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19 Riemann surfaces and modular curves 

Let O be an order in an imaginary quadratic field and let cl(O) be its ideal class group 
(proper O-ideals up to homethety, or equivalently, invertible fractional O-ideals modulo 
invertible principal O-ideals). In the previous lecture we showed that the set 

EllO(C) := {j(E) : E/C with End(E) = O} 

of isomorphism classes of elliptic curves E/C with complex multiplication by O is a torsor 
for the group cl(O). If a and b are proper O-ideals and Eb is the elliptic curve corresponding 
to the complex torus C/b, then Eb has CM by O and the O-ideal a acts on Eb via 

aEb = E −1b. a 

The isogeny φa : Eb → aEb induced by the lattice inclusion b ⊆ a−1b has kernel 

ker φa = Eb[a] := {P ∈ E(C) : αP = 0 for all α ∈ a ⊆ O ' End(Eb)}, 
# ker φa = deg φa = Na := [O : a]. 

To make further progress in our development of the theory of complex multiplication, we 
need a better understanding of the isogenies φa. The key to doing so, both from a theoretical 
and practical perspective, is to understand the modular curves that “parameterize” isogenies 
of elliptic curves (in a sense that will be made clear in later lectures). 

In this lecture our goal is simply to introduce the notion of a modular curve, beginning 
with the canonical example X(1). Modular curves, and the modular functions that comprise 
their function fields are a major topic in their own right (one to which entire courses are 
devoted); we shall necessarily only scratch the surface of this rich and beautiful subject. 
Our presentation is adapted from [1, V.1] and [2, I.2]. 

19.1 The modular curves X (1) and Y (1) 

Recall from Lecture 16 that the modular group Γ := SL2(Z) acts on the upper half plane 
H := {τ ∈ C : im τ > 0} via linear fractional transformations: � � 

a b aτ + b 
τ := . 

c d cτ + d 

The quotient H/Γ (the Γ-orbits of H) is known as the modular curve Y (1), whose points 
may be identified with points in the fundamental region 

F = {z ∈ H : re(z) ∈ [−1/2, 1/2) and |z| ≥ 1, with |z| > 1 if re(z) > 0}. 

You may be wondering why we call Y (1) a curve. Recall from Theorem 16.11 that the 
j-function defines a holomorphic bijection from F to C, and we shall prove that in fact Y (1) 
is isomorphic, as a complex manifold, to the complex plane C, which we may view as an 
aÿne curve: if we put f(x, y) = y then the zero locus of f is {(x, 0) : x ∈ C} ' C. 

The fundamental region F is not a compact subset of H, since it is unbounded along the 
positive imaginary axis. To remedy this deficiency, we compactify it by adjoining a point 
at infinity to H and including it in F . We want SL2(Z) to act on our extended upper half 
plane, and we want this action to be continuous, as it is on H. Given that 

aτ + b a 
lim = , 

im τ→∞ cτ + d c 
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we should also include the set of rational numbers in our extended upper half plane. So let 

H∗ = H ∪ Q ∪ {∞} = H ∪ P1(Q), 

and let Γ act on H∗ by extending its action on H to P1(Q) via � � 
a b 

(x : y) = (ax + by : cx + dy). 
c d 

The points in H∗ −H = P1(Q) are called cusps; as you proved on Problem Set 8, the cusps 
are all Γ-equivalent. Thus we may extend our fundamental region F for H to a fundamental 
region F∗ for H∗ by including a single cusp: the point ∞ = (1 : 0) ∈ P1(Q), which we may 
typically view as a point lying infinitely far up the positive imaginary axis. 

We can now define the modular curve X(1) = H∗/Γ, which contains all the points 
in Y (1), plus the cusp at infinity. This is a projective curve, in fact it is the projective 
closure of Y (1) in P2 . It is also a Riemann surface, a connected complex manifold of 
dimension one. Before stating precisely what this means, our first goal is to prove that X(1) 
is a compact Hausdor˙ space. 

We extend the topology of H to a topology on H∗ by taking as a basis of open neighbor-
hoods: 

• τ ∈ H: all open disks about τ that lie in H; 

• τ ∈ Q: all sets {τ} ∪ D, where D ⊆ H is an open disk tangent to the real line at τ ; 

• τ = ∞: all sets of the form {τ ∈ H : im τ > r} for any r > 0; 

The topology of H∗ is generated by these open neighborhoods under unions and finite inter-
sections; note that the induced subspace topology on H is just its standard topology. 

It is clear that H∗ is a Hausdor˙ space (any two points can be separated by neighbor-
hoods). It does not immediately follow that X(1) = H∗/Γ is a Hausdor˙ space; a quotient 
of a Hausdor˙ space need not be Hausdor˙. To show that X(1) is Hausdor˙ we first prove 
two lemmas that will be useful in what follows. 

Lemma 19.1. For any compact sets A, B ⊆ H the set S = {γ ∈ Γ : γA ∩ B =6 ∅} is finite. � � 
Proof. Recall that for any γ = a b ∈ Γ we have c d 

aτ + b (aτ + b)(cτ̄ + d) (ad − bc) im τ im τ 
im γτ = im = im = = . 

cτ + d |cτ + d|2 |cτ + d|2 |cτ + d|2 

Now define 
r := max{im τA/ im τB : τA ∈ A, τB ∈ B}. 

If γτA = τB for some τA ∈ A and τB ∈ B, then |cτA + d|2 = im τA/ im τB ≤ r, which implies 
upper bounds on |c| and |d| for any γ ∈ S. Thus the number of pairs (c, d) arising among � � 
a b ∈ S is finite. Let us now fix one such pair and define c d 

s = max{|τB ||cτA + d| : τA ∈ A, τB ∈ B}. � � 
For any γ = a b ∈ Γ we have |γτ | = |aτ + b|/|cτ + d|. If γτA = τB for some τA ∈ A and c d 
τB ∈ B, then |aτA + b| = |τB||cτA + d| ≤ s, which gives upper bounds on |a| and |b| as above. � � 

a b The number of pairs (a, b) arising among ∈ S is thus finite, hence S is finite. c d 
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Lemma 19.2. For any τ1, τ2 ∈ H∗ there exist open neighborhoods U1, U2 of τ1, τ2 such that 

γU1 ∩ U2 =6 ∅ ⇐⇒ γτ1 = τ2, 

for all γ ∈ Γ. In particular, each τ ∈ H∗ has an open neighborhood in which it is the sole 
representative of its Γ-orbit. 

Proof. We first note that if γτ1 = τ2, then γU1 ∩ U2 =6 ∅ for all open neighborhoods U1, U2 

of τ1, τ2, so we only need to consider γ for which γτ1 6= τ2. 
We first consider τ1, τ2 ∈ H and let C1, C2 ⊆ H be closed disks about them. Let 

S(C1, C2) := {γ : γC1 ∩ C2 6= ∅ and γτ1 =6 τ2}. If S is nonempty, pick γ ∈ S, and let 
U3 and U2 

0 be disjoint open neighborhoods of γτ1 and τ2 respectively (they exist because 
H is Hausdor˙). Then γ−1U3 is an open neighborhood of τ1 (since γ acts continuously), 
and it contains a closed disk C 0 ⊆ C1 about τ1, and the open set U 0 similarly contains a 1 2 
closed disk C 0 ⊆ C2 about τ2. We then have S(C1 

0 , C2 
0 ) ( S(C1, C2), since by construction, 2 

γ 6∈ S(C1 
0 , C2 

0 ). By Lemma 19.1, S is finite, so if we continue in this fashion we will eventually 
have S(C1, C2) = ∅, at which point we may take U1, U2 to be the interiors of C1, C2. 

We now consider τ1 ∈ H and τ2 = ∞. Let U1 be a neighborhood of τ1 with U1 ⊆ H. The 
set {|cτ + d| : τ ∈ U1, c, d ∈ Z not both 0} is bounded below, and {im γτ : γ ∈ Γ, τ ∈ U1} is � � 

a b bounded above, say by r, since im τ = im τ/|cτ + d|2 . If we let U2 = {τ : im τ > r} be c d 
our neighborhood of τ2 = ∞, then γU1 ∩ U2 = ∅ for all γ ∈ Γ and the lemma holds. This 
argument extends to all the cusps in H∗ , since every cusp is Γ-equivalent to ∞, and we can 
easily reverse the roles of τ1 and τ2, since if γU1 ∩ U2 = ∅ then U1 ∩ γ−1U2 = ∅. 

Finally, if τ1 = τ2 = ∞ we let U1 = U2 = {τ ∈ H : im τ > 1} ∪ {∞}: for im τ > 1 either 
im γτ = im τ , in which case γ = ( 1 ∗ ) fixes ∞, or im γτ = im τ/|cτ + d|2 < 1. 0 1 

Theorem 19.3. X(1) is a connected compact Hausdor˙ space. 

Proof. It is clear that H is connected, hence its closure H∗ is connected, and the quotient of 
a connected space is connected, so X(1) is connected. 

To show that X(1) is compact, we show that every open cover has a finite subcover. 
Let {Ui} be an open cover of X(1) and let π : H∗ → X(1) be the quotient map. Then 
{π−1(Ui)} is an open cover of H∗ and it contains an open set V0 containing the point ∞. 
Let {V1, . . . , Vn} be a finite subset of {π−1(Ui)} covering the compact set F − V0 (note that 
V0 contains a neighborhood {z : im z > r} of ∞). Then {V0, . . . , Vn} is a finite cover of F∗ , 
and {π(V0), . . . , π(Vn)} is a finite subcover of {Ui}. 

To show that X(1) is Hausdor˙, let x1, x2 ∈ X(1) be distinct, and choose τ1, τ2 so that 
π(τ1) = x1 and π(τ2) = x2. Then τ2 =6 γτ1 for all γ ∈ Γ (since x1 =6 x2), so by Lemma 19.2, 
there are neighborhoods U1 and U2 of τ1 and τ2 respectively for which γU1 ∩ U2 = ∅ for all 
γ ∈ Γ. Thus π(U1) and π(U2) are disjoint neighborhoods of x1 and x2. 

We note that Lemmas 19.1 and 19.2 and Theorem 19.3 all hold if we replace Γ by any 
finite-index subgroup of Γ; the proofs are essentially the same, the only di˙erence is an 
additional argument in the proof of Lemma 19.2 to handle inequivalent cusps. 

19.2 Riemann surfaces 

Definition 19.4. A complex structure on a topological space X is an open cover {Ui} 
of X together with a set of compatible homeomorphisms1 ψi : Ui → C with open images. 

1Recall that a homeomorphism is a bicontinuous function, a continuous function with a continuous inverse. 
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Homeomorphisms ψi and ψj are compatible if whenever Ui ∩ Uj 6= ∅ the transition map 

ψj ◦ ψ−1 : ψi(Ui ∩ Uj ) → ψj (Ui ∩ Uj ) i 

is holomorphic. 

The homeomorphisms ψi are called charts (or local parameters), and the collection {ψi} 
is called an atlas. Each chart ψi allows us to view a local neighborhood Ui of X as a 
region of the complex plane, and the transition maps allow us to move smoothly from 
one region to another. Note that transition maps are automatically homeomorphisms; the 
requirement that they be holomorphic is a stronger condition (this is what di˙erentiates 
complex manifolds from real manifolds). 

Definition 19.5. A Riemann surface is a connected Hausdor˙ space with a complex struc-
ture (equivalently, it is a connected complex manifold of dimension one).2 

Example 19.6. The torus C/L corresponding to an elliptic curve E/C is a Riemann surface. 
To give C/L a complex structure let π : C → C/L be the quotient map, let r > 0 be less 
than half the length of the shortest vector in L, and for each z ∈ C in a fundamental region 
for L, let Uz ⊆ C be the open disc or radius r centered at z. The restriction of π to each Uz 

is injective (by our choice of r) and defines a homeomorphism. We may thus take {π(Uz)} 
as our open cover and the inverse maps π−1 : π(Uz) → Uz as our charts. The transition 
maps are all the identity map, hence holomorphic. 

It is clear that C/L is a connected Hausdor˙ space, hence a Riemann surface, in fact 
a compact Riemann surface. We can compute its genus by triangulating a fundamental 
parallelogram and computing its Euler characteristic. Recall Euler’s formula 

V − E + F = 2 − 2g, 

where V counts vertices, E counts edges, F counts faces, and g is the genus. If L = [ω1, ω2], 
we may triangulate the parallelogram F0 by drawing a diagonal from ω1 to ω2. We then 
have V = 1 (every lattice point is equivalent to 0), E = 3 (edges on the opposite side of the 
parallelogram are equivalent, so 2 edges on the border plus the diagonal), and F = 2 (two 
triangles, one on each side of the diagonal). We thus have 

1 − 3 + 2 = 2 − 2g, 

and g = 1, as expected. 

In order to show that X(1) is a Riemann surface, we need to give it a complex struc-
ture. The only diÿculty that arises when doing so occurs at points in H∗ that possess 
extra symmetries under the action of Γ. We may restrict our attention to the fundamental 
region F∗ , and in this region there are only three points that we need to worry about, the 

2πi/3 points i, ρ := e , and ∞. We require the following lemma. 

2Strictly speaking, a Riemann surface is also required to be second-countable, meaning that it admits 
a countable basis of open sets. This is easily satisfied by all the Riemann surfaces that we shall consider 
(to get a countable basis for H take open discs of rational radii centered at points with rational real and 
imaginary parts; this easily extends to a countable basis for H∗ and any quotient thereof. 
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Figure 1: H∗/Γ 

� � 
0 −1 Lemma 19.7. For τ ∈ F∗ , let Gτ denote the stabilizer of τ in Γ = SL2(Z). Let S = 1 0 

and T = ( 1 1 ). Then 0 1 ⎧ 
{±I} ' Z/2Z if τ /∈ {i, ρ, ∞}; ⎪⎨hSi ' Z/4Z if τ = i; 

Gτ = 
hST i ' Z/6Z if τ = ρ ⎪⎩h±T i ' Z if τ = ∞. 

Proof. See Problem Set 8, or stare at Figure 1 and note −I acts trivially and T ∞ = ∞. 

19.3 The modular curve X(1) as a Riemann surface 

We now put a complex structure on X(1). Let π : H∗ → X(1) be the quotient map, and 
for each point x ∈ X(1) let τx be the unique point in the fundamental region F∗ for which 
π(τx) = x, and let Gx = Gτx be the stabilizer of τx. For each τx ∈ F∗ , we can pick a 
neighborhood Ux such that γUx ∩ Ux = ∅ for all γ 6∈ Gx, by Lemma 19.2. The sets π(Ux) 
form an open cover of X(1). For x 6= ∞, we can map Ux to an open subset of the unit disk 
D := {z ∈ C : |z| < 1} via the homeomorphism δx : H → D defined by 

τ − τx 
δx(τ) := . (1) 

τ − τ x 

To visualize the map δx, note that it sends τx to the origin, and if we extend its domain 
to H ⊆ C, it maps the real line to the unit circle minus the point 1 and sends ∞ to 1. Note 
that im τ > 0 and im τx < 0, so δx(τ) is defined and nonzero for all τ ∈ H. 
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To define ψx we need to map π(Ux) into D. For τx 6= i, ρ, ∞ we have Gx = {±1}, which 
fixes every point in Ux, not just τx. In this case the restriction of π to Ux is injective, we 
have Ux/Γ = Ux/Gx = Ux, so we can simply define ψx := δx ◦ π−1 . 

When |Gx| > 2, the restriction of π to Ux is no longer injective (it is at τx, but not at 
points near τx), so we cannot use ψx = δx ◦ π−1 . We instead define ψx(z) = δx(π−1(z))n , 
where n = |Gx|/2 is the size of the Γ-orbits in Ux\{τx}. Note that when Gx = {±1} we have 
n = 1 and this is the same as defining ψx = δx ◦ π−1 . To prove that this actually works, we 
will need the following lemma. 

Lemma 19.8. Let τx ∈ H, with δx(τ) as in (1), and let ϕ : H → H be a holomorphic 
function fixing τx whose n-fold composition with itself is the identity, with n minimal. Then 
for some primitive nth root of unity ζ, we have δx(ϕ(τ )) = ζδx(τ) for all τ ∈ H. 

Proof. The map f = δx ◦ ϕ ◦ δ−1 is a holomorphic bijection (conformal map) from D to D x 
that fixes 0. Every such function is a rotation f(z) = ζz with |ζ| = 1, by [3, Cor. 8.2.3]. 
Since the n-fold composition of f with itself is the identity map, with n minimal, ζ must be 
a primitive nth root of unity. 

What about x = ∞? We have G∞ = h±T i, so the intersection of the Γ-orbit of any 
point τ ∈ U∞\{∞} with U∞ is the set {τ + m : m ∈ Z}. We now define ( 

2πiz e if z =6 ∞, 
δ∞(z) := 

0 if z = ∞, 

and let ψ∞ = δ∞ ◦ π−1 . Then δ∞(τ + m) = δ∞(τ ) for all τ ∈ U∞\{∞} and m ∈ Z. 

The following commutative diagrams summarize the charts ψx: 

Ux π Ux/Gx Ux π Ux/Gx 

δx ψx δx ψx 

n D z D D 
τ−τx 2πiτ x =6 ∞, δx(τ) = x = ∞, δx(τ ) = e τ −τx 

n = |Gx|/2 

We are now ready to prove that X(1) is a compact Riemann surface. Theorem 19.3 
states that X(1) is a connected compact Hausdor˙ space, so we just need to prove that we 
have a complex structure on X(1). This means verifying that the maps ψx : π(Ux) → D are 
well-defined (we must have ψ(π(γτ)) = ψ(π(τ)) for all τ ∈ Ux and γ ∈ Gx), that they are 
homeomorphisms, and that the transition maps are holomorphic. 

Theorem 19.9. The open cover {Ux} and atlas {ψx} define a complex structure on X(1). 

Proof. As above, let x = π(τx) with τx ∈ F∗ . We first verify that the maps ψx are well-
defined homeomorphisms. 

We first consider x 6= ∞. By Lemma 19.7, the stabilizer Gx of τx is cyclic of order 2n, 
and γn = ±1 acts trivially for all γ ∈ Gx. Applying Lemma 19.8 to the function ϕ(τ) = γτ , 
we have δx(γz) = ζδx(z) for all z ∈ Ux, where ζ is a primitive nth root of unity. Thus 

ψx(π(γz)) = δx(γz)
n = ζnδx(z)

n = δx(z)
n = ψx(π(z)) 
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for all z ∈ Ux. It follows that ψx is well defined on Ux/Gx. To show that ψx is a home-
omorphism, it suÿces to show that it is holomorphic and injective, by the open mapping 
theorem [3, Thm. 5.5.4]. It is clearly holomorphic, since δx(τ) is a rational function with no 
poles in Ux. To prove injectivity, assume ψx(π(τ1)) = ψx(π(τ2)). Then for some integer k 

δx(τ1)
n = δx(τ2)

n 

δx(τ1) = ζkδx(τ2) = δx(γ
kτ2) 

τ1 = γkτ2 

π(τ1) = π(τ2). 

Thus ψx is an injective and therefore a homeomorphism. 
For x = ∞, the point τ = ∞ ∈ H∗ is the unique point in U∞ for which π(τ) = ∞, and 

ψx(τ) = 0 if and only if τ = ∞. So ψ∞ is well defined at ∞. For τ ∈ U∞\{∞}, we have 
2πi(τ +m) 2πiτ ψ∞(π(τ + m)) = δ∞(τ + m) = e = e = δ∞(τ) = ψ∞(π(τ)) 

for all m ∈ Z, thus ψ∞ is well defined. The map ψ∞ is clearly continuous, and it has a 
continuous inverse ( 

1 π( log z) if z 6= 0, 
ψ−1 2πi 
∞ (z) = 

∞ otherwise, 

thus it is a homeomorphism. 
We now show that the transition maps are holomorphic. Let us first consider Ux, Uy 

with x, y =6 ∞. For any z ∈ ψx(π(Ux) ∩ π(Uy)) ⊆ D we have 
ny 1/nx ), ψy ◦ ψx 

−1(z) = ψy ◦ π ◦ π−1 ◦ ψx 
−1(z) = (ψy ◦ π) ◦ (ψx ◦ π)−1(z) = δy ◦ δx 

−1(z 

ny ◦δ−1 where nx = |Gx|/2 and ny = |Gy|/2. The map δy is holomorphic on D, so it suÿces to x 
ny ◦δ−1 show that it is a power series in znx ; this will imply that δy (z1/nz ) is defined by a power x 

series in z, hence holomorphic. Let ζ be an nxth root of unity such that δx(γz) = ζδx(z), 
where γ generates Gx, as in Lemma 19.8. Note that π ◦ γ = π for any γ ∈ Γ, so we have 

ny ◦ δ−1 ◦ π) ◦ (γ ◦ δ−1 ny δy x (ζz) = (ψy (z)) = ψy ◦ π ◦ δx 
−1(z) = δy ◦ δ−1(z). x x 

ny nx It follows that δy ◦ δ−1 is a power series in z , since it maps ζz and z to the same point. x 
For x 6= ∞ and y = ∞ we have 

ψ∞ ◦ ψ−1(z) = ψy ◦ π ◦ π−1 ◦ ψ−1(z) = (ψy ◦ π) ◦ (ψx ◦ π)−1(z) x x � � 
1/nx ) = δ∞ ◦ δ−1(z 1/nx ) = exp 2πi δ−1(z , x x 

where δ∞ ◦ δ−1 is holomorphic. and the same argument used above shows that it is actually x 
nx a power series in z . 

For the case x = ∞ and y 6= ∞, we have 
ny ny δy (z + 1) = ψy ◦ π ◦ Tz = ψy ◦ π(z) = δy (z), 

ny 2πiz so δy is a holomorphic function in the variable q = e (note z ∈ U∞ ∩ Uy is bounded). 
Thus the transition map � � 

1 
ψy ∞ (z) = δny log z ◦ ψ−1 

y 
2πi 

is holomorphic. The case x = y = ∞ is trivial, since ψ∞ ◦ ψ−1 is the identity map. ∞ 
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Theorem 19.10. The modular curve X(1) is a compact Riemann surface of genus 0. 

Proof. That X(1) is a compact Riemann surface follows immediately from Theorems 19.3 
and 19.9. To show that it has genus 0, we triangulate X(1) by connecting the points i, ρ, 
and ∞, partitioning the surface into two triangles. Applying Euler’s formula 

V − E + F = 2 − 2g 

with V = 3, E = 3, and F = 2, we see that g = 0. 

Theorem 19.10 implies that X(1) is homeomorphic to the Riemann sphere S = P1(C), 
since up to homeomorphism, S is the unique compact Riemann surface of genus 0. The 
modular curve Y (1) is also a Riemann surface of genus 0, but it is not compact. As we saw 
in Lecture 17, Y (1) is homeomorphic to the complex plane C via the j-function. 

19.4 Modular curves 

We also wish to consider modular curves defined as quotients H∗/Γ for various finite index 
subgroups Γ of SL2(Z) that have desirable arithmetic properties. 

Definition 19.11. The principal congruence subgroup Γ(N) is defined by �� � � � 
a b a b Γ(N) = ∈ SL2(Z) : ≡ ( 1 0 ) mod N . c d c d 0 1 

A congruence subgroup (of level N) is any subgroup of SL2(Z) that contains Γ(N). A 
modular curve is a quotient of H∗ or H by a congruence subgroup. 

Remark 19.12. Every congruence subgroup is a finite index subgroup of SL2(Z). The 
converse does not hold; in fact, most finite index subgroups of SL2(Z) are not congruence 
subgroups, although it is surprisingly diÿcult to write down explicit examples (you will have 
the opportunity to explore this question in Problem Set 10). 

There are two families of congruence subgroups of particular interest: �� � � � 
a b a b ≡ ( 1 ∗ Γ1(N) := ∈ SL2(Z) : ) mod N ; c d c d 0 1 � � � � 
a b a b Γ0(N) := ∈ SL2(Z) : ≡ ( 0 

∗ 
∗
∗ ) mod N ; c d c d 

Note that Γ(1) = Γ1(1) = Γ0(1) = SL2(Z). We now define the modular curves 

X(N) := H∗ /Γ(N), X1(N) := H∗ /Γ1(N), X0(N) := H∗ /Γ0(N), 

and similarly define 

Y (N) := H/Γ(N), Y1(N) := H/Γ1(N), Y0(N) := H/Γ0(N). 

Following the same strategy we used for X(1), one can show that these are all compact 
Riemann surfaces (the only di˙erence in the proof is that in general a fundamental region 
may contain multiple cusps, we only had to consider the cusp ∞). 
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