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26 Fermat’s Last Theorem 

In this final lecture we give an overview of the proof of Fermat’s Last Theorem. Our goal 
is to explain exactly what Andrew Wiles [18], with the assistance of Richard Taylor [17], 
proved, and why it implies Fermat’s Last Theorem. This implication is a consequence of 
earlier work by several mathematicians, including Richard Frey, Jean-Pierre Serre, and Ken 
Ribet. We will say very little about the details of Wiles’ proof, which are beyond the scope 
of this course, but we will provide references for those who wish to learn more. 

26.1 Fermat’s Last Theorem 

In 1637, Pierre de Fermat famously wrote in the margin of a copy of Diophantus’ Arithmetica 
that the equation 

n n n x + y = z 

has no integer solutions with xyz 6= 0 and n > 2, and claimed to have a remarkable proof 
of this fact. As with most of Fermat’s work, he never published this claim (mathematics 
was a hobby for Fermat, he was a lawyer by trade). Fermat’s marginal comment was 
apparently discovered only after his death, when his son Samuel was preparing to publish 
Fermat’s mathematical correspondence, but it soon became well known and is included as 
commentary in later printings of Arithmetica. 

Fermat did prove the case n = 4, using a descent argument. It then suÿces to consider 
n n n only cases where n is an odd prime, since if p|n and (x0, y0, z0) is a solution to x + y = z , 

n/p n/p n/p p p p then (x , y , z ) is a solution to x + y = z . 0 0 0 
A brief chronology of the progress made toward proving Fermat’s Last Theorem prior to 

Wiles’ work is listed below below. 

1637 Fermat makes his conjecture and proves it for n = 4. 
1753 Euler proves FLT for n = 3 (his proof has a fixable error). 
1800s Sophie Germain proves FLT for n - xyz for all n < 100. 
1825 Dirichlet and Legendre complete the proof for n = 5. 
1839 Lamé addresses n = 7. 
1847 Kummer proves FLT for all primes n - h(Q(ζn)), called regular primes. 

This leaves 37, 59, and 67 as the only open cases for n < 100. 
1857 Kummer addresses 37, 59, and 67, but his proof has gaps. 
1926 Vandiver fills the gaps and addresses all irregular primes n < 157. 
1937 Vandiver and assistants handle all irregular primes n < 607. 
1954 Lehmer, Lehmer, and Vandiver introduce techniques better suited to 

mechanical computation and use a computer to address all n < 2521. 
1954-1993 Computers verify FLT for all n < 4, 000, 000. 

All of the results above are based on work in algebraic number theory, none of it uses 
elliptic curves. The first person to suggest a connection between elliptic curves and Fermat’s 
Last Theorem was Yves Hellegouarch. In his 1972 doctoral thesis [5], Hellegouarch associates 

p p p to any non-trivial solution (a, b, c) of x + y = z , with p an odd prime, the elliptic curve 

2 Ea,b,c : y = x(x − ap)(x + bp). 

Without loss of generality we assume gcd(a, b, c) = 1, which implies that a, b, c must be 
pairwise relatively prime, and that a ≡ 3 mod 4 and b ≡ 0 mod 2 (we can always swap a 
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and b and/or multiply both sides by −1 in order to achieve this). Proving Fermat’s Last 
Theorem then amounts to showing that no such elliptic curve Ea,b,c can exist. 

Hellegouarch did not make much progress with this, but in 1984 Gerhard Frey suggested 
that the elliptic curve Ea,b,c, if it existed, could not possibly be modular [4]. Shortly there-
after, Jean-Pierre Serre [13] reduced Frey’s conjecture to a much more precise statement 
about modular forms and Galois representations, known as the epsilon conjecture, which 
was proved by Ken Ribet a few years later [11]. With Ribet’s result in hand, it was then 
known that the modularity conjecture, which states that every elliptic curve over Q is mod-
ular, implies Fermat’s Last Theorem: it guarantees that Ea,b,c, and therefore the solution 

p p p (a, b, c) to x + y = z , cannot exist. At that time no one expected the modularity con-
jecture to be proved any time soon; indeed, the fact that it implies Fermat’s Last Theorem 
was taken as evidence of how diÿcult it would be to prove the modularity conjecture. 

26.2 A strange elliptic curve 

To get a sense of what makes the elliptic curve Ea,b,c so strange that one might question its 
very existence, let us compute its discriminant: 

p Δ(Ea.b,c) = −16(0 − ap)2(0 + bp)2(a + bp)2 = −16(abc)2p. 

As explained in the last lecture, the definition of the L-series of an elliptic curve E requires 
us to determine the minimal discriminant of E its reduction type at each prime dividing 
the minimal discriminant (additive, split multiplicative, or non-split multiplicative) at each 
prime which divide it. It turns out that the discriminant Δ is not quite minimal, the minimal 
discriminant is 

Δmin(Ea,b,c) = 2
−8(abc)2p, 

(assuming p > 3, which we know must be the case), which di˙ers from Δ only at 2. 
On the other hand, the conductor of Ea,b,c is much smaller than its minimal discriminant. 

2 Recall from the previous lecture that for odd primes ̀  an elliptic curve E : y = f(x) can 
have additive reduction at ̀  only if the cubic f ∈ Z[x] has a triple root modulo ̀ . This is 

2 clearly not the case for the curve Ea,b,c : y = f(x) = x(x − ap)(x + bp), since 0 is always a 
root modulo ̀ , but a and b are relatively prime and cannot both be divisible by ̀ , so 0 is 
not a triple root. One can also show that Ea,b,c does not have additive reduction at 2. This 
implies that Ea,b,c is semistable, so Its conductor is the squarefree integer Y 

= `, NEa,b,c 

`|abc 

which we note is divisible by 2 (since b is). 
For the elliptic curve Ea,b,c the ratio Δa,b,c/Na,b,c grows exponentially with p. But it is 

very unusual (conjecturally impossible) for the minimal discriminant of an elliptic curve to 
be so much larger than its conductor. Szpiro’s conjecture [15], which is closely related to 
the ABC conjecture,1 states that we for every � > 0 there is a constant c� such that 

Δmin(E) ≤ c�N
6+� 
E 

1The ABC conjecture states that for all � > 0 there is a constant c� such that only finitely many integer 
solutions to a + b = c satisfy rad(abc)1+� < c�, where rad(abc) denotes the squarefree part of abc. This is 
equivalent to a modified version of Szpiro’s conjecture in which one replaces Δmin(E) with max(|A|3, B2), 
where A and B are the coeÿcients in a short Weierstrass equation for E : y 2 = x 3 + Ax + B. Mochizuki 
announced a proof of the ABC conjecture in 2012, but as of this writing it is still under review. 
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for every elliptic curve E/Q. This cannot possibly be true for Ea,b,c if p is suÿciently large. 
This does not imply that Ea,b,c cannot be modular, but it suggests that there is something 
very strange about this elliptic curve (so strange that one might expect it cannot exist). 

26.3 Galois representations 

Let E be an elliptic curve over Q, let ̀  be a prime, and let K := Q(E[`]) be its ̀ -torsion field, 
the extension of Q obtained by adjoining the coordinates of all the points in E[`] to Q. The 
field K is a Galois extension of Q (it is either the splitting field of the ̀ th division polynomial, 
or a quadratic extension of it), and its Galois group acts on the ̀ -torsion subgroup E[`] via 
its action on the coordinates of each point. This yields a group representation 

ρ : Gal(K/Q) → Aut(E[`]) ' GL2(Z/`Z), 

that maps each σ ∈ Gal(K/Q) to the automorphism of E[`] ' Z/`Z ⊕ Z/`Z given by ap-
plying σ to the coordinates of each `-torsion point (all of which lie in K = Q(E[`]), by 
definition). We consider two representations ρ, ρ0 : Gal(K/Q) → GL2(Z/`Z) to be isomor-
phic if there exists A ∈ GL2(Z/`Z) such that ρ0(σ) = Aρ(σ)A−1 for all σ ∈ Gal(K/Q), in 
which case we write ρ ' ρ0 . 

Let S be the finite set of primes consisting of ̀  and the primes of bad reduction for E. 
Every prime p 6∈ S is unramified in K. As explained in Lecture 21, this means that the 
OK -ideal generated by p factors into a product of distinct prime ideals: 

pOK = p1 · · · pr. 

The Galois group Gal(K/Q) acts transitively on the set {p|p} := {p1, . . . , pr}, and for each 
prime ideal p|p we have a corresponding decomposition group 

Dp := {σ ∈ Gal(K/Q) : σ(p) = p} 

equipped with an isomorphism 

∼ 
ϕ : Dp −→ Gal(Fp/Fp) 

σ 7→ σ̄ 

where Fp := OK /p is the residue field at p and the automorphism σ̄ is defined by σ̄(x̄) = σ(x), 
where x̄ denotes the image of x ∈ OK in the quotient OK /p = Fp. The Galois group 

p Gal(Fp/Fp) is cyclic, generated by the p-power Frobenius automorphism πp : x 7→ x , and 
we define the Frobenius element 

Frobp := ϕ−1(πp) ∈ Dp ⊆ Gal(K/Q). 

Di˙erent choices of p|p yield conjugate Frobp (and every conjugate of Frobp arises for p|p), 
and we let Frobp denote this conjugacy class; as an abuse of terminology we may speak of 
the Frobenius element Frobp as an element of Gal(K/Q) representing this conjugacy class, 
with the understanding that Frobp is determined only up to conjugacy. 

Thus for each prime p 6∈ S we get a Frobenius element Frobp ∈ Gal(K/Q), and may 
consider its image Ap := ρ(Frobp) ∈ GL2(Z/`Z) under the Galois representation ρ. The 
characteristic polynomial of Ap (which depends only on the conjugacy class of Frobp) is 

det(λI − Ap) = λ2 − (tr Ap)λ + det Ap, 
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with 
tr Ap ≡ ap mod ` and det Ap ≡ p mod `. 

Here ap := p + 1 − #Ep(Fp) is the trace of the Frobenius endomorphism of the reduction 
Ep/Fp of E modulo p, equivalently, the pth coeÿcient in the Dirichlet series of the L-function P −s LE(s) = n≥1 ann of the elliptic curve E. 

For any positive integer n we can similarly consider the Galois representation 

ρ : Gal(Q(E[`n])/Q) → Aut(E[`n]) ' GL2(Z/`nZ). 

For primes p 6∈ S with 4 √ 
p ≤ `n, the value of the integer ap ≡ tr ρ(Frobp) mod `n is uniquely 

determined. Note that this holds no matter which auxiliary prime ̀  we pick. 
The discussion above applies not only to Q(E[`n]), but to any Galois extension K of Q 

containing Q(E[`n]). Even if the extension K/Q is ramified at primes outside of S, the 
image of σ ∈ Gal(K/Q) under ρ depends only on the restriction of the automorphism σ to 
Q(E[`n]), so given a Galois representation ρ(Gal(K/Q) → Aut(E[`n]) ' GL2(Z/`nZ) we 
can determine ρ(Frobp) ∈ GL2(Z/`nZ) up to conjugacy. Here we use Frobp ∈ Gal(K/Q) 
to denote any element whose restriction to Gal(Q(E[`n])/Q) lies in the conjugacy class 
represented by the Frobenius element Frobp ∈ Gal(Q(E[`n])/Q). The conjugacy class of 
ρ(Frobp) in GL2(Z/`nZ), and in particular its trace, is independent of this choice. 

We now define the ̀ -adic Tate module 

T`(E) := lim E[`n] ←− 
n 

as the projective limit of the inverse system 
[`] [`] [`] [`] [`] 

E[`] ←− E[`2] ←− · · · ←− E[`n ←− E[`n+1] ←− · · · , 

whose the connecting homomorphisms are multiplication-by-` maps. Elements of T`(E) are 
infinite sequences of points (P1, P2, P3, . . .) with Pn ∈ E[`n] such that ̀ Pn+1 = Pn. 

We now let GQ := Gal(Q/Q) and define the ̀ -adic Galois representation 

ρE,` : GQ → Aut(T`(E)) ' GL2(Z`), 

where Z` = lim Z/`nZ is the ring of ̀ -adic integers, which contains Z as a subring.2 Each ←− 
σ ∈ GQ acts on (P1, P2, P3, . . .) ∈ T` via its action on the coordinates of each Pn ∈ E[`n]. 

For primes p 6∈ S we now use Frobp ∈ GQ to denote an element whose restriction to 
Gal(Q([`n])/Q) is conjugate to Frobp ∈ Gal(Q(E[`n])/Q) for each n ≥ 1; this amounts 
to choosing a compatible sequence of Frobenius elements Frobp,n ∈ Gal(Q(E[`n])/Q) such 
that Frobp,n is the restriction of Frobp,n+1 to Q(E[`n]). The conjugacy class of ρ(Frobp) in 
GL2(Z`) is independent of these choices; in particular its trace in Z` is well defined. 

We then have tr ρE,`(Frobp) = ap, as elements of Z ⊆ Z`. The representation ρE,` thus 
determines the coeÿcients ap of the L-series LE (s) at all primes p 6∈ S. By the Tate-Faltings 
Theorem (see Theorem 25.38), this determines E up to isogeny, and therefore determines 
the entire L-function LE (s), including the values of ap for p ∈ S. 

We also have the mod-` Galois representation 

ρE,` : GQ → Aut(E[`]) ' GL2(Z/`Z), 

which is equivalent to composing ρE,` with the map from GL2(Z`) to GL2(Z/`Z) that reduces 
each matrix coeÿcient modulo ̀ . 

2You can view elements of Z` as infinite sequences of integers (a1, a2, a3, . . .) with an ≡ an+1 mod `n , and 
ring operations defined coordinate-wise. We embed Z in Z` via the map a 7→ (a, a, a, . . .). Note that Z` has 
characteristic 0 but comes equipped with reduction maps to the positive characteristic rings Z/`nZ. 

18.783 Spring 2019, Lecture #26, Page 4 

http://math.mit.edu/classes/18.783/2017/LectureNotes25.pdf#theorem.2.38


26.4 Serre’s modularity conjecture 

Let us forget about elliptic curves for a moment and consider an arbitrary3 `-adic Galois 
representation ρ : GQ → GL2(Z`) with ̀ > 3 prime. We say that ρ is modular (of weight k 

n and level N), if there is a modular form fρ = 
P 

anq in Sk(Γ1(N)) with an ∈ Z such that4 

tr ρ(Frobp) = ap 

for all primes p - `N (if ρ = ρE,` and N = NE this excludes the same finite set of primes S 
as the previous section). Similarly, if we have a mod-` representation ρ : GQ → GL2(Z/`Z), 
we say that ρ is modular if 

tr ρ(Frobp) ≡ ap mod ` 

for all primes p - `N . 
Let c ∈ GQ be the automorphism of Q ⊆ C corresponding to complex conjugation. The 

automorphism c has order 2, so det ρ(c) = ±1. We say that a Galois representation ρ is 
odd when det ρ(c) = −1. This is necessarily the case if ρ = ρE,` is a Galois representation 
associated to an elliptic curve. One way to see this is to base change E to C and view EC as 
isomorphic to a torus C/L for some lattice L = [1, τ ]. For a suitable choice of basis (P, Q) for 
the ̀ n-torsion subgroup of C/L in which P has real coordinates, complex conjugation fixes P 
and sends Q to −Q (this is easy to see when re τ = 0 and holds in general). Since we already P 

n in Snew know that every f = anq (Γ0(N)) with an ∈ Z gives rise to an elliptic curve (see 2 
Theorem 25.37), this constraint necessarily applies to Galois representations associated to 
modular forms of weight 2 with integral q-series. 

We want to impose a further constraint on the Galois representations we shall consider 
that is not always satisfied by the representation ρE,` associated to an elliptic curve E/Q, 
but usually is (always for ̀ > 163). We call a Galois representation ρ : GQ → GL2(Z/`Z) 
irreducible if its image does not fix any of one-dimensional subspaces of (Z/`Z)2; equivalently, 
its image is not conjugate to a group of upper triangular matrices in GL2(Z/`Z). For an 
elliptic curve E/Q, the mod-` Galois representation ρ̄ E,` is irreducible if and only if E does 
not admit a rational `-isogeny. Mazur’s isogeny theorem [9] implies that this necessarily 
holds for ̀  6∈ {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163} (the cases 19, 43, 67, 163 can arise only 
when E has complex multiplication). 

In 1975 Serre made the following remarkable conjecture, which he refined in [13]. This 
conjecture is now a theorem, proved in 2008 by Khare and Wintenberger [6, 7], but this work 
came long after the proof of Fermat’s Last Theorem (and built on the modularity lifting 
techniques used to prove it). 

Conjecture 26.1 (Serre’s modularity conjecture). Every odd irreducible Galois representa-
tion ρ̄ : GQ → GL2(Z/`Z) is modular.5 

Serre gave an explicit recipe for what the optimal weight k(ρ̄) and level N(ρ̄) of the 
corresponding modular form should be. Given a newform f ∈ Snew(Γ0(N)) with Fourier 2 

3As profinite groups, both GQ = Gal(Q/Q) and GL2(Z`) are topological groups and we always require 
`-adic Galois representation to be continuous with respect to this topology; this is automatically true for 
the representations ρE,` of interest to us. 

4In the previous lecture we focused on Sk(Γ0(N)), which suÿces for everything we need in the sections 
that follow (and we only need k = 2), but in order to state Serre’s conjecture we temporarily work in greater 
generality; note that Γ1(N) ⊆ Γ0(N) implies Sk(Γ0(N)) ⊆ Sk(Γ1(N)). 

5In fact Serre made his conjecture for all odd irreducible representations ρ : GQ → GL2(F`n ), which 
includes the special case considered here with GL2(Z/`Z) ' GL2(F`). 

18.783 Spring 2019, Lecture #26, Page 5 

http://math.mit.edu/classes/18.783/2017/LectureNotes25.pdf#theorem.2.37


coeÿcients an ∈ Z, the Eichler-Shimura Theorem (see Theorem 25.37) gives us a corre-
sponding elliptic curve E/Q whose mod-` Galois representation ρE,` is modular of weight 
2 and level N = NE , and ρ̄ E,` will typically also be irreducible. The weight 2 agrees with 
the optimal weight k(ρ̄E,`) conjectured by Serre (at least when ̀  - NE ), but the optimal 
level N(ρ̄E,`) may properly divide NE . In certain (rare) circumstances, distinct newforms 
of weight 2 with di˙erent levels may have Fourier coeÿcients an that are congruent modulo 
`. 

The mod-` Galois representation associated to the “strange” elliptic curve Ea,b,c arising 
` ` from a Fermat solution a + b ̀  = c gives rise to one of these rare circumstances. For an 

irreducible mod-` Galois representations ρ̄ E,` arising from a semistable elliptic curve E/Q, 
Serre’s optimal level N(ρ̄E,`) is a product of primes p for which vp(Δmin(E)) 6≡ 0 mod `, 
where vp(·) denotes the p-adic valuation. 

For the elliptic curve Ea,b,c we have Y 
NEa,b,c = p, Δmin(Ea,b,c) = 2

−8(abc)2` , 
p|abc 

which means that for every odd prime p|NE we have vp(Δmin(Ea,b,c)) ≡ 0 mod `, in which 
case Serre’s optimal level is N(¯ = 2. But there are no (nonzero) modular forms ρEa,b,c,`) 
of weight 2 and level 2, because dim Snew(Γ1(2)) = dim Snew(Γ0(2)) = g(X0(2)) = 0. We 2 2 
must have ̀ > 163, since Fermat’s Last Theorem has long been known for ̀  ≤ 163, so Ea,b,c 

cannot admit a rational ̀ -isogeny, by Mazur’s isogeny theorem, which means that ρ̄Ea,b,c,` 

must be irreducible. Thus if Ea,b,c is modular, then ρ̄ Ea,b,c,` represents a counterexample 
to Serre’s conjecture. Serre’s epsilon-conjecture, proved by Ribet in 1986, implies that this 
cannot happen. Below is a form of Ribet’s theorem [11] that suÿces to prove this. 

Theorem 26.2 (Ribet). Let ̀  be prime, let E be an elliptic curve of conductor N = mN 0 , 
where m is the product of all primes p|N such that vp(N) = 1 and vp(Δmin(E)) ≡ 0 mod `. 
If E is modular and ρ̄ E,` is irreducible, then ρ̄ E,` is modular of weight 2 and level N 0 . 

Corollary 26.3. The elliptic curve Ea,b,c is not modular. 

26.5 The modularity lifting theorem 

The final and by far the most diÿcult step to proving Fermat’s Last Theorem is to show that 
if the elliptic curve Ea,b,c exists, then it is modular. Andrew Wiles, with the assistance of 
Richard Taylor,6 proved the stronger statement that every semistable elliptic curve over Q 
is modular (recall that Ea,b,c is semistable). 

A key element of Wiles’ proof is a technique now known as modularity lifting. Let E be 
an elliptic curve over Q and let ̀  be a prime. Wiles uses modularity lifting to show that if 
the mod-` Galois representation ρE,` of semistable elliptic curve E/Q is modular, then the 
`-adic representation ρE,` is also modular, which in turn implies that E is modular. 

Given a representation ρ0 : GQ → GL2(Z/`Z), a representation ρ1 : GQ → GL2(Z`) 
whose reduction modulo ` is equal to ρ0 is called a lift of ρ0. More generally, if R is a 
suitable ring7 with a reduction map to Z/`Z, and ρ1 : GQ → GL2(R) is a representation 
whose reduction is equal to ρ0, then we say that ρ1 is a lift of ρ0 (to R). Two lifts of ρ0 are 

6Wiles’ retracted his initial proof due to a gap that was found. Richard Taylor helped Wiles to circumvent 
this gap, which was the last critical step required to obtain a complete proof; see [3] for an accessible account. 

7A complete local Noetherian ring with residue field F`. 

18.783 Spring 2019, Lecture #26, Page 6 

http://math.mit.edu/classes/18.783/2017/LectureNotes25.pdf#theorem.2.37


said to be equivalent if they are conjugate via an element in the kernel of the reduction map 
from GL2(R) to GL2(Z/`Z). A deformation of ρ0 is an equivalence class of lifts of ρ0 to the 
ring R, which is sometimes called the deformation ring. 

Building on work by Mazur, Hida, and others that established the existence of certain 
universal deformations, Wiles was able to show that if ρ0 is modular, then every lift of ρ0 

satisfying a specified list of properties is modular, and he was able to ensure that this list of 
properties is satisfied by the representation ρE,` associated to a semistable elliptic curve E. 8 

Theorem 26.4 (Taylor-Wiles). Let E/Q be a semistable elliptic curve. If ρE,` is modular, 
then ρE,` is also modular (and therefore E is modular). 

26.6 Proof of Fermat’s Last Theorem 

It remains only to find a modular representation ρ0 : GQ → GL2(Z/`Z) that we can lift to 
ρE,`. The obvious candidate is ρE,`, for some suitable choice of ̀ . It is not clear that proving 
the modularity of ρE,` modular is necessarily any easier than proving the modularity of ρE,`, 
but thanks to work of Langlands and Tunnel on a special case of Langlands’ Reciprocity 
Conjecture [2, Ch. 6], we have the following result for ̀  = 3. 

Theorem 26.5 (Langlands-Tunnel). Let E be an elliptic curve over Q. If ρE,3 is irreducible, 
then it is modular. 

The one remaining diÿculty is that ρE,3 is need not be irreducible; indeed there are 
infinitely many semistable elliptic curves E/Q that admit a rational 3-isogeny, for for these 
curves ρ̄E,3 is not irreducible. However, if E is semistable and ρE,3 is reducible then ρE,5 
must be irreducible. This follows from the fact that if neither ρ̄E,3 nor ρ̄E,5 is irreducible 
then E admits both a rational 3-isogeny and a rational 5-isogeny; the cyclic group of order 15 
generated by their kernels is then the kernel of a rational 15-isogeny, but this cannot be the 
case if E is semistable. 

Theorem 26.6. No semistable elliptic curve E/Q admits a rational 15-isogeny. 

Proof. Let E/Q be an elliptic curve that admits a rational 15-isogeny. Let hP i ⊆ E(Q) be 
the kernel of this isogeny, which we note is necessarily cyclic. The pair (E, hP i) corresponds 
to a non-cuspidal Q-rational point on X0(15), the modular curve that parameterizes Q-
isomorphism classes of 15-isogenies. The modular curve X0(15) is a smooth projective curve 
of genus 1, and it has a rational point (take the cusp at infinity, for example), so it can be 
viewed as an elliptic curve. A minimal Weierstrass model for X0(15) is given by 

2 3 X0(15) : y + xy + y = x + x 2 − 10x − 10, 

and additional information about this curve can be found on its home page in the LMFDB [8]. 
This information includes the fact that X0(15) has rank 0 and a torsion subgroup of order 8. 
Its 8 rational points include 4 cusps and 4 non-cuspidal points that represent Q-isomorphism 
classes (E, hP i) of elliptic curves E/Q that admit a rational 15-isogeny with kernel hP i. None 
of these elliptic curves E has j-invariant 0 or 1728, so each isomorphism class is a family of 
quadratic twists. Any family of quadratic twists of elliptic curves over Q contains a minimal 

8We are intentionally glossing over a massive amount of detail that is well beyond the scope of this course. 
We refer the interested reader to [2], which contains not only a detailed overview of the proof, but many 
chapters devoted to the background necessary to understand these details. 
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representative whose conductor divides the conductor of all others; for the 4 non-cuspidal 
points on X0(15) these minimal quadratic twists all have conductor 50 = 2 · 52 (you can find 
a list of them and the 15-isogenies they admit here). None of these curves is semistable, 
since 50 is not squarefree, nor are any of their quadratic twists. The theorem follows. 

There is unfortunately no analog of the Langlands-Tunnel theorem for ̀  = 5. Indeed, 
the case ̀  = 3 is quite special: the group GL2(Z/3Z) is solvable, which is not true for any 
prime ̀ > 3 (and ̀  = 2 has other problems). So we would seem to be stuck. But Wiles 
cleverly proved the following result, which is now known as the three-five trick. 

Theorem 26.7 (Wiles). Let E/Q be a semistable elliptic curve for which ρE,5 is irreducible. 
There exists a semistable elliptic curve E0/Q such that 

• ρE0 ,3 is irreducible, 

• ρE0 ,5 ' ρE,5. 

Now we are in business. 

Theorem 26.8 (Wiles). Let E/Q be a semistable elliptic curve. Then E is modular. 

Proof. There are two cases. If ρE,3 is irreducible then: 

• ρE,3 is modular, by the Langlands-Tunnel theorem, 

• ρE,3 is modular, by the modularity lifting theorem, 

• E is modular, since fE . = fρE,3 

On the other hand, if ρE,3 is reducible, then: 

• ρE,5 is irreducible, because no semistable E/Q admits a rational 15-isogeny, 

• there exists a semistable E0/Q with ρE0 ,3 irreducible and ρE05 ' ρE,5, by the 3-5 trick, 

• ρE0 ,3 is modular, by the Langlands-Tunnel theorem, 

• ρE0 ,3 is modular, by the modularity lifting theorem, 

• E0 is modular, since fE0 = fρE0 ,3 
, 

• ρE0 ,5 and therefore ρE0 ,5 is modular, since fρE0 ,5 
= fE0 , 

• ρE,5 ' ρE0 ,5 is modular, 

• ρE,5 is modular, by the modularity lifting theorem, 

• E is modular, since fE . = fρE,5 

Q.E.D. 

n n n Corollary 26.9. x + y = z has no integer solutions with xyz 6= 0 for n > 2. 
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