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16 Elliptic curves over C (part 2)

Last time we showed that every lattice L ⊆ C gives rise to an elliptic curve

EL : y2 = 4x3 − g2(L)x− g3(L),

where
g2(L) = 60G4(L) := 60

∑
L∗

1

ω4
, g3(L) = 140G6(L) = 140

∑
L∗

1

ω6
,

with L∗ := L− {0}, and we defined a map

Φ: C/L→ EL(C)

z 7→

{
(℘(z), ℘′(z)) z 6∈ L
0 z ∈ L

where
℘(z) = ℘(z;L) =

1

z2
+
∑
ω∈L∗

(
1

(z − ω)2
− 1

ω2

)
is the Weierstrass ℘-function for the lattice L, and

℘′(z) = −2
∑
ω∈L

1

(z − ω)3
.

In this lecture is to prove two theorems. First we will prove that Φ is an isomorphism
of additive groups; it is also an isomorphism of complex manifolds [3, Cor. 5.1.1], and of
complex Lie groups, but we won’t prove this now.1 Second, we will prove that every elliptic
curve E/C is isomorphic to EL for some lattice L; this is also known as the Uniformization
Theorem.

16.1 The isomorphism from a torus to the corresponding elliptic curve

Theorem 16.1. Let L ⊆ C be a lattice and let EL : y2 = 4x3 − g2(L)x − g3(L) be the
corresponding elliptic curve. The map Φ: C/L→ EL(C) is a group isomorphism.

Proof. We first note that Φ(0) = 0, so Φ preserves the identity, and for all z 6∈ L we have

Φ(−z) = (℘(−z), ℘′(−z)) = (℘(z),−℘′(z)) = −Φ(z),

since ℘ is even and ℘′ is odd, so Φ is compatible with taking inverses.
Let L = [ω1, ω2]. There are three points of order 2 in C/L; if L = [ω1, ω2] these

are ω1/2, ω2/2, and (ω1 + ω2)/2. By Lemma 15.31, ℘′ vanishes these points, hence Φ
maps points of order 2 in C/L to points of order 2 in EL(C), since the latter are the
points with y-coordinate zero. Moreover, Φ is injective on points of order 2, since ℘(z)
maps each point of order 2 in C/L to a distinct root of 4℘(z)3 − g2(L)℘(z) − g3(L), as
shown in the proof of Lemma 15.32. The restriction of Φ to (C/L)[2] defines a bijection of
(C/L)[2]

∼−→ EL[2] ' Z/2Z⊕ Z/2Z with Φ(0) = 0, which must be a group isomorphism.
1This is not difficult to show, but it would distract us from our immediate goal. We will see an explicit

isomorphism of complex manifolds in a few lectures when we study modular curves, and in that case we will
take the time to define precisely what this means and to prove it.
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To show that Φ is surjective, let (x0, y0) ∈ EL(C). The elliptic function f(z) = ℘(z)−x0
has order 2, hence it has two zeros in the fundamental parallelogram F0, by Theorem 15.18.
Neither of these zeros occurs at z = 0, since f has a pole at 0. So let z0 6= 0 be a zero of f(z)
in F0. Then ℘(z0) = x0, which implies Φ(z0) = (x0,±y0) and therefore (x0, y0) = Φ(±z0);
thus Φ is surjective.

We now show that Φ is injective. Let z1, z2 ∈ F0 and suppose that Φ(z1) = Φ(z2).
If 2z1 ∈ L then z1 is a 2-torsion element and we have already shown that Φ restricts
to a bijection on (C/L)[2], so we must have z1 = z2. We now assume 2z1 6∈ L, which
implies ℘′(z1) 6= 0. As argued above, the roots of f(z) = ℘(z) − ℘(z1) in F0 are ±z1,
thus z2 ≡ ±z1 mod L. We also have ℘′(z1) = ℘′(z2), and this forces z2 ≡ z1 mod L, since
℘′(−z1) = −℘′(z1) 6= ℘′(z1) because ℘′(z1) 6= 0.

It remains only to show that Φ(z1 + z2) = Φ(z1) + Φ(z2). So let z1, z2 ∈ F0; we may
assume that z1, z2, z1 + z2 6∈ L since the case where either z1 or z2 lies in L is immediate,
and if z1 + z2 ∈ L then z1 and z2 are inverses modulo L, a case treated above.

The points P1 = Φ(z1) and P2 = Φ(z2) are affine points in EL(C), and the line ` between
them cannot be vertical because P1 and P2 are not inverses (since z1 and z2 are not). So
let y = mx + b be an equation for this line, and let P3 be the third point where the line
intersects the curve EL. Then P1+P2+P3 = 0, by the definition of the group law on EL(C).

Now consider the function `(z) = −℘′(z)+m℘(z)+b. It is an elliptic function of order 3
with a triple pole at 0, so it has three zeros in the fundamental region F0, two of which are
z1 and z2. Let z3 be the third zero in F0. The point Φ(z3) lies on both the line ` and the
elliptic curve EL(C), hence it must lie in {P1, P2, P3}; moreover, we have a bijection from
{z1, z2, z3} to {Φ(z1),Φ(z2),Φ(z3)} = {P1, P2, P3}, and this bijection must send z3 to P3 if
P3 is distinct from P1 and P2. If P3 coincides with exactly one of P1 or P2, say P1, then
`(z) has a double zero at z1 and we must have z3 = z1; and if P1 = P2 = P3 then clearly
z1 = z2 = z3. Thus in every case we must have P3 = Φ(z3).

We have P1 + P2 + P3 = 0, so it suffices to show z1 + z2 + z3 ∈ L, since this implies

Φ(z1 + z2) = Φ(−z3) = −Φ(z3) = −P3 = P1 + P2 = Φ(z1) + Φ(z2).

Let Fα be a fundamental region for L whose boundary does not contain any zeros or
poles of `(z) and replace z1, z2, z3 by equivalent points in Fα if necessary.

Applying Theorem 15.17 to g(z) = z and f(z) = `(z) yields

1

2πi

∫
∂Fα

z
`′(z)

`(z)
dz =

∑
w∈Fα

ordw(`)w = z1 + z2 + z3 − 3 · 0 = z1 + z2 + z3, (1)

where the boundary ∂Fα of Fα is oriented counter-clockwise.
Let us now evaluate the integral in (1); to ease the notation, define f(z) := `′(z)/`(z),

which we note is an elliptic function (hence periodic with respect to L). We then have∫
∂Fα

zf(z) dz =

∫ α+ω1

α
zf(z)dz +

∫ α+ω1+ω2

α+ω1

zf(z)dz +

∫ α+ω2

α+ω1+ω2

zf(z)dz +

∫ α

α+ω2

zf(z)dz

=

∫ α+ω1

α
zf(z)dz +

∫ α+ω2

α
(z + ω1)f(z)dz +

∫ α

α+ω1

(z + ω2)f(z)dz +

∫ α

α+ω2

zf(z)dz

= ω1

∫ α+ω2

α
f(z)dz + ω2

∫ α

α+ω1

f(z)dz. (2)
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Note that we have used the periodicity of f(z) to replace f(z + ωi) by f(z), and to cancel
integrals in opposite directions along lines that are equivalent modulo L.

For any closed (not necessarily simple) curve C and a point z0 6∈ C, the quantity

1

2πi

∫
C

dz

z − z0
is the winding number of C about z0, and it is an integer (it counts the number of times the
curve C “winds around” the point z0); see [1, Lem. 4.2.1] or [4, Lem. B.1.3].

The function `(α + tω2) parametrizes a closed curve C1 from `(α) to `(α + ω2) = `(α),
as t ranges from 0 to 1. The winding number of C1 about the point 0 is the integer

c1 :=
1

2πi

∫
C1

dz

z − 0
=

1

2πi

∫ 1

0

`′(α+ tω2)

`(α+ tω2)
ω2dt =

1

2πi

∫ α+w2

α

`′(z)

`(z)
dz =

1

2πi

∫ α+ω2

α
f(z)dz. (3)

Similarly, the function `(α + tω1) parameterizes a closed curve C2 from `(α) to `(α + ω1),
and we obtain the integer

c2 :=
1

2πi

∫
C2

dz

z − 0
=

1

2πi

∫ 1

0

`′(α+ tω1)

`(α+ tω1)
ω1dt =

1

2πi

∫ α+ω1

α

`′(z)

`(z)
dz =

1

2πi

∫ α+ω1

α
f(z) dz. (4)

Plugging (3), and (4) into (2), and applying (1), we see that

z1 + z2 + z3 = c1ω1 − c2ω2 ∈ L,

as desired.

16.2 The j-invariant of a lattice

Definition 16.2. The j-invariant of a lattice L is defined by

j(L) = 1728
g2(L)3

∆(L)
= 1728

g2(L)3

g2(L)3 − 27g3(L)2
.

Recall that ∆(L) 6= 0, by Lemma 15.32, so j(L) is always defined.
The elliptic curve EL : y2 = 4x3 − g2(L)x − g3(L) is isomorphic to the elliptic curve

y2 = x3 +Ax+B, where g2(L) = −4A and g3(L) = −4B. Thus

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2
= 1728

(−4A)3

(−4A)3 − 27(−4B)2
= 1728

4A3

4A3 + 27B2
= j(EL).

Thus the j-invariant of a lattice L is the same as the j-invariant of the corresponding elliptic
curve EL. We now define the discriminant of an elliptic curve so that it agrees with the
discriminant of the corresponding lattice.

Definition 16.3. The discriminant of an elliptic curve E : y2 = x3 +Ax+B is

∆(E) = −16(4A3 + 27B2).

This definition applies to any elliptic curve E/k defined by a short Weierstrass equation,
whether k = C or not, but for the moment we continue to focus on elliptic curves over C.

Recall from Theorem 14.14 that elliptic curves E/k and E′/k are isomorphic over k̄ if
and only if j(E) = j(E′). Thus over an algebraically closed field like C, the j-invariant
characterizes elliptic curves up to isomorphism. We now define an analogous notion of
isomorphism for lattices.
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Definition 16.4. Lattices L and L′ are said to be homothetic if L′ = λL for some λ ∈ C×.

Theorem 16.5. Two lattices L and L′ are homothetic if and only if j(L) = j(L′).

Proof. Suppose L and L′ are homothetic, with L′ = λL. Then

g2(L
′) = 60

∑
ω∈L′∗

1

w4
= 60

∑
ω∈L∗

1

(λω)4
= λ−4g2(L).

Similarly, g3(L′) = λ−6g3L, and we have

j(L′) = 1728
(λ−4g2(L))3

(λ−4g2(L))3 − 27(λ−6g3(L))2
= 1728

g2(L)3

g2(L)3 − 27g3(L)2
= j(L).

To show the converse, let us now assume j(L) = j(L′). Let EL and EL′ be the corre-
sponding elliptic curves. Then j(EL) = j(EL′). We may write

EL : y2 = x3 +Ax+B,

with −4A = g2(L) and −4B = g3(L), and similarly for EL′ , with −4A′ = g2(L
′) and

−4B′ = g3(L
′). By Theorem 14.13, there is a µ ∈ C× such that A′ = µ4A and B′ = µ6B,

and if we let λ = 1/µ, then g2(L′) = λ−4g2(L) = g2(λL) and g3(L′) = λ−6g3(L) = g3(λL),
as above. We now show that this implies L′ = λL.

Recall from Theorem 15.29 that the Weierstrass ℘-function satisfies

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

Differentiating both sides yields

2℘′(z)℘′′(z) = 12℘(z)2℘′(z)− g2℘′(z)

℘′′(z) = 6℘(z)2 − g2
2
. (5)

By Theorem 15.28, the Laurent series for ℘(z;L) at z = 0 is

℘(z) =
1

z2
+

∞∑
n=1

(2n+ 1)G2n+2z
2n =

1

z2
+

∞∑
n=1

anz
2n,

where a1 = g2/20 and a2 = g3/28.
Comparing coefficients for the z2n term in (5), we find that for n ≥ 2 we have

(2n+ 2)(2n+ 1)an+1 = 6

(
n−1∑
k=1

akan−k + 2an+1

)
,

and therefore

an+1 =
6

(2n+ 2)(2n+ 1)− 12

n−1∑
k=1

akan−k.

This allows us to compute an+1 from a1, . . . , an−1, for all n ≥ 2. It follows that g2(L) and
g3(L) uniquely determine the function ℘(z) = ℘(z;L) (and therefore the lattice L where
℘(z) has poles), since ℘(z) is uniquely determined by its Laurent series expansion about 0.

Now consider L′ and λL, where we have g2(L′) = g2(λL) and g3(L′) = g3(λL). It follows
that ℘(z;L′) = ℘(z;λL) and L′ = λL, as desired.
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Corollary 16.6. Two lattices L and L′ are homothetic if and only if the corresponding
elliptic curves EL and EL′ are isomorphic.

Thus homethety classes of lattices correspond to isomorphism classes of elliptic curves over C,
and both are classified by the j-invariant. Recall from Theorem 14.12 that every complex
number is the j-invariant of an elliptic curve E/C. To prove the Uniformization Theorem
we just need to show that the same is true of lattices.

16.3 The j -function

Every lattice [ω1, ω2] is homothetic to a lattice of the form [1, τ ], with τ in the upper half
plane H = {z ∈ C : im z > 0}; we may take τ = ±ω2/ω1 with the sign chosen so that
im τ > 0. This leads to the following definition of the j-function.

Definition 16.7. The j-function j : H → C is defined by j(τ) = j([1, τ ]). We similarly
define g2(τ) = g2([1, τ ]), g3(τ) = g3([1, τ ]), and ∆(τ) = ∆([1, τ ]).

Note that for any τ ∈ H, both −1/τ and τ + 1 lie in H (the maps τ 7→ 1/τ and τ 7→ −τ
both swap the upper and lower half-planes; their composition preserves them).

Theorem 16.8. The j-function is holomorphic on H, and satisfies j(−1/τ) = j(τ) and
j(τ + 1) = j(τ).

Proof. From the definition of j(τ) = j([1, τ ]) we have

j(τ) = 1728
g2(τ)3

∆(τ)
= 1728

g2(τ)3

g2(τ)3 − 27g3(τ)2
.

The series defining

g2(τ) = 60
∑
m,n∈Z

(m,n)6=(0,0

1

(m+ nτ)4
and g3(τ) = 140

∑
m,n∈Z

(m,n)6=(0,0)

1

(m+ nτ)6

converge absolutely for any fixed τ ∈ H, by Lemma 15.22, and they converge uniformly over
τ in any compact subset of H. The proof of this last fact is straight-forward but slightly
technical; see [2, Thm. 1.15] for the details. It follows that g2(τ) and g3(τ) are holomorphic
on H, and therefore ∆(τ) = g2(τ)3 − 27g3(τ)2 is also holomorphic on H. Since ∆(τ) is
nonzero for all τ ∈ H, by Lemma 15.32, the j-function j(τ) is holomorphic on H as well.

The lattices [1, τ ] and [1,−1/τ ] = −1/τ [1, τ ] are homothetic, and the lattices [1, τ + 1]
and [1, τ ] are equal; thus j(−1/τ) = j(τ) and j(τ + 1) = j(τ), by Theorem 16.5.

16.4 The modular group

We now consider the modular group

Γ = SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

As proved in Problem Set 8, the group Γ acts on H via linear fractional transformations(
a b
c d

)
τ =

aτ + b

cτ + d
,

and it is generated by the matrices S =
(
0 −1
1 0

)
and T = ( 1 1

0 1 ). This implies that the
j-function is invariant under the action of the modular group; in fact, more is true.
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i∞

ρ i

-1 -1/2 0 1/2 1

Figure 1: Fundamental domain F for H/Γ, with i = eπ/2 and ρ = e2πi/3.

Lemma 16.9. We have j(τ) = j(τ ′) if and only if τ ′ = γτ for some γ ∈ Γ.

Proof. We have j(Sτ) = j(−1/τ) = j(τ) and j(Tτ) = j(τ + 1) = j(τ), by Theorem 16.8, It
follows that if τ ′ = γτ then j(τ ′) = j(τ), since S and T generate Γ.

To prove the converse, let us suppose that j(τ) = j(τ ′). Then by Theorem 16.5, the
lattices [1, τ ] and [1, τ ′] are homothetic So [1, τ ′] = λ[1, τ ], for some λ ∈ C×. There thus
exist integers a, b, c, and d such that

τ ′ = aλτ + bλ

1 = cλτ + dλ

From the second equation, we see that λ = 1
cτ+d . Substituting this into the first, we have

τ ′ =
aτ + b

cτ + d
= γτ, where γ =

(
a b
c d

)
∈ Z2×2.

Similarly, using [1, τ ] = λ−1[1, τ ′], we can write τ = γ′τ ′ for some integer matrix γ′. The
fact that τ ′ = γγ′τ ′ implies that det γ = ±1 (since γ and γ′ are integer matrices). But τ
and τ ′ both lie in H, so we must have det γ = 1; therefore γ ∈ Γ as desired.

Lemma 16.9 implies that when studying the j-function it suffices to study its behavior on
Γ-equivalence classes of H, that is, the orbits of H under the action of Γ. We thus consider
the quotient of H modulo Γ-equivalence, which we denote by H/Γ.2 The actions of γ and
−γ are identical, so taking the quotient by PSL2(Z) = SL2(Z)/{±1} yields the same result,
but for the sake of clarity we will stick with Γ = SL2(Z).

We now wish to determine a fundamental domain for H/Γ, a set of unique representatives
in H for each Γ-equivalence class. For this purpose we will use the set

F = {τ ∈ H : re(τ) ∈ [−1/2, 1/2) and |τ | ≥ 1, such that |τ | > 1 if re(τ) > 0}.

Lemma 16.10. The set F is a fundamental domain for H/Γ.

2Some authors write this quotient as Γ\H to indicate that the action is on the left.
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Proof. We need to show that for every τ ∈ H, there is a unique τ ′ ∈ F such that τ ′ = γτ ,
for some γ ∈ Γ. We first prove existence. Let us fix τ ∈ H. For any γ =

(
a b
c d

)
∈ Γ we have

im(γτ) = im

(
aτ + b

cτ + d

)
=

im((aτ + b)(cτ̄ + d))

|cτ + d|2
=

(ad− bc) im τ

|cτ + d|2
=

im τ

|cτ + d|2
(6)

Let cτ + d be a shortest vector in the lattice [1, τ ]. Then c and d must be relatively prime,
and we can pick integers a and b so that ad − bc = 1. The matrix γ0 =

(
a b
c d

)
then

maximizes the value of im(γτ) over γ ∈ Γ. Let us now choose γ = T kγ0, where k is chosen
so that re(γτ) ∈ [1/2, 1/2), and note that im(γτ) = im(γ0τ) remains maximal. We must
have |γτ | ≥ 1, since otherwise im(Sγτ) > im(γτ), contradicting the maximality of im(γτ).
Finally, if τ ′ = γτ 6∈ F , then we must have |γτ | = 1 and re(γτ) > 0, in which case we
replace γ by Sγ so that τ ′ = γτ ∈ F .

It remains to show that τ ′ is unique. This is equivalent to showing that any two Γ-
equivalent points in F must coincide. So let τ1 and τ2 = γ1τ1 be two elements of F , with
γ1 =

(
a b
c d

)
, and assume im τ1 ≤ im τ2. By (6), we must have |cτ1 + d|2 ≤ 1, thus

1 ≥ |cτ1 + d|2 = (cτ1 + d)(cτ̄1 + d) = c2|τ1|2 + d2 + 2cd re τ1 ≥ c2|τ1|2 + d2 − |cd| ≥ 1,

where the last inequality follows from |τ1| ≥ 1 and the fact that c and d cannot both be zero
(since det γ = 1). Thus |cτ1 + d| = 1, which implies im τ2 = im τ1. We also have |c|, |d| ≤ 1,
and by replacing γ1 by −γ1 if necessary, we may assume that c ≥ 0. This leaves 3 cases:

1. c = 0: then |d| = 1 and a = d. So τ2 = τ1 ± b, but | re τ2 − re τ1| < 1, so τ2 = τ1.

2. c = 1, d = 0: then b = −1 and |τ1| = 1. So τ1 is on the unit circle and τ2 = a− 1/τ1.
Either a = 0 and τ2 = τ1 = i, or a = −1 and τ2 = τ1 = ρ.

3. c = 1, |d| = 1: then |τ1 + d| = 1, so τ1 = ρ, and im τ2 = im τ1 =
√

3/2 implies τ2 = ρ.

In every case we have τ1 = τ2 as desired.

Theorem 16.11. The restriction of the j-function to F defines a bijection from F to C.

Proof. Injectivity follows immediately from Lemmas 16.9 and 16.10. It remains to prove
surjectivity. We have

g2(τ) = 60
∑
n,m∈Z

(m,n)6=(0,0)

1

(m+ nτ)4
= 60

2

∞∑
m=1

1

m4
+
∑
n,m∈Z
n6=0

1

(m+ nτ)4

 .

The second sum tends to 0 as im τ →∞. Thus we have

lim
imτ→∞

g2(τ) = 120
∞∑
m=1

m−4 = 120 ζ(4) = 120
π4

90
=

4π4

3
,

where ζ(s) is the Riemann zeta function. Similarly,

lim
imτ→∞

g3(τ) = 280 ζ(6) = 280
π6

945
=

8π6

27
.

Thus

lim
imτ→∞

∆(τ) =

(
4

3
π4
)3

− 27

(
8

27
π6
)2

= 0.
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(this explains the coefficients 60 and 140 in the definitions of g2 and g3; they are the smallest
pair of integers that ensure this limit is 0). Since ∆(τ) is the denominator of j(τ), the
quantity j(τ) = g2(τ)3/∆(τ) is unbounded as im τ →∞.

In particular, the j-function is non-constant, and by Theorem 16.8 it is holomorphic onH.
The open mapping theorem implies that j(H) is an open subset of C; see [4, Thm. 3.4.4].

We claim that j(H) is also a closed subset of C. Let j(τ1), j(τ2), . . . be an arbitrary
convergent sequence in j(H), converging to w ∈ C. The j-function is Γ-invariant, by
Lemma 16.9, so we may assume the τn all lie in F . The sequence im τ1, im τ2, . . . must
be bounded, say be B, since j(τ) → ∞ as im τ → ∞, but the sequence j(τ), j(τ2), . . .
converges; it follows that the τn all lie in the compact set

Ω = {τ : re τ ∈ [−1/2, 1/2], im τ ∈ [1/2, B]}.

There is thus a subsequence of the τn that converges to some τ ∈ Ω ⊂ H. The j-function is
holomorphic, hence continuous, so j(τ) = w. It follows that the open set j(H) contains all
its limit points and is therefore closed.

The fact that the non-empty set j(H) ⊆ C is both open and closed implies that j(H) = C,
since C is connected. It follows that j(F) = C, since every element of H is Γ-equivalent to
an element of F (Lemma 16.10) and the j-function is Γ-invariant (Lemma 16.9).

Corollary 16.12 (Uniformization Theorem). For every elliptic curve E/C there exists a
lattice L such that E = EL.

Proof. Given E/C, pick τ ∈ H so that j(τ) = j(E) and let L′ = [1, τ ]. We have

j(E) = j(τ) = j(L′) = j(EL′),

so E is isomorphic to EL′ , by Theorem 14.13, where the isomorphism is given by the map
(x, y) 7→ (µ2x, µ3y) for some µ ∈ C×. If now let L = 1

µL
′, then E = EL.
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