16 Elliptic curves over $\mathbb C$ (part 2)

Last time we showed that every lattice $L \subseteq \mathbb{C}$ gives rise to an elliptic curve

$$
E_L: y^2 = 4x^3 - g_2(L)x - g_3(L),
$$

where

$$
g_2(L) = 60G_4(L) := 60 \sum_{L^*} \frac{1}{\omega^4}, \qquad g_3(L) = 140G_6(L) = 140 \sum_{L^*} \frac{1}{\omega^6},
$$

with $L^* := L - \{0\}$, and we defined a map

$$
\Phi: \mathbb{C}/L \to E_L(\mathbb{C})
$$

$$
z \mapsto \begin{cases} (\wp(z), \wp'(z)) & z \notin L \\ 0 & z \in L \end{cases}
$$

where

$$
\wp(z) = \wp(z;L) = \frac{1}{z^2} + \sum_{\omega \in L^*} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)
$$

is the Weierstrass \wp -function for the lattice L , and

$$
\wp'(z) = -2 \sum_{\omega \in L} \frac{1}{(z - \omega)^3}.
$$

In this lecture is to prove two theorems. First we will prove that Φ is an isomorphism of additive groups; it is also an isomorphism of complex manifolds [\[3,](#page-7-0) Cor. 5.1.1], and of complex Lie groups, but we won't prove this now.^{[1](#page-0-0)} Second, we will prove that every elliptic curve E/\mathbb{C} is isomorphic to E_L for some lattice L; this is also known as the Uniformization Theorem.

16.1 The isomorphism from a torus to the corresponding elliptic curve

Theorem 16.1. Let $L \subseteq \mathbb{C}$ be a lattice and let $E_L: y^2 = 4x^3 - g_2(L)x - g_3(L)$ be the corresponding elliptic curve. The map $\Phi: \mathbb{C}/L \to E_L(\mathbb{C})$ is a group isomorphism.

Proof. We first note that $\Phi(0) = 0$, so Φ preserves the identity, and for all $z \notin L$ we have

$$
\Phi(-z) = (\wp(-z), \wp'(-z)) = (\wp(z), -\wp'(z)) = -\Phi(z),
$$

since \wp is even and \wp' is odd, so Φ is compatible with taking inverses.

Let $L = [\omega_1, \omega_2]$. There are three points of order 2 in \mathbb{C}/L ; if $L = [\omega_1, \omega_2]$ these are $\omega_1/2, \omega_2/2$, and $(\omega_1 + \omega_2)/2$. By Lemma [15.31,](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.31) \wp' vanishes these points, hence Φ maps points of order 2 in \mathbb{C}/L to points of order 2 in $E_L(\mathbb{C})$, since the latter are the points with y-coordinate zero. Moreover, Φ is injective on points of order 2, since $\wp(z)$ maps each point of order 2 in \mathbb{C}/L to a distinct root of $4\wp(z)^3 - g_2(L)\wp(z) - g_3(L)$, as shown in the proof of Lemma [15.32.](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.32) The restriction of Φ to $(\mathbb{C}/L)[2]$ defines a bijection of $(\mathbb{C}/L)[2] \longrightarrow E_L[2] \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ with $\Phi(0) = 0$, which must be a group isomorphism.

¹This is not difficult to show, but it would distract us from our immediate goal. We will see an explicit isomorphism of complex manifolds in a few lectures when we study modular curves, and in that case we will take the time to define precisely what this means and to prove it.

To show that Φ is surjective, let $(x_0, y_0) \in E_L(\mathbb{C})$. The elliptic function $f(z) = \wp(z) - x_0$ has order 2, hence it has two zeros in the fundamental parallelogram \mathcal{F}_0 , by Theorem [15.18.](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.18) Neither of these zeros occurs at $z = 0$, since f has a pole at 0. So let $z_0 \neq 0$ be a zero of $f(z)$ in \mathcal{F}_0 . Then $\wp(z_0) = x_0$, which implies $\Phi(z_0) = (x_0, \pm y_0)$ and therefore $(x_0, y_0) = \Phi(\pm z_0);$ thus Φ is surjective.

We now show that Φ is injective. Let $z_1, z_2 \in \mathcal{F}_0$ and suppose that $\Phi(z_1) = \Phi(z_2)$. If $2z_1 \in L$ then z_1 is a 2-torsion element and we have already shown that Φ restricts to a bijection on $(\mathbb{C}/L)[2]$, so we must have $z_1 = z_2$. We now assume $2z_1 \notin L$, which implies $\wp'(z_1) \neq 0$. As argued above, the roots of $f(z) = \wp(z) - \wp(z_1)$ in \mathcal{F}_0 are $\pm z_1$, thus $z_2 \equiv \pm z_1 \mod L$. We also have $\wp'(z_1) = \wp'(z_2)$, and this forces $z_2 \equiv z_1 \mod L$, since $\wp'(-z_1) = -\wp'(z_1) \neq \wp'(z_1)$ because $\wp'(z_1) \neq 0$.

It remains only to show that $\Phi(z_1 + z_2) = \Phi(z_1) + \Phi(z_2)$. So let $z_1, z_2 \in \mathcal{F}_0$; we may assume that $z_1, z_2, z_1 + z_2 \notin L$ since the case where either z_1 or z_2 lies in L is immediate, and if $z_1 + z_2 \in L$ then z_1 and z_2 are inverses modulo L, a case treated above.

The points $P_1 = \Phi(z_1)$ and $P_2 = \Phi(z_2)$ are affine points in $E_L(\mathbb{C})$, and the line ℓ between them cannot be vertical because P_1 and P_2 are not inverses (since z_1 and z_2 are not). So let $y = mx + b$ be an equation for this line, and let P_3 be the third point where the line intersects the curve E_L . Then $P_1+P_2+P_3=0$, by the definition of the group law on $E_L(\mathbb{C})$.

Now consider the function $\ell(z) = -\wp'(z) + m\wp(z) + b$. It is an elliptic function of order 3 with a triple pole at 0, so it has three zeros in the fundamental region \mathcal{F}_0 , two of which are z_1 and z_2 . Let z_3 be the third zero in \mathcal{F}_0 . The point $\Phi(z_3)$ lies on both the line ℓ and the elliptic curve $E_L(C)$, hence it must lie in $\{P_1, P_2, P_3\}$; moreover, we have a bijection from $\{z_1, z_2, z_3\}$ to $\{\Phi(z_1), \Phi(z_2), \Phi(z_3)\} = \{P_1, P_2, P_3\}$, and this bijection must send z_3 to P_3 if P_3 is distinct from P_1 and P_2 . If P_3 coincides with exactly one of P_1 or P_2 , say P_1 , then $\ell(z)$ has a double zero at z_1 and we must have $z_3 = z_1$; and if $P_1 = P_2 = P_3$ then clearly $z_1 = z_2 = z_3$. Thus in every case we must have $P_3 = \Phi(z_3)$.

We have $P_1 + P_2 + P_3 = 0$, so it suffices to show $z_1 + z_2 + z_3 \in L$, since this implies

$$
\Phi(z_1 + z_2) = \Phi(-z_3) = -\Phi(z_3) = -P_3 = P_1 + P_2 = \Phi(z_1) + \Phi(z_2).
$$

Let \mathcal{F}_{α} be a fundamental region for L whose boundary does not contain any zeros or poles of $\ell(z)$ and replace z_1, z_2, z_3 by equivalent points in \mathcal{F}_{α} if necessary.

Applying Theorem [15.17](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.17) to $g(z) = z$ and $f(z) = \ell(z)$ yields

$$
\frac{1}{2\pi i} \int_{\partial \mathcal{F}_{\alpha}} z \frac{\ell'(z)}{\ell(z)} dz = \sum_{w \in F_{\alpha}} \text{ord}_{w}(\ell) w = z_1 + z_2 + z_3 - 3 \cdot 0 = z_1 + z_2 + z_3,
$$
 (1)

where the boundary $\partial \mathcal{F}_{\alpha}$ of \mathcal{F}_{α} is oriented counter-clockwise.

Let us now evaluate the integral in [\(1\)](#page-1-0); to ease the notation, define $f(z) := \ell'(z)/\ell(z)$, which we note is an elliptic function (hence periodic with respect to L). We then have

$$
\int_{\partial F_{\alpha}} z f(z) dz = \int_{\alpha}^{\alpha + \omega_1} z f(z) dz + \int_{\alpha + \omega_1}^{\alpha + \omega_1 + \omega_2} z f(z) dz + \int_{\alpha + \omega_1 + \omega_2}^{\alpha + \omega_2} z f(z) dz
$$
\n
$$
= \int_{\alpha}^{\alpha + \omega_1} z f(z) dz + \int_{\alpha}^{\alpha + \omega_2} (z + \omega_1) f(z) dz + \int_{\alpha + \omega_1}^{\alpha} z f(z) dz + \int_{\alpha + \omega_2}^{\alpha} z f(z) dz
$$
\n
$$
= \omega_1 \int_{\alpha}^{\alpha + \omega_2} f(z) dz + \omega_2 \int_{\alpha + \omega_1}^{\alpha} f(z) dz.
$$
\n(2)

Note that we have used the periodicity of $f(z)$ to replace $f(z + \omega_i)$ by $f(z)$, and to cancel integrals in opposite directions along lines that are equivalent modulo L.

For any closed (not necessarily simple) curve C and a point $z_0 \notin C$, the quantity

$$
\frac{1}{2\pi i} \int_C \frac{dz}{z - z_0}
$$

is the *winding number* of C about z_0 , and it is an integer (it counts the number of times the curve C "winds around" the point z_0); see [\[1,](#page-7-1) Lem. 4.2.1] or [\[4,](#page-7-2) Lem. B.1.3].

The function $\ell(\alpha + t\omega_2)$ parametrizes a closed curve C_1 from $\ell(\alpha)$ to $\ell(\alpha + \omega_2) = \ell(\alpha)$, as t ranges from 0 to 1. The winding number of C_1 about the point 0 is the integer

$$
c_1 := \frac{1}{2\pi i} \int_{C_1} \frac{dz}{z - 0} = \frac{1}{2\pi i} \int_0^1 \frac{\ell'(\alpha + t\omega_2)}{\ell(\alpha + t\omega_2)} \omega_2 dt = \frac{1}{2\pi i} \int_\alpha^{\alpha + w_2} \frac{\ell'(z)}{\ell(z)} dz = \frac{1}{2\pi i} \int_\alpha^{\alpha + \omega_2} \frac{\ell'(z)}{\ell(z)} dz.
$$
 (3)

Similarly, the function $\ell(\alpha + t\omega_1)$ parameterizes a closed curve C_2 from $\ell(\alpha)$ to $\ell(\alpha + \omega_1)$, and we obtain the integer

$$
c_2 := \frac{1}{2\pi i} \int_{C_2} \frac{dz}{z - 0} = \frac{1}{2\pi i} \int_0^1 \frac{\ell'(\alpha + t\omega_1)}{\ell(\alpha + t\omega_1)} \omega_1 dt = \frac{1}{2\pi i} \int_\alpha^{\alpha + \omega_1} \frac{\ell'(z)}{\ell(z)} dz = \frac{1}{2\pi i} \int_\alpha^{\alpha + \omega_1} \frac{\ell''(z)}{\ell(z)} dz. \tag{4}
$$

Plugging (3) , and (4) into (2) , and applying (1) , we see that

$$
z_1 + z_2 + z_3 = c_1 \omega_1 - c_2 \omega_2 \in L,
$$

as desired.

16.2 The j-invariant of a lattice

Definition 16.2. The *j*-invariant of a lattice L is defined by

$$
j(L) = 1728 \frac{g_2(L)^3}{\Delta(L)} = 1728 \frac{g_2(L)^3}{g_2(L)^3 - 27g_3(L)^2}.
$$

Recall that $\Delta(L) \neq 0$, by Lemma [15.32,](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.32) so $j(L)$ is always defined.

The elliptic curve $E_L: y^2 = 4x^3 - g_2(L)x - g_3(L)$ is isomorphic to the elliptic curve $y^2 = x^3 + Ax + B$, where $g_2(L) = -4A$ and $g_3(L) = -4B$. Thus

$$
j(L) = 1728 \frac{g_2(L)^3}{g_2(L)^3 - 27g_3(L)^2} = 1728 \frac{(-4A)^3}{(-4A)^3 - 27(-4B)^2} = 1728 \frac{4A^3}{4A^3 + 27B^2} = j(E_L).
$$

Thus the j-invariant of a lattice L is the same as the j-invariant of the corresponding elliptic curve E_L . We now define the discriminant of an elliptic curve so that it agrees with the discriminant of the corresponding lattice.

Definition 16.3. The *discriminant* of an elliptic curve $E: y^2 = x^3 + Ax + B$ is

$$
\Delta(E) = -16(4A^3 + 27B^2).
$$

This definition applies to any elliptic curve E/k defined by a short Weierstrass equation, whether $k = \mathbb{C}$ or not, but for the moment we continue to focus on elliptic curves over \mathbb{C} .

Recall from Theorem [14.14](http://math.mit.edu/classes/18.783/2017/LectureNotes14.pdf#theorem.2.14) that elliptic curves E/k and E'/k are isomorphic over \overline{k} if and only if $j(E) = j(E')$. Thus over an algebraically closed field like C, the j-invariant characterizes elliptic curves up to isomorphism. We now define an analogous notion of isomorphism for lattices.

Definition 16.4. Lattices L and L' are said to be *homothetic* if $L' = \lambda L$ for some $\lambda \in \mathbb{C}^{\times}$.

Theorem 16.5. Two lattices L and L' are homothetic if and only if $j(L) = j(L')$.

Proof. Suppose L and L' are homothetic, with $L' = \lambda L$. Then

$$
g_2(L') = 60 \sum_{\omega \in L'^*} \frac{1}{w^4} = 60 \sum_{\omega \in L^*} \frac{1}{(\lambda \omega)^4} = \lambda^{-4} g_2(L).
$$

Similarly, $g_3(L') = \lambda^{-6} g_3 L$, and we have

$$
j(L') = 1728 \frac{(\lambda^{-4} g_2(L))^3}{(\lambda^{-4} g_2(L))^3 - 27(\lambda^{-6} g_3(L))^2} = 1728 \frac{g_2(L)^3}{g_2(L)^3 - 27g_3(L)^2} = j(L).
$$

To show the converse, let us now assume $j(L) = j(L')$. Let E_L and $E_{L'}$ be the corresponding elliptic curves. Then $j(E_L) = j(E_{L'})$. We may write

$$
E_L: y^2 = x^3 + Ax + B,
$$

with $-4A = g_2(L)$ and $-4B = g_3(L)$, and similarly for $E_{L'}$, with $-4A' = g_2(L')$ and $-4B' = g_3(L')$. By Theorem [14.13,](http://math.mit.edu/classes/18.783/2017/LectureNotes14.pdf#theorem.2.13) there is a $\mu \in \mathbb{C}^\times$ such that $A' = \mu^4 A$ and $B' = \mu^6 B$, and if we let $\lambda = 1/\mu$, then $g_2(L') = \lambda^{-4} g_2(L) = g_2(\lambda L)$ and $g_3(L') = \lambda^{-6} g_3(L) = g_3(\lambda L)$, as above. We now show that this implies $L' = \lambda L$.

Recall from Theorem 15.29 that the Weierstrass \wp -function satisfies

$$
\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3.
$$

Differentiating both sides yields

$$
2\wp'(z)\wp''(z) = 12\wp(z)^2\wp'(z) - g_2\wp'(z)
$$

$$
\wp''(z) = 6\wp(z)^2 - \frac{g_2}{2}.
$$
 (5)

By Theorem [15.28,](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.28) the Laurent series for $\varphi(z;L)$ at $z=0$ is

$$
\wp(z) = \frac{1}{z^2} + \sum_{n=1}^{\infty} (2n+1)G_{2n+2}z^{2n} = \frac{1}{z^2} + \sum_{n=1}^{\infty} a_n z^{2n},
$$

where $a_1 = g_2/20$ and $a_2 = g_3/28$.

Comparing coefficients for the z^{2n} term in [\(5\)](#page-3-0), we find that for $n \ge 2$ we have

$$
(2n+2)(2n+1)a_{n+1} = 6\left(\sum_{k=1}^{n-1} a_k a_{n-k} + 2a_{n+1}\right),\,
$$

and therefore

$$
a_{n+1} = \frac{6}{(2n+2)(2n+1) - 12} \sum_{k=1}^{n-1} a_k a_{n-k}.
$$

This allows us to compute a_{n+1} from a_1, \ldots, a_{n-1} , for all $n \geq 2$. It follows that $g_2(L)$ and $g_3(L)$ uniquely determine the function $\wp(z) = \wp(z;L)$ (and therefore the lattice L where $\wp(z)$ has poles), since $\wp(z)$ is uniquely determined by its Laurent series expansion about 0.

Now consider L' and λL , where we have $g_2(L') = g_2(\lambda L)$ and $g_3(L') = g_3(\lambda L)$. It follows that $\wp(z; L') = \wp(z; \lambda L)$ and $L' = \lambda L$, as desired. \Box

Corollary 16.6. Two lattices L and L' are homothetic if and only if the corresponding elliptic curves E_L and $E_{L'}$ are isomorphic.

Thus homethety classes of lattices correspond to isomorphism classes of elliptic curves over C, and both are classified by the j-invariant. Recall from Theorem 14.12 that every complex number is the j-invariant of an elliptic curve E/\mathbb{C} . To prove the Uniformization Theorem we just need to show that the same is true of lattices.

16.3 The j-function

Every lattice $[\omega_1, \omega_2]$ is homothetic to a lattice of the form $[1, \tau]$, with τ in the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : \text{im } z > 0\}$; we may take $\tau = \pm \omega_2/\omega_1$ with the sign chosen so that $\lim \tau > 0$. This leads to the following definition of the *j*-function.

Definition 16.7. The *j*-function $j: \mathbb{H} \to \mathbb{C}$ is defined by $j(\tau) = j([1, \tau])$. We similarly define $g_2(\tau) = g_2([1, \tau]), g_3(\tau) = g_3([1, \tau]),$ and $\Delta(\tau) = \Delta([1, \tau]).$

Note that for any $\tau \in \mathbb{H}$, both $-1/\tau$ and $\tau + 1$ lie in \mathbb{H} (the maps $\tau \mapsto 1/\tau$ and $\tau \mapsto -\tau$ both swap the upper and lower half-planes; their composition preserves them).

Theorem 16.8. The j-function is holomorphic on \mathbb{H} , and satisfies $j(-1/\tau) = j(\tau)$ and $j(\tau+1)=j(\tau).$

Proof. From the definition of $j(\tau) = j([1, \tau])$ we have

$$
j(\tau) = 1728 \frac{g_2(\tau)^3}{\Delta(\tau)} = 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2}.
$$

The series defining

$$
g_2(\tau) = 60 \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{1}{(m+n\tau)^4} \quad \text{and} \quad g_3(\tau) = 140 \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{1}{(m+n\tau)^6}
$$

converge absolutely for any fixed $\tau \in \mathbb{H}$, by Lemma [15.22,](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.22) and they converge uniformly over τ in any compact subset of H. The proof of this last fact is straight-forward but slightly technical; see [\[2,](#page-7-3) Thm. 1.15] for the details. It follows that $g_2(\tau)$ and $g_3(\tau)$ are holomorphic on H, and therefore $\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2$ is also holomorphic on H. Since $\Delta(\tau)$ is nonzero for all $\tau \in \mathbb{H}$, by Lemma [15.32,](http://math.mit.edu/classes/18.783/2017/LectureNotes15.pdf#theorem.2.32) the *j*-function $j(\tau)$ is holomorphic on \mathbb{H} as well.

The lattices $[1, \tau]$ and $[1, -1/\tau] = -\frac{1}{\tau} [1, \tau]$ are homothetic, and the lattices $[1, \tau + 1]$ and [1, τ] are equal; thus $j(-1/\tau) = j(\tau)$ and $j(\tau + 1) = j(\tau)$, by Theorem [16.5.](#page-3-1) \Box

16.4 The modular group

We now consider the *modular group*

$$
\Gamma = SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}.
$$

As proved in Problem Set 8, the group Γ acts on $\mathbb H$ via linear fractional transformations

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = \frac{a\tau + b}{c\tau + d},
$$

and it is generated by the matrices $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. This implies that the j-function is invariant under the action of the modular group; in fact, more is true.

Figure 1: Fundamental domain $\mathcal F$ for $\mathbb H/\Gamma$, with $i=e^{\pi/2}$ and $\rho=e^{2\pi i/3}$.

Lemma 16.9. We have $j(\tau) = j(\tau')$ if and only if $\tau' = \gamma \tau$ for some $\gamma \in \Gamma$.

Proof. We have $j(S\tau) = j(-1/\tau) = j(\tau)$ and $j(T\tau) = j(\tau+1) = j(\tau)$, by Theorem [16.8,](#page-4-0) It follows that if $\tau' = \gamma \tau$ then $j(\tau') = j(\tau)$, since S and T generate Γ .

To prove the converse, let us suppose that $j(\tau) = j(\tau')$. Then by Theorem [16.5,](#page-3-1) the lattices $[1, \tau]$ and $[1, \tau']$ are homothetic So $[1, \tau'] = \lambda[1, \tau]$, for some $\lambda \in \mathbb{C}^{\times}$. There thus exist integers a, b, c , and d such that

$$
\tau' = a\lambda\tau + b\lambda
$$

$$
1 = c\lambda\tau + d\lambda
$$

From the second equation, we see that $\lambda = \frac{1}{c \tau^4}$ $\frac{1}{c\tau+d}$. Substituting this into the first, we have

$$
\tau' = \frac{a\tau + b}{c\tau + d} = \gamma\tau, \quad \text{where } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{Z}^{2 \times 2}
$$

Similarly, using $[1, \tau] = \lambda^{-1}[1, \tau']$, we can write $\tau = \gamma' \tau'$ for some integer matrix γ' . The fact that $\tau' = \gamma \gamma' \tau'$ implies that det $\gamma = \pm 1$ (since γ and γ' are integer matrices). But τ and τ' both lie in H, so we must have det $\gamma = 1$; therefore $\gamma \in \Gamma$ as desired. \Box

Lemma [16.9](#page-5-0) implies that when studying the j-function it suffices to study its behavior on Γ-equivalence classes of H, that is, the orbits of H under the action of Γ. We thus consider the quotient of H modulo Γ -equivalence, which we denote by \mathbb{H}/Γ .^{[2](#page-5-1)} The actions of γ and $-\gamma$ are identical, so taking the quotient by $PSL_2(\mathbb{Z}) = SL_2(\mathbb{Z})/\{\pm 1\}$ yields the same result, but for the sake of clarity we will stick with $\Gamma = SL_2(\mathbb{Z})$.

We now wish to determine a fundamental domain for \mathbb{H}/Γ , a set of unique representatives in H for each Γ-equivalence class. For this purpose we will use the set

$$
\mathcal{F} = \{ \tau \in \mathbb{H} : \text{re}(\tau) \in [-\frac{1}{2}, \frac{1}{2}) \text{ and } |\tau| \ge 1, \text{ such that } |\tau| > 1 \text{ if } \text{re}(\tau) > 0 \}.
$$

Lemma 16.10. The set F is a fundamental domain for \mathbb{H}/Γ .

.

²Some authors write this quotient as $\Gamma\backslash\mathbb{H}$ to indicate that the action is on the left.

Proof. We need to show that for every $\tau \in \mathbb{H}$, there is a unique $\tau' \in \mathcal{F}$ such that $\tau' = \gamma \tau$, for some $\gamma \in \Gamma$. We first prove existence. Let us fix $\tau \in \mathbb{H}$. For any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ we have

$$
\operatorname{im}(\gamma \tau) = \operatorname{im}\left(\frac{a\tau + b}{c\tau + d}\right) = \frac{\operatorname{im}((a\tau + b)(c\bar{\tau} + d))}{|c\tau + d|^2} = \frac{(ad - bc)\operatorname{im}\tau}{|c\tau + d|^2} = \frac{\operatorname{im}\tau}{|c\tau + d|^2} \tag{6}
$$

Let $c\tau + d$ be a shortest vector in the lattice $[1, \tau]$. Then c and d must be relatively prime, and we can pick integers a and b so that $ad - bc = 1$. The matrix $\gamma_0 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then maximizes the value of $\text{im}(\gamma \tau)$ over $\gamma \in \Gamma$. Let us now choose $\gamma = T^k \gamma_0$, where k is chosen so that $\text{re}(\gamma \tau) \in [1/2, 1/2)$, and note that $\text{im}(\gamma \tau) = \text{im}(\gamma_0 \tau)$ remains maximal. We must have $|\gamma \tau| \geq 1$, since otherwise $\text{im}(S\gamma \tau) > \text{im}(\gamma \tau)$, contradicting the maximality of $\text{im}(\gamma \tau)$. Finally, if $\tau' = \gamma \tau \notin \mathcal{F}$, then we must have $|\gamma \tau| = 1$ and $\text{re}(\gamma \tau) > 0$, in which case we replace γ by $S\gamma$ so that $\tau' = \gamma \tau \in \mathcal{F}$.

It remains to show that τ' is unique. This is equivalent to showing that any two Γ equivalent points in F must coincide. So let τ_1 and $\tau_2 = \gamma_1 \tau_1$ be two elements of F, with $\gamma_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and assume im $\tau_1 \leq \text{im } \tau_2$. By [\(6\)](#page-6-0), we must have $|c\tau_1 + d|^2 \leq 1$, thus

$$
1 \geq |c\tau_1 + d|^2 = (c\tau_1 + d)(c\bar{\tau}_1 + d) = c^2 |\tau_1|^2 + d^2 + 2cd \operatorname{re} \tau_1 \geq c^2 |\tau_1|^2 + d^2 - |cd| \geq 1,
$$

where the last inequality follows from $|\tau_1| \geq 1$ and the fact that c and d cannot both be zero (since det $\gamma = 1$). Thus $|c\tau_1 + d| = 1$, which implies im $\tau_2 = \text{im } \tau_1$. We also have $|c|, |d| \leq 1$, and by replacing γ_1 by $-\gamma_1$ if necessary, we may assume that $c \geq 0$. This leaves 3 cases:

- 1. $c = 0$: then $|d| = 1$ and $a = d$. So $\tau_2 = \tau_1 \pm b$, but $|\operatorname{re} \tau_2 \operatorname{re} \tau_1| < 1$, so $\tau_2 = \tau_1$.
- 2. $c = 1, d = 0$: then $b = -1$ and $|\tau_1| = 1$. So τ_1 is on the unit circle and $\tau_2 = a 1/\tau_1$. Either $a = 0$ and $\tau_2 = \tau_1 = i$, or $a = -1$ and $\tau_2 = \tau_1 = \rho$. √

3.
$$
c = 1, |d| = 1
$$
: then $|\tau_1 + d| = 1$, so $\tau_1 = \rho$, and $\text{im } \tau_2 = \text{im } \tau_1 = \sqrt{3}/2$ implies $\tau_2 = \rho$.

In every case we have $\tau_1 = \tau_2$ as desired.

Theorem 16.11. The restriction of the j-function to $\mathcal F$ defines a bijection from $\mathcal F$ to $\mathbb C$.

Proof. Injectivity follows immediately from Lemmas [16.9](#page-5-0) and [16.10.](#page-5-2) It remains to prove surjectivity. We have

$$
g_2(\tau) = 60 \sum_{\substack{n,m \in \mathbb{Z} \\ (m,n) \neq (0,0)}} \frac{1}{(m+n\tau)^4} = 60 \left(2 \sum_{m=1}^{\infty} \frac{1}{m^4} + \sum_{\substack{n,m \in \mathbb{Z} \\ n \neq 0}} \frac{1}{(m+n\tau)^4} \right).
$$

The second sum tends to 0 as im $\tau \to \infty$. Thus we have

$$
\lim_{\text{im}\tau \to \infty} g_2(\tau) = 120 \sum_{m=1}^{\infty} m^{-4} = 120 \zeta(4) = 120 \frac{\pi^4}{90} = \frac{4\pi^4}{3},
$$

where $\zeta(s)$ is the Riemann zeta function. Similarly,

$$
\lim_{\text{im}\tau \to \infty} g_3(\tau) = 280 \zeta(6) = 280 \frac{\pi^6}{945} = \frac{8\pi^6}{27}.
$$

Thus

$$
\lim_{\text{im}\tau \to \infty} \Delta(\tau) = \left(\frac{4}{3}\pi^4\right)^3 - 27\left(\frac{8}{27}\pi^6\right)^2 = 0.
$$

 \Box

(this explains the coefficients 60 and 140 in the definitions of g_2 and g_3 ; they are the smallest pair of integers that ensure this limit is 0). Since $\Delta(\tau)$ is the denominator of $j(\tau)$, the quantity $j(\tau) = g_2(\tau)^3/\Delta(\tau)$ is unbounded as im $\tau \to \infty$.

In particular, the j-function is non-constant, and by Theorem [16.8](#page-4-0) it is holomorphic on $\mathbb H$. The open mapping theorem implies that $j(\mathbb{H})$ is an open subset of C; see [\[4,](#page-7-2) Thm. 3.4.4].

We claim that $j(\mathbb{H})$ is also a closed subset of C. Let $j(\tau_1), j(\tau_2), \ldots$ be an arbitrary convergent sequence in $j(\mathbb{H})$, converging to $w \in \mathbb{C}$. The j-function is Γ-invariant, by Lemma [16.9,](#page-5-0) so we may assume the τ_n all lie in F. The sequence im τ_1 , im τ_2 ,... must be bounded, say be B, since $j(\tau) \to \infty$ as im $\tau \to \infty$, but the sequence $j(\tau)$, $j(\tau_2)$,... converges; it follows that the τ_n all lie in the compact set

$$
\Omega = \{ \tau : \text{re } \tau \in [-1/2, 1/2], \text{im } \tau \in [1/2, B] \}.
$$

There is thus a subsequence of the τ_n that converges to some $\tau \in \Omega \subset \mathbb{H}$. The j-function is holomorphic, hence continuous, so $j(\tau) = w$. It follows that the open set $j(\mathbb{H})$ contains all its limit points and is therefore closed.

The fact that the non-empty set $j(\mathbb{H}) \subseteq \mathbb{C}$ is both open and closed implies that $j(\mathbb{H}) = \mathbb{C}$, since C is connected. It follows that $j(F) = \mathbb{C}$, since every element of H is Γ-equivalent to an element of $\mathcal F$ (Lemma [16.10\)](#page-5-2) and the j-function is Γ-invariant (Lemma [16.9\)](#page-5-0). \Box

Corollary 16.12 (Uniformization Theorem). For every elliptic curve E/\mathbb{C} there exists a lattice L such that $E = E_L$.

Proof. Given E/\mathbb{C} , pick $\tau \in \mathbb{H}$ so that $j(\tau) = j(E)$ and let $L' = [1, \tau]$. We have

$$
j(E) = j(\tau) = j(L') = j(E_{L'}),
$$

so E is isomorphic to $E_{L'}$, by Theorem [14.13,](http://math.mit.edu/classes/18.783/2017/LectureNotes14.pdf#theorem.2.13) where the isomorphism is given by the map $(x, y) \mapsto (\mu^2 x, \mu^3 y)$ for some $\mu \in \mathbb{C}^\times$. If now let $L = \frac{1}{\mu}$ $\frac{1}{\mu}L'$, then $E = E_L$. \Box

References

- [1] L. Ahlfors, Complex analysis, third edition, McGraw Hill, 1979.
- [2] Tom M. Apostol, [Modular functions and Dirichlet series in number theory](http://link.springer.com/book/10.1007/978-1-4612-0999-7), second edition, Springer, 1990.
- [3] J.H. Silverman, [The arithmetic of elliptic curves](https://www.springer.com/gp/book/9780387094939), second edition, Springer 2009.
- [4] E.M. Stein and R. Shakarchi, [Complex analysis](http://site.ebrary.com/lib/mitlibraries/detail.action?docID=10394776), Princeton University Press, 2003.

MIT OpenCourseWare <https://ocw.mit.edu>

18.783 Elliptic Curves Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.