It is enough to compute q, since we can then compute
r = a − bq. To compute q, we determine a suÿciently precise approximation c ≈ 1/b and
obtain q by computing ca and rounding down to the nearest integer.

We recall Newton’s method for finding the root of a real-valued function f(x). We
start with an initial approximation x0, and at each step, we refine the approximation xi
by computing the x-coordinate xi+1 of the point where the tangent line through (xi, f(xi))
intersects the x-axis, via

f(xi)
xi+1 := xi − .

f 0(xi)

To compute c ≈ 1/b, we apply this to f(x) = 1/x − b, using the Newton iteration

1
f(xi) − b xi xi+1 = xi − = xi − = 2xi − bxi

2 .
f 0(xi) − 1

2xi

As an example, let us approximate 1/b = 1/123456789. For the sake of illustration we
work in base 10, but in an actual implementation would use base 2, or base 2w , where w is
the word size.

x0 = 1 × 10−8

x1 = 2(1 × 10−8) − (1.2 × 108)(1 × 10−8)2

= 0.80 × 10−8

x2 = 2(0.80 × 10−8) − (1.234 × 108)(0.80 × 10−8)2

= 0.8102 × 10−8

x3 = 2(0.8102 × 10−8) − (1.2345678 × 108)(0.8102 × 10−8)2

= 0.81000002 × 10−8 .

Note that we double the precision we are using at each step, and each xi is correct up to an
error in its last decimal place. The value x3 suÿces to correctly compute ba/bc for a ≤ 1015 .

To analyze the complexity of this approach, let us assume that b has n bits and a has
at most 2n bits; this is precisely the situation we will encounter when we wish to reduce
the product of two integers in [0, p − 1] modulo p. During the Newton iteration to compute
c ≈ 1/b, the size of the integers involved doubles with each step, and the cost of the arithmetic
operations grows at least linearly. The total cost is thus at most twice the cost of the last

Lecture by Andrew Sutherland

https://108)(0.80

step, which is M(n) + O(n); note that all operations can be performed using integers by
shifting the operands appropriately. Thus we can compute c ≈ 1/b in time 2 M(n) + O(n).
We can then compute ca ≈ a/b, round to the nearest integer, and compute r = a − bq using
at most 4 M(n) + O(n) bit operations.

With a slightly more sophisticated version of this approach it is possible to compute r in
time 3 M(n) + O(n). If we expect to repeatedly perform Euclidean division with the same
denominator, as when working in Fp, the cost of all subsequent reductions can be reduced
to M(n) + O(n) using what is known as Barret Reduction; see [2, Alg. 10.17].1 In any case,
we obtain the following bound for multiplication in Fp using our standard representation as
integers in [0, p − 1].

Theorem 4.1. The time to multiply two elements of Fp is O(M(n)), where n = lg p.

There is an analogous version of this algorithm above for polynomials that uses the exact
same Newton iteration xi+1 = 2xi − bx2

i , where b and the xi are now polynomials. Rather
than working with Laurent polynomials (the polynomial version of approximating a rational
number with a truncated decimal expansion), it is simpler to reverse the polynomials and
work modulo a suÿciently large power of x, doubling the power of x with each Newton
iteration. More precisely, we have the following algorithm, which combines Algorithms 9.3

deg f f(1 and 9.5 from [3]. For any polynomial f(x) we write rev f for the polynomial x); this x
simply reverses the coeÿcients of f .

Algorithm 4.2 (Fast Euclidean division of polynomials). Given a, b ∈ Fp[x] with b monic,
compute q, r ∈ Fp[x] such that a = qb + r with deg r < deg b as follows:

1. If deg a < deg b then return q = 0 and r = a.

2. Let m = deg a − deg b and k = dlg m + 1e.
3. Let f = rev(b) (reverse the coeÿcients of b).

4. Compute g0 = 1, gi = (2gi−1 − fgi
2
−1) mod x2

i for i from 1 to k.
(this yields fgk ≡ 1 mod xm+1).

5. Set s = rev(a)gk mod xm+1 (now rev(b)s ≡ rev(a) mod xm+1).

6. Return q = xm−deg s rev(s) and r = a − bq.

As in the integer case, the work is dominated by the last iteration in step 4, which involves
multiplying polynomials in Fp[x]. To multiply elements of Fq ' Fp[x]/(f) represented as
polynomials of degree less than d = deg f , we compute the product a in F[x] and then reduce
modulo b = f , and the degree of the polynomials involved are all O(d). With Kronecker
substitution, we can reduce these polynomial multiplications to integer multiplications, and
obtain the following result.

d Theorem 4.3. Let q = p be a prime power, and assume that either log d = O(log p) or
p = O(1). The time to multiply two elements of Fq is O(M(n)), where n = lg q.

Remark 4.4. The constraints on the relative growth rate on p and d in the theorem above
are present only so that we can easily express our bounds in terms of the bound M(n) for
multiplying integers. In fact, for all the bounds currently known for M(n), Theorem 4.3

1The algorithm given in [2] for the precomputation step of Barret reduction uses Newton iteration with
a fixed precision, which is asymptotically suboptimal; it is better to use the varying precision approach
described above. But in practice the precomputation cost is usually not a major concern.

18.783 Spring 2019, Lecture #4, Page 2

holds uniformly, without any assumptions about the relative growth rate of p and d. More
precisely, it follows from [5] that for any prime power q we can multiply two elements in

d Fq in time O(n log n8log ∗ n), no matter how q = p tends to infinity; but the proof of this
requires more than just Kronecker substitution.

Before leaving the topic of Euclidean division, we should also mention the standard
“schoolbook” algorithm of long division. The classical algorithm works with decimal digits
(base 10), but for the sake of simplicity let us work in base 2; in practice one works in base
2w for some fixed w. P P m n Algorithm 4.5 (Long division). Given positive integers a = i=0 ai2

i and b = bi2
i , i=0

compute q, r ∈ Z such that a = qb + r with 0 ≤ r < b as follows:

1. If b > a return q = 0 and r = b, and if b = 1 return q = a and r = 0.

2. Set q ← 0, r ← 0, and k ← m.

3. While k ≥ 0 and r < b set q ← 2q, r ← 2r + ak, and k ← k − 1.

4. If r < b then return q and r.

5. Set q ← q + 1, r ← r − b, and return to Step 3.

The net e˙ect of all the executions of Step 3 is is to add a to qb +r using double-and-add
bit-wise addition. The quantity qb + r is initially set to 0 in Step 2 and is unchanged by
Step 5, so when the algorithm terminates in Step 4 we have a = qb + r and 0 ≤ r < b as
desired. If we are only interested in the remainder r we can omit all operations involving q.

For the complexity analysis we can assume that multiplication by 2 is achieved by bit-
shifting and costs O(1) (consider a multi-tape Turing machine, or a bit-addressable RAM).
Step 2 costs O(1), the total cost of Step 3 over all iterations is O(nm), as is the total cost
of Step 5 (note that q is a multiple of 2 at the start of Step 5, so computing q ← q + 1 is
achieved by setting the least significant bit). This yields the following result.

Theorem 4.6. The long division algorithm uses O(mn) bit operations to perform Euclidean
division of an m-bit integer by an n-bit integer.

Remark 4.7. For m = O(n) the O(n2) complexity of long division is worse than the
O(M(n)) cost of Euclidean division using Newton iteration. But when m is much larger
than n, say n = O(log m) or n = O(1), long division is a better choice. In particular, for
any fixed prime p (so O(1) bits) we can reduce n-bit integers modulo p in linear time.

4.2 Extended Euclidean algorithm

We recall the Euclidean algorithm for computing the greatest common divisor of positive
integers a and b. For a > b we repeatedly apply

gcd(a, b) = gcd(b, a mod b),

where we take a mod b to be the unique integer r ∈ [0, b − 1] congruent to a modulo b.
To compute the multiplicative inverse of an integer modulo a prime, we use the extended

Euclidean algorithm, which expresses gcd(a, b) as a linear combination

gcd(a, b) = as + bt,

18.783 Spring 2019, Lecture #4, Page 3

with |s| ≤ b/ gcd(a, b) and |t| ≤ a/ gcd(a, b). If a is prime, we obtain as + bt = 1, and t is
the inverse of b modulo a. To compute the integers s and t we use the following algorithm.
First, let � � � � � �

a 1 0
R1 =

b
, S1 =

0
, T1 =

1
,

and note that R1 = aS1 + bT1. We then compute � �
0 1

Qi = , Ri+1 = QiRi, Si+1 = QiSi, Ti+i = QiTi, 1 −qi
where qi is the quotient bRi,1/Ri,2c obtained via Euclidean division. Note that applying the
linear transformation Qi to both sides of Ri = aSi + bTi ensures Ri+1 = aSi+1 + bTi+1. The
algorithm terminates when the kth step where Rk,2 becomes zero, at which point we have � � � � � �

d s t
Rk =

0
, Sk = ±b , Tk = a

,

with gcd(a, b) = d = sa + tb. As an example, with a = 1009 and b = 789 we have

r q s t
1009 1 0
789 1 0 1
220 3 1 −1
129 1 −3 4
91 1 4 −5
38 2 −7 9
15 2 18 −23
8 1 −43 55
7 1 61 −78
1 7 −104 133
0 789 −1009

From the second-to-last line with s = −104 and t = 133 we see that

1 = −104 · 1009 + 133 · 789,

and therefore 133 is the inverse of 789 modulo 1009 (and −104 ≡ 685 is the inverse of 1009
modulo 789).

It is clear that the r is reduced by a factor of at least 2 every two steps, thus the
total number of iterations is O(n), and each step involves Euclidean division, whose cost is
bounded by O(M(n)). This yields a complexity of O(n M(n)), but a more careful analysis
shows that it is actually O(n2), even if schoolbook multiplication is used (the key point is
that the total size of all the qi is O(n) bits).

This can be further improved using the fast Euclidean algorithm, which uses a divide-
and-conquer approach to compute the product Q = Qk−1 · · · Q1 by splitting the product in
half and recursively computing each half using what is known as a half-gcd algorithm. One
can then compute Rk = QR1, Sk = QS1, and Tk = QT1. The details are somewhat involved
(care must be taken when determining how to split the product in a way that balances the
work evenly), but this yields a recursive running time of

T (n) = 2T (n/2) + O(M(n)) = O(M(n) log n);

see [3, §11] for details.

18.783 Spring 2019, Lecture #4, Page 4

Theorem 4.8. Let p be a prime. The time to invert an element of F ×
p is O(M(n) log n),

where n = lg p.

The extended Euclidean algorithm works in any Euclidean ring, that is, a ring with a
norm function that allows us to use Euclidean division to write a = qb + r with r of norm
strictly less than b (for any nonzero b). This includes polynomial rings, in which the norm of
a polynomial is simply its degree. Thus we can compute the inverse of a polynomial modulo
another polynomial, provided the two polynomials are relatively prime.

One issue that arises when working in Euclidean rings other than Z is that there may
be units (invertible elements) other than ±1, and the gcd is only defined up to a unit.
In the case of the polynomial ring Fp[x], every element of F ×

p is a unit, and with the fast
Euclidean algorithm in Fp[x] one typically normalizes the intermediate results by making the
polynomials monic at each step; this involves computing the inverse of the leading coeÿcient
in Fp. If Fq = Fp[x]/(f) with deg f = d, one can then bound the time to compute an inverse
in Fq by O(M(d) log d), operations in Fp, of which O(d) are inversions; see [3, Thm. 11.10(i)].
This gives a bit complexity of

O(M(d) M(log p) log d + d M(log p) log log p),

but with Kronecker substitution we can sharpen this to

O(M(d(log p + log d)) log d + d M(log p) log log p).

We will typically assume that either log d = O(log p) (large characteristic) or log p = O(1)
(small characteristic); in both cases we can simplify this bound to O(M(n) log n), where
n = lg q = d lg p is the number of bits in q, the same result we obtained for the case where
q = p is prime.

d Theorem 4.9. Let q = p be a prime power and assume that either log d = O(log p) or
p = O(1). The time to invert an element of F ×

q is O(M(n) log n), where n = lg q.

4.3 Exponentiation (scalar multiplication)

Let a be a positive integer. In a multiplicative group, the computation

a g = gg · · · g | {z }
a

is known as exponentiation. In an additive group, this is equivalent to

ag = g + g + · · · + g, | {z }
a

and is called scalar multiplication. The same algorithms are used in both cases, and most
of these algorithms were first developed in a multiplicative setting (the multiplicative group
of a finite field) and are called exponentiation algorithms. It is actually more convenient to
describe the algorithms using additive notation (fewer superscripts), so we will do so.

The oldest and most commonly used exponentiation algorithm is the “double-and-add"
method, also known as left-to-right binary exponentiation. Given an element P of an additive P
group and a positive integer a with binary representation a = 2iai, we compute the scalar
multiple Q = aP as follows:

18.783 Spring 2019, Lecture #4, Page 5

def DoubleAndAdd (P,a):
a=a.digits(2); n=len(a) # represent a in binary using n bits
Q=P; # start 1 bit below the high bit
for i in range(n-2,-1,-1): # for i from n-2 down to 0

Q += Q # double
if a[i]==1: Q += P # add

return Q

Alternatively, we may use the “add-and-double" method, also known as right-to-left
binary exponentiation.

def AddAndDouble (P,a):
a=a.digits(2); n=len(a) # represent a in binary using n bits
Q=0; R=P; # start with the low bit
for i in range(n-1):

if a[i]==1: Q += R # add
R += R # double

Q += R # last add
return Q

The number of group operations required is e˙ectively the same for both algorithms. If
we ignore the first addition in the add_and_double algorithm (which could be replaced
by an assignment, since initially Q = 0), both algorithms use precisely

n + wt(a) − 2 ≤ 2n − 2 = O(n)

group operations, where wt(a) = #{ai : ai = 1} is the Hamming weight of a, the number of
1’s in its binary representation. Up to the constant factor 2, this is asymptotically optimal,
and it implies that exponentiation in a finite field Fq has complexity O(n M(n)) with n = lg q;
this assumes the exponent is less than q, but note that we can always reduce the exponent
modulo q − 1, the order of the cyclic group F× . Provided the bit-size of the exponent q
is O(n2), the O(M(n2)) time to reduce the exponent modulo q − 1 will be majorized by the
O(n M(n)) time to perform the exponentiation.

Notwithstanding the fact that the simple double-and-add algorithm is within a factor
of 2 of the best possible, researchers have gone to great lengths to eliminate this factor of 2,
and to take advantage of situations where either the base or the exponent is fixed, and there
are a wide variety of optimizations that are used in practice; see [2, Ch. 9] and [4]. Here we
give just one example, windowed exponentiation, which is able to reduce the constant factor
from 2 to an essentially optimal 1 + o(1).

4.3.1 Fixed-window exponentiation

Let the positive integer s be a window size and write a as X
ai2

si a = , (0 ≤ ai < 2s).

This is equivalent to writing a in base 2s . With fixed-window exponentiation, one first
precomputes multiples dP for each of the “digits" d ∈ [0, 2s − 1] that may appear in the
base-2s expansion of a. One then uses a left-to-right approach as in the double-and-add
algorithm, except now we double s times and add the appropriate multiple aiP .

def FixedWindow (P,a,s):
a=a.digits(2^s); n=len(a) # write a in base 2^s

18.783 Spring 2019, Lecture #4, Page 6

R = [0*P,P]
for i in range(2,2^s): R.append(R[-1]+P) # precompute digits
Q = R[a[-1]] # copy the top digit
for i in range(n-2,-1,-1):

for j in range(0,s): Q += Q # double s times
Q += R[a[i]] # add the next digit

return Q

In the algorithm above we precompute multiples of P for every possible digit that might
occur. As an optimization one could examine the base-2s representation of a and only
precompute the multiples of P that are actually needed.

Let n be the number of bits in a and let m = dn/se be the number of base-2s digits ai.
The precomputation step uses 2s − 2 additions (we get 0P and 1P for free), there are m − 1
additions of multiples of P corresponding to digits ai (when ai = 0 these cost nothing), and
there are a total of (m − 1)s doublings. This yields an upper bound of

2s − 2 + m − 1 + (m − 1)s ≈ 2s + n/s + n

group operations. If we choose s = lg n − lg lg n, we obtain the bound

n/ lg n + n/(lg n − lg lg n) + n = n + O(n/ log n),

which is (1 + o(1))n group operations.

4.3.2 Sliding-window exponentiation

The sliding-window algorithm modifies the fixed-window algorithm by “sliding" over blocks
of 0s in the binary representation of a. There is still a window size s, but a is no longer
treated as an integer written in a fixed base 2s . Instead, the algorithm scans the bits of the
exponent from left to right, assembling “digits" of at most s bits with both high and low
bits set: with a sliding window of size 3 the bit-string 110011010101100 could be broken
up as 11|00|11|0|101|0|11|00 with 4 nonzero digits, whereas a fixed window approach would
use 110|011|010|101|100 with 5 nonzero digits. This improves the fixed-window approach
in two ways: first, it is only necessarily to precompute odd digits, and second, depending
on the pattern of bits in a, sliding over the zeros may reduce the number of digits used, as
in the example above. In any case, the sliding-window approach is never worse than the
fixed-window approach, and for s > 2 it is always better.

Example 4.10. Let a = 26284 corresponding to the bit-string 110011010101100 above. To
compute aP using a sliding window approach with s = 3 one would first compute 2P, 3P, 5P
using 3 additions and then

aP = 22 · (23 · (24 · (24 · (3P) + 3P)) + 5P) + 3P)

using 3 additions and 13 doublings, for a total cost of 19 group operations. A fixed window
approach with s = 3 would instead compute 2P, 3P, 4P, 5P, 6P using 5 additions and

aP = 23 · (23 · (23 · (23 · 6P + 3P) + 2P) + 5P) + 4P

using 4 additions and 12 doublings for a total cost of 21 group operations. Note that in
both cases we avoided computing 7P since it was not needed.

18.783 Spring 2019, Lecture #4, Page 7

4.4 Root-finding in finite fields

Let f(x) be a polynomial in Fq[x] of degree d. We wish to find a solution to f(x) = 0 that
lies in Fq. As an important special case, this will allow us to compute square roots using
f(x) = x2 − a, and, more generally, rth roots.2

The algorithm we give here was originally proposed by Berlekamp for prime fields [1], and
then refined and extended by Rabin [6], whose presentation we follow here. The algorithm
is probabilistic, and is one of the best examples of how randomness can be exploited in a
number-theoretic setting. As we will see, it is quite eÿcient, with an expected running time
that is quasi-quadratic in the size of the input. By contrast, no deterministic polynomial-
time algorithm for root-finding is known, not even for computing square roots.3

4.4.1 Randomized algorithms

Probabilistic algorithms are typically classified as one of two types: Monte Carlo or Las
Vegas. Monte Carlo algorithms are randomized algorithms whose output may be incorrect,
depending on random choices that are made, but whose running time is bounded by a
function of its input size, independent of any random choices. The probability of error is
required to be less than 1/2−�, for some � > 0, and can be made arbitrarily small be running
the algorithm repeatedly and using the output that occurs most often. In contrast, a Las
Vegas algorithm always produces a correct output, but its running time may depend on
random choices; we do require that its expected running time is finite. As a trivial example,
consider an algorithm to compute a + b that first flips a coin repeatedly until it gets a head
and then computes a + b and outputs the result. The running time of this algorithm may
be arbitrarily long, even when computing 1 + 1 = 2, but its expected running time is O(n),
where n is the size of the inputs.

Las Vegas algorithms are generally preferred, particularly in mathematical applications.
Note that any Monte Carlo algorithm whose output can be verified can always be converted
to a Las Vegas algorithm (just run the algorithm repeatedly until you get an answer that is
verifiably correct). The root-finding algorithm we present here is a Las Vegas algorithm.

4.4.2 Using GCDs to find roots

Recall from the previous lecture that we defined the finite field Fq to be the splitting field
of xq − x over its prime field Fp; this definition also applies when q = p is prime (since
xp − x splits completely in Fp), and in every case, the elements of Fq are precisely the roots
of xq − x. The roots of f that lie in Fq are the roots it has in common with the polynomial
xq − x. We thus have Y

g(x) := gcd(f(x), xq − x) = (x − αi),
i

where the αi range over all the distinct roots of f that lie in Fq. If f has no roots in Fq then
g will have degree 0 (in which case g = 1). We have thus reduced our problem to finding a
root of g, where g has distinct roots that are known to lie in Fq.

2An entirely di˙erent approach to computing rth roots using discrete logarithms is explored in Problem
Set 2. It has better constant factors when the r-power torsion subgroup of F∗

q is small (which is usually the
case), but is asymptotically slower then the algorithm presented here in the worst case.

3Deterministic polynomial-time bounds for root-finding can be proved in various special cases, including
the computation of square-roots, if one assumes a generalization of the Riemann hypothesis.

18.783 Spring 2019, Lecture #4, Page 8

In order to compute g = gcd(f, xq − x) eÿciently, we generally do not compute xq − x
and then take the gcd with f ; this would take time exponential in n = log q. 4 Instead, we
compute xq mod f by exponentiating the polynomial x to the qth power in the ring Fq[x]/(f),
whose elements are uniquely represented by polynomials of degree less than d = deg f . Each
multiplication in this ring involves the computation of a product in Fq[x] followed by a
reduction modulo f ; note that we do not assume Fq[x]/(f) is a field (indeed for deg f > 1,
if f has a root in Fq then Fq[x]/(f) is definitely not a field). This reduction is achieved
using Euclidean division, and can be accomplished using two polynomial multiplications
once an approximation to 1/f has been precomputed, see §4.1, and is within a constant
factor of the time to multiply two polynomials of degree d in any case. The total cost of
each multiplication in Fq[x]/(f) is thus O(M(d(n +log d))), assuming that we use Kronecker
substitution to multiply polynomials. The time to compute xq mod f using any of the
exponentiation algorithms described in §4.3 is then O(n M(d(n + log d))).

Once we have computed xq mod f , we subtract x and compute g = gcd(f, xq −x). Using
the fast Euclidean algorithm, this takes O(M(d(n + log d)) log d) time. Thus the total time
to compute g is O(M(d(n + log d))(n + log d)); and in the typical case where log d = O(n)
(e.g. d is fixed and only n is growing) this simplifies to O(n M(dn)).

So far we have not used randomness; we have a deterministic algorithm to compute the
polynomial g = (x − r1) · · · (x − rk), where r1, . . . , rk are the distinct Fq-rational roots of f .
We can thus determine the number of distinct roots f has (this is just the degree of g), and
in particular, whether it has any roots, deterministically, but knowledge of g does not imply
knowledge of the roots r1, . . . , rk when k > 1; for example, if f(x) = x2 − a has a nonzero
square root r ∈ Fq, then g(x) = (x − r)(x + r) = f(x) tells us nothing beyond the fact that
f(x) has a root.

4.5 Randomized GCD splitting

Having computed g, we seek to factor it into two polynomials of lower degree by again
applying a gcd, with the goal of eventually obtaining a linear factor, which will yield a root.

Assuming that q is odd (which we do), we may factor the polynomial xq − x as

xq − x = x(x s − 1)(x s + 1),

where s = (q − 1)/2. Ignoring the root 0 (which we can easily check separately), this
factorization splits F ×

q precisely in half: the roots of xs − 1 are the elements of F × that are q
squares in F ×

q , and the roots of xs + 1 are the elements of F × that are not. Recall that F ×
q q

is a cyclic group of order q − 1, which is even (since q is odd), thus the squares in F × are q
the elements that are even powers of a generator, equivalently, elements whose order divides
(q − 1)/2. If we compute

h(x) = gcd(g(x), x s − 1),

we obtain a divisor of g whose roots are precisely the roots of g that are squares in F × . If we q
suppose that the roots of g are as likely to be squares as not, we should expect the degree
of h to be approximately half the degree of g. And so long as the degree of h is strictly
between 0 and deg g, one of h or g/h is a polynomial of degree at most half the degree of g,
whose roots are all roots of our original polynomial f .

4The exception is when d > q, but in this case computing gcd(f(x), xq − x) takes O(M(d(n + log d) log d)
time, which turns out to be the same bound that we get for computing xq mod f(x) in any case.

18.783 Spring 2019, Lecture #4, Page 9

To make further progress, and to obtain an algorithm that is guaranteed to work no
matter how the roots of g are distributed in Fq, we take a probabilistic approach. Rather
than using the fixed polynomial xs − 1, we consider random polynomials of the form

(x + δ)s − 1,

where δ is uniformly distributed over Fq. We claim that if α and β are any two nonzero
roots of g, then with probability 1/2, exactly one of these is a root (x + δ)s − 1. It follows
from this claim that so long as g has at least 2 distinct nonzero roots, the probability that
the polynomial h(x) = gcd(g(x), (x + δ)s + 1) is a proper divisor of g is at least 1/2.

Let us say that two elements α, β ∈ Fq are of di˙erent type if they are both nonzero and
αs =6 βs . Our claim is an immediate consequence of the following theorem from [6].

Theorem 4.11 (Rabin). For every pair of distinct α, β ∈ Fq we have

q − 1
#{δ ∈ Fq : α + δ and β + δ are of di˙erent type} = .

2

α+δ Proof. Consider the map φ(δ) = β+δ , defined for δ 6= −β. We claim that φ is a bijection
form the set Fq − {−β} to the set Fq − {1}. The sets are the same size, so we just need to

α+σ show surjectivity. Let γ ∈ Fq − {1}, then we wish to find a solution σ 6= −β to γ = . β+σ
γβ−α We have γ(β + σ) = α + σ which means σ − γσ = γβ − α. This yields σ = ; we have 1−γ

γ =6 1, and σ =6 −β, because α =6 β. Thus φ is surjective.
We now note that

(α + δ)s

φ(δ)s =
(β + δ)s

is −1 if and only if α + δ and β + δ are of di˙erent type. The elements γ = φ(δ) for which
γs = −1 are precisely the non-residues in Fq\{1}, of which there are exactly (q − 1)/2.

We now give the algorithm, which assumes that its input f ∈ Fq[x] is monic (has leading
coeÿcient 1). If f is not monic we can make it so by dividing f by its leading coeÿcient,
which does not change its roots (or the complexity of computing them).

Algorithm 4.12. Given a monic polynomial f ∈ Fq[x], output an element r ∈ Fq such that
f(r) = 0, or null if no such r exists.

1. If f(0) = 0 then return 0.
2. Compute g = gcd(f, xq − x).
3. If deg g = 0 then return null.
4. While deg g > 1:

a. Pick a random δ ∈ Fq.
b. Compute h = gcd(g, (x + δ)s − 1).
c. If 0 < deg h < deg g then replace g by h or g/h, whichever has lower degree.

5. Return r, where g(x) = x − r.

It is clear that the output of the algorithm is always correct: either it outputs a root
of f in step 1, proves that f has no roots in Fq and outputs null in step 3, or outputs a
root of g that is also a root of f in step 5 (note that whenever g is updated it replaced with
a proper divisor). We now consider its complexity.

18.783 Spring 2019, Lecture #4, Page 10

4.5.1 Complexity analysis

It follows from Theorem 4.11 that the polynomial h computed in step 4b is a proper divisor
of g with probability at least 1/2, since g has at least two distinct nonzero roots α, β ∈ Fq.
Thus the expected number of iterations needed to obtain a proper factor h of g is bounded
by 2, and the expected cost of obtaining such an h is O(M(e(n + log e))(n + log e)), where
n = log q and e = deg g, and this dominates the cost of the division in step 4c.

Each time g is updated in step 4c its degree is reduced by at least a factor of 2. It follows
that the expected total cost of step 4 is within a constant factor of the expected time to
compute the initial value of g = gcd(f, xq −x), which is O(M(d(n+log d))(n+log d)), where
d = deg f ; this simplifies to O(n M(dn)) in the typical case that log d = O(n), which holds
in all the applications we shall be interested in.

4.5.2 Finding all roots

We modify our algorithm to find all the distinct roots of f , by modifying step 4c to recursively
find the roots of both h and g/h. In this case the amount of work done at each level of
the recursion tree is bounded by O(M(d(n + log d))(n + log d)). Bounding the depth of the
recursion is somewhat more involved, but one can show that with very high probability the
degrees of h and g/h are approximately equal and that the expected depth of the recursion
is O(log d). Thus we can find all the distinct roots of f in

O(M(d(n + log d))(n + log d) log d)

expected time. When log d = O(n) this simplifies to O(n M(dn) log d).
Once we know the distinct roots of f we can determine their multiplicity by repeated

division, but this is not the most eÿcient approach. By taking GCDs with derivatives one can
first compute the squarefree factorization of f , which for a monic nonconstant polynomial f
is defined as the unique sequence g1, . . . , gm ∈ Fq[x] of monic squarefree coprime polynomials
with gm 6= 1 such that

2 3 m f = g1g2 g3 · · · gm.

This can be done using Yun’s algorithm [7] (see Algorithm 14.21 and Exercise 14.30 in [3])
using O(M(d) log d) operations in Fq, which is dominated by the complexity bound for root-
finding determined above. The cost of finding the roots of all the gi is no greater than the
cost of finding the roots of f (the complexity of root-finding is superlinear in the degree),
and with this approach we know a priori the multiplicity of each root as a root of f . It
follows that we can determine all the roots of f and their multiplicities, within the time
bound given above for finding the distinct roots of f .

4.6 Computing a complete factorization

Factoring a polynomial f ∈ Fq[x] into irreducibles can e˙ectively be reduced to finding roots
of f in extensions of Fq. Linear factors of f correspond to the roots of f in Fq, irreducible
quadratic factors of f correspond to roots of f that lie in F 2 but do not lie in Fq; recall from q

Corollary 3.9 that every quadratic polynomial Fq[x] splits completely in F 2 [x]. Similarly, q

each irreducible degree d-factor of f corresponds to a root of f that lies in F d but none of q
its proper subfields.

We now sketch the algorithm; see [3, §14] for further details on each step.

18.783 Spring 2019, Lecture #4, Page 11

http://math.mit.edu/classes/18.783/2017/LectureNotes3.pdf#theorem.2.9

Algorithm 4.13. Given a monic polynomial f ∈ Fq[x], compute its irreducible factorization
in Fq[x] as follows:

e 1. Determine the largest power x dividing f and replace f with f/xe .
2 m 2. Compute the squarefree factorization f = g1g2 · · · gm of f using Yun’s algorithm.

q 3. By successively computing gij = gcd(gi, x
j − x) and replacing gi with gi/gij for

j = 1, 2, 3, deg gi, factor each gi into polynomials gij that are each (possibly trivial)
products of distinct irreducible polynomials of degree j; note that once j > (deg gi)/2
we know gi must be irreducible and can immediately determine all the remaining gij .

4. Factor each nontrivial gij into irreducible polynomials hijk of degree j as follows:
while deg gij > j generate random monic polynomials u ∈ Fq[x] of degree j until

(q h := gcd(gij , u
j −1)/2 − 1) properly divides gij , then recursively factor h and gij /h.

5. Output x with multiplicity e and output each gijk with multiplicity i.

q In step 3, for j > 1 one computes hj := x
j
mod gij via hj = hq mod qij . The expected j−1

cost of computing the gij for a given gi of degree d is then bounded by

O(M(d(n + log d))d(n + log d)),

which simplifies to O(dn M(dn)) when log d = O(n) and is in any case quasi-quadratic in
both d and n. The cost of factoring a particular gij satisfies the same bound with d replaced P
by j; the fact that this bound is superlinear and deg gi = j deg gij implies that the cost
of factoring all the gij for a particular gi is bounded by the cost of computing them, and
superlinearity also implies that simply putting d = deg f gives us a bound on the cost of
computing the gij for all the gi, and this bound also dominates the O(M(d)(log d) M(n))
complexity of step 1.

As a special case, Algorithm 4.13 can be used as a deterministic algorithm for irreducibil-
ity testing; steps 1-3 do not involve any random choices and suÿce to determine whether or
not the input is irreducible (this holds if and only if g1d is the only nontrivial gij).

There are faster algorithms for polynomial factorization (including algorithms that are
sub-quadratic in the degree) that use linear algebra in Fq; see [3, 14.8]. These are of interest
primarily when the degree d is large relative to n = log q or the characteristic is small.

4.6.1 Summary

The table below summarizes the bit-complexity of the various arithmetic operations we
have considered, both in the integer ring Z and in a finite field Fq of characteristic p with

e q = p , where we assume either log e = O(log q) (large characteristic) or p = O(1) (small
characteristic); in both cases n is the bit-size of the inputs (so n = log q for Fq).

integers Z finite field Fq

addition/subtraction O(n) O(n)
multiplication M(n) O(M(n))
Euclidean division (reduction) O(M(n)) O(M(n))
extended gcd (inversion) O(M(n) log n) O(M(n) log n)
exponentiation O(n M(n))
square-roots (probabilistic) O(n M(n))
root-finding (probabilistic) O(M(d(n + log d))(n + log d))
factoring (probabilistic) O(M(d(n + log d))d(n + log d))
irreducibility testing O(M(d(n + log d))d(n + log d))

18.783 Spring 2019, Lecture #4, Page 12

In the case of root-finding, factorization, and irreducibility testing, d is the degree of the
polynomial, and for probabilistic algorithms these are bounds on the expected running time
of a Las Vegas algorithm. The bound for exponentiation assumes that the bit-length of the
exponent is O(n2).

References

[1] Elwyn R. Berlekamp, Factoring polynomials over large finite fields, Mathematics of Com-
putation 24 (1970), 713–735.

[2] Henri Cohen et al., Handbook of elliptic and hyperelliptic curve cryptography , CRC Press,
2006.

[3] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, third edition,
Cambridge University Press, 2013.

[4] Daniel M. Gordon, A survey of fast exponentiation methods, Journal of Algorithms 27
(1998), 129–146.

[5] David Harvey, Joris van der Hoeven, and Grégoire Lecerf, Faster polynomial multiplica-
tion over finite fields, Journal of the ACM 63 (2017), Art. 52, 23 pages.

[6] Michael O. Rabin, Probabilistic algorithms in finite fields, SIAM Journal of Computing 9
(1980), 273–280.

[7] David Y.Y. Yun, On square-free decomposition algorithms , in Proceedings of the third
ACM symposium on symbolic and algebraic computation (SYMSAC ‘76), R.D. Jenks
(ed.), ACM Press, 1976, 26–35.

18.783 Spring 2019, Lecture #4, Page 13

http://www.ams.org/journals/mcom/1970-24-111/S0025-5718-1970-0276200-X/home.html
http://www.crcnetbase.com/isbn/9781584885184
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139856065
http://www.sciencedirect.com/science/article/pii/S0196677497909135
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://epubs.siam.org/doi/abs/10.1137/0209024
http://dl.acm.org/citation.cfm?doid=800205.806320

MIT OpenCourseWare
https://ocw.mit.edu

18.783 Elliptic Curves
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	
	Finite field arithmetic
	Euclidean division
	Extended Euclidean algorithm
	Exponentiation (scalar multiplication)
	Fixed-window exponentiation
	Sliding-window exponentiation

	Root-finding in finite fields
	Randomized algorithms
	Using GCDs to find roots

	Randomized GCD splitting
	Complexity analysis
	Finding all roots

	Computing a complete factorization
	Summary

