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15 Elliptic curves over C (part I) 

We now consider elliptic curves over the complex numbers. Our first goal is to prove the Uni-
formization Theorem, which establishes an explicit correspondence between elliptic curves 
over C and tori C/L defined by lattices L in C: 

1. Every lattice L can be used to define an elliptic curve E/C. 
2. Every elliptic curve E/C arises from a lattice L. 

3. If E/C is the elliptic curve corresponding to the lattice L, then there is an isomorphism 

Φ C/L −→ E/C 

that is both analytic (as a mapping of complex manifolds) and algebraic: addition of 
points in E(C) corresponds to addition in C modulo the lattice L. 

To make the correspondence explicit, we need to specify the map Φ from C/L and 
an elliptic curve E/C. This map is parameterized by elliptic functions, specifically the 
Weierstrass ℘-function and its derivative. We will begin by studying general properties of 
elliptic functions in §15.1 and Eisenstein series in §15.3, then specialize to the Weierstrass 
℘-function in §15.4 and construct the map Φ in §15.5. Our presentation generally follows 
that in [2, Ch. 3, §10], but we will fill in some more details for the benefit of those who have 
not taken a course in complex analysis. 

Once we have fleshed out this correspondence, we will have a powerful method to con-
struct elliptic curves with desired properties. The arithmetic properties of lattices over C 
are usually easier to understand than those of the corresponding elliptic curve. In particular, 
by choosing an appropriate lattice, we can construct an elliptic curve with a given endomor-
phism ring. In the case of elliptic curves over C, the endomorphism ring must either be Z 
or an order O in an imaginary quadratic field (a fact we will prove). The order O may be 
viewed as a lattice, and we will see that the elliptic curve corresponding to the torus C/O 
has endomorphism ring O. 

This has important implications for elliptic curves over finite fields. If we choose a suit-
able prime p, we can reduce an elliptic curve E/C with complex multiplication to an elliptic 
curve Ep/Fp with the same endomorphism ring O. The endomorphism ring determines, 
in particular, the trace of the Frobenius endomorphism πEp (up to a sign), which in turn 
determines #Ep(Fp) = p +1 − tr(πEp ). This allows us to construct elliptic curves over finite 
fields that have a prescribed number of rational points, using what is known as the CM 
method. As we will see, this has many practical applications, including cryptography and a 
faster version of elliptic curve primality proving. 

15.1 Elliptic functions 

We begin with the definition of a lattice in the complex plane. 

Definition 15.1. A lattice L = [ω1, ω2] is an additive subgroup ω1Z + ω2Z of C generated 
by complex numbers ω1 and ω2 that are linearly independent over R. 

2 Example 15.2. Let τ be the root of a monic quadratic equation x + bx + c with integer 
coeÿcients and negative discriminant. Then the lattice [1, τ ] is the additive group of an 
imaginary quadratic order O = Z[τ ]. Conversely, if O is an imaginary quadratic order Z[τ ], 
then the additive group of O is the lattice [1, τ ]. 

Lecture by Andrew Sutherland 



If we take the quotient of the complex plane C modulo a lattice L, we get a torus C/L. 
Note that this quotient makes sense not just as a quotient of abelian groups, but also as 
a quotient of topological spaces (where C has its usual Euclidean topology and L has the 
discrete topology); the torus C/L is a compact topological group. 

Definition 15.3. A fundamental parallelogram for L = [ω1, ω2] is any set of the form 

Fα = {α + t1ω1 + t2ω2 : α ∈ C, 0 ≤ t1, t2 < 1}. 

We can identify the points in a fundamental parallelogram with the points of C/L. 

ω1 

ω2 

Figure 1: A lattice [ω1, ω2] with a fundamental parallelogram shaded. 

In order to define the correspondence between complex tori and elliptic curves over C, 
we need to define the notion of an elliptic function on C. As complex analysis is not an 
oÿcial prerequisite for this course, we will take a moment to define the terminology we need 
and recall some elementary results that can be found in standard textbooks such as [1, 3, 5]. 

Definition 15.4. A function f : Ω → C defined on an open neighborhood Ω of a point 
z0 ∈ C is said to be holomorphic at z0 if the derivative 

f(z) − f(z0) 
f 0(z0) := lim 

z→z0 z − z0 

exists.1 We say that f is holomorphic on an open set Ω if it is holomorphic at every z0 ∈ Ω. 
Functions that are holomorphic on all of C are simply said to be holomorphic or entire. 

Examples of holomorphic functions include polynomials and convergent power series. 
Functions that admit a power series expansion with a positive radius of convergence about 
a point z0 are said to be analytic at z0. Remarkably, any function that is holomorphic 
at z0 is also analytic at z0 (see [1, Thm. 5.3] or [5, Thm. 2.4.4]), so the terms analytic and 
holomorphic may be used interchangeably (modern usage favors holomorphic). 

1The limit must take the same value no matter how the complex number z approaches z0; this makes 
di˙erentiability a much stronger condition on a complex function than it is on a real function. 
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Definition 15.5. Let k be a positive integer. A complex function f(z) has a zero of order k 
at z0 if an equation of the form 

f(z) = (z − z0)
k g(z) 

holds in some open neighborhood of z0 in which g(z) is holomorphic and g(z0) 6= 0. We say 
that f(z) has a pole of order k at z0 if the function 1/f(z) has a zero of order k at z0. A 
pole or zero of order 1 is called a simple pole or a simple zero. 

Definition 15.6. A complex function f is meromorphic on an open set Ω if it is holomorphic 
at every point on Ω except for a discrete set of poles.2 

Definition 15.7. For any nonzero complex function f(z) that is meromorphic on an open 
neighborhood of a point z0 ∈ C we define ⎧ ⎪n if f has a zero of order n at z0, ⎨ 

ordz0 (f) := −n if f has a pole of order n at z0, ⎪⎩ 
0 otherwise. 

For any open set Ω ⊆ C, the set of complex functions that are meromorphic on Ω form a 
field C(Ω) that we view as an extension of C (the constant functions). For each fixed z0 ∈ Ω, 
we then have a discrete valuation ordz0 : C(Ω)× → Z, which has the following properties: 

1. ordz0 (fg)) = ordz0 (f) + ordz0 (g) for all f, g ∈ C(Ω)×; 
2. ordz0 (f + g)) ≥ min(ordz0 (f), ordz0 (g)) for all f, g ∈ C(Ω)× . 

We note that the second inequality is in fact an equality whenever ordz0 (f) =6 ordz0 (g). It 
is customary to extend ordz0 to all of C(Ω) by defining ordz0 (0) := ∞, with addition and 
comparisons in Z ∪ {∞} defined in the obvious way. 
Definition 15.8. An elliptic function for a lattice L is a complex function f(z) such that 

1. f is meromorphic on C. 
2. f is periodic with respect to L; this means that f(z + ω) = f(z) for all ω ∈ L. 3 

The fact that an elliptic function is periodic with respect to L means that it can also be 
viewed as a function on C/L. Note that if f is an elliptic function for L then it is also 
an elliptic function for every sub-lattice of L. Sums, di˙erences, products, and quotients 
of elliptic functions for a lattice L are also elliptic functions for L; thus the set of elliptic 
functions for a fixed lattice L form a field that we denote C(L); note that constant functions 
are elliptic functions for every lattice L. 

Definition 15.9. The order of an elliptic function is the number of poles it has in any 
fundamental parallelogram, where each pole is counted with multiplicity equal to its order 
(this is a finite number because the poles in a fundamental parallelogram are a discrete 
subset of its closure, which is compact). 

As a general rule, whenever we count the poles or zeros of a meromorphic function, we 
always count them with multiplicity. 

Remark 15.10. The elliptic functions of order zero are precisely the constant functions. 
This follows from Liouville’s theorem (see Theorem 15.30 below), since a holomorphic elliptic 
function is necessarily bounded (as a continuous function it must achieve a maximum value 
on any compact set, including the closure of a fundamental parallelogram), hence constant. 

2This means that each pole lies in an open subset of Ω that contains no other poles. 
3If L = [ω1, ω2] the function f is also said to be doubly periodic, with periods ω1 and ω2. 
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15.2 Counter integrals and the residue formula 

In order to count poles and zeros of meromorphic functions (and elliptic functions in partic-
ular), we need a few standard tools from complex analysis that we briefly recall here. Those 
who are familiar with this material can skip ahead to Theorem 15.18, which uses Cauchy’s 
argument principle to deduce that an elliptic function has the same number of zeros as poles 
in any fundamental parallelogram. 

Definition 15.11. A smooth curve in C is a continuously di˙erentiable function 

γ : [a, b] → C, 

where [a, b] is a closed interval in R. A piecewise smooth curve γ : [a, b] → C is defined by a 
finite sequence of n smooth curves γi : [ai, bi] → C with a0 = a, ai+1 = bi, and bn = b. We 
will simply use the term curve to refer to a piecewise smooth curve.4 A curve is simple if 
its restriction to the open interval (a, b) is injective, and it is closed if γ(a) = γ(b). 

For simple closed curves γ the Jordan curve theorem (see [1, §4.2 Ex. 3] or [5, Appendix B, 
Thm. 2.1]) gives a well-defined notion of interior and exterior, as well as a notion of positive 
and negative orientation. Loosely speaking, we that that a simple closed curve is positively 
oriented if the interior is on the left as we travel along the curve (if γ is a circle, this means 
counter-clockwise). The notion of orientation can be made completely precise using winding 
numbers, but this is overkill for our purposes here; the simple closed curves we will use 
(circles and parallelograms) all have obvious interiors and orientation. 

Definition 15.12. For a smooth curve γ : [a, b] → C and a complex function f(z) defined 
on an open set containing γ the contour integral of f along γ is defined by Z Z b 

f(z)dz := f(γ(t))γ0(t)dt. 
γ a 

This definition extends to piecewise smooth curves in the obvious way (sum the contour 
integrals on each smooth piece). 

Theorem 15.13. Let Ω be an open set containing a curve γ : [a, b] → C, and let F (z) be a 
holomorphic function on Ω and let f(z) = F 0(z). Then Z 

f(z)dz = F (γ(b)) − F (γ(a)). 
γ 

Proof. If γ is smooth then Z Z b Z b � � 

f(z)dz = F 0(γ(t))γ0(t)dt = 
d
F (γ(t)) dt = F (γ(b)) − F (γ(a)). 

dt γ a a 

The piecewise smooth case follows by taking summing over smooth pieces. 

It is a non-trivial fact that if f(z) is holomorphic on a simply connected open set Ω then 
there exists a holomorphic function5 F (z) for which f(z) = F 0(z) (this is obvious locally, 

4More generally one can define rectifiable curves that are defined by continuous (but not necessarily 
di˙erentiable) functions and have finite length, but we will not need these. 

5The function F (z) is called a primitive of f(z). 
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since in a neighborhood of each z0 ∈ Ω there is a power series expansion of f(z) about z0 

that we can integrate term by term, but we want a single F (z) that works for all z0 ∈ Ω); 
see [1, §4.1 Thm. 4] or [5, §2 Thm. 2.1] for a proof in the case that Ω is a disc. An important 
consequence of this fact is Cauchy’s theorem. 

Theorem 15.14 (Cauchy’s theorem). Let f be a function that is holomorphic on an open 
set containing a closed curve γ and its interior. Then Z 

f(z)dz = 0. 
γ 

Proof. See [5, Appendix B Thm. 2.9]. 

A corollary of this theorem is that the counter integral of a holomorphic function depends 
only on the end points (γ(a), γ(b)) of the curve γ, not the path taken from γ(a) to γ(b). 

We now want to consider counter integrals of functions that are meromorphic but not 
necessarily holomorphic. Note that a function f(z) that is meromorphic on an open set Ω 
has a Laurent series expansion X 

f(z) = an(z − z0)
n 

n≥n0 

about any point z0 ∈ Ω. Here n0 = ordz0 (f) can be any integer (positive or negative), and 
we define an = 0 for all n < n0. P 
Definition 15.15. The residue at z0 of a function f(z) = n≥n0 

an(z − z0)n that is mero-
morphic on an open neighborhood of z0 is 

resz0 (f) := a−1. 

If f is holomorphic at z0 then resz0 (f) = 0. Even if f has a pole at z0 it is still possible to 
have resz0 (f) = 0 when the order of the pole is greater than 1, but if f has a simple pole 
at z0 then resz0 (f) must be nonzero. This definition may look strange at first glance, but it 
is motivated by the following theorem. 

Theorem 15.16 (Residue formula). Let γ be a simple closed curve with positive orientation 
and let f(z) be a function that is meromorphic on an open set containing γ and its interior 
with no poles on γ. Let z1, . . . , zN be the poles of f(z) that lie in the interior of γ. Then Z NX 

f(z)dz = 2πi reszk (f). 
γ k=1 

Proof. Let us first suppose that γ is a circle and that f(z) has a single pole at z1 inside γ. We 
now consider a keyhole contour γ̃ that approximates γ but whose interior does not contain 
z1, as shown below. The function f(z) is holomorphic on an open set that contains γ̃ and R 
its interior, but not z1; thus f(z)dz = 0, by Cauchy’s theorem. γ̃ 
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δ 
l1 

l2 

γ1 
z1 

γ0 

As the distance δ between the horizontal segments ` 1 and ` 2 goes to zero, the sum R R R R 
f(z)dz) + f(z)dz approaches zero while γ0 f(z)dz approaches f(z)dz. In the limit l1 l2 γ 

we have Z Z Z 
f(z)dz = 0 = f(z)dz − f(z)dz, 

γ̃ γ c1 

where c1 is a positively oriented circle with the same radius as the arc γ1 (which is oriented 
in the opposite direction; this explains the minus sign in the equation above). Thus Z Z 

f(z)dz = f(z)dz. 
γ c1 P 

If f(z) = n≥n0 
an(z − z1)n is the Laurent series for f(z) about z1, then ⎛ ⎞ Z Z −1X X 

f(z)dz = ⎝ an(z − z0)
n + an(z − z0)

n⎠ dz. 
c1 c1 n0=n n≥0 

The infinite sum on the right is holomorphic in an open neighborhood of z0 that we can 
assume contains c1, since we can make the radius of c1 as small as we wish, thus the integral R 
of this sum is zero. It thus suÿces to compute the integrals (z − z0)ndz for negative n. c1 

After replacing z−z0 with u and dz by du we can assume c1 is a circle about 0 parameterized 
it by re , where r is the radius of c1. For n < 0 we then have ( Z Z 2π Z 2π 0 if n < −1, 

irn+1 (n+1)itdt = u ndu = (re it)n(ireit)dt = e 
c1 0 0 2πi if n = −1. 

Thus Z Z 
f(z)dz = f(z)dz = 2πia−1 = 2πi resz1 (f) 

γ c1 

as desired. The case where f(z) has N poles inside γ is similar; we now approximate γ with 
a contour γ̃ that has N keyholes, one about each zk, each of which has an inner arc with 
negative (clockwise) orientation. We then obtain Z NX 

f(z)dz = 2πi reszk (f). 
γ k=1 

The same argument applies when γ is not a circle, it just requires approximating γ with a 
more complicated contour γ̃. 
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We can now use the residue formula to derive a generalization of Cauchy’s argument 
principle, which is our main tool for counting the zeros and poles of a meromorphic function. 

Theorem 15.17. Let γ be a simple closed curve with positive orientation, let f(z) be a 
function that is meromorphic on an open set Ω containing γ and its interior Γ, with no 
zeros or poles on γ, and let g(z) be a nonzero function that is holomorphic on Ω. Z X 1 f 0(z) 

g(z) dz = g(w)ordw(f). 
2πi f(z) γ w∈Γ 

When g(z) = 1, the RHS is the di˙erence between the number of zeros and poles that 
f(z) has in Γ (counted with multiplicity), which is the usual argument principle. 

Proof. For any z0 ∈ Γ that is a zero or pole of f(z), we consider the Laurent series expansions X X 
f(z) = an(z − z0)

n , g(z) = bn(z − z0)
n 

n≥n0 n≥0 

where n0 = ordz0 (f) is chosen so that an0 =6 0 and we note that g(z0) = b0. Then X 
f 0(z) = nan(z − z0)

n−1 

n≥n0 

and we have 
f 0(z) f 0(z) 

= n0(z − z0)
−1 + h1(z), g(z) = b0n0(z − z0)

−1 + h2(z), 
f(z) f(z) 

where h1(z) and h2(z) denote functions that are holomorphic on an open neighborhood 
of z0. Thus g(z)f 0(z)/f(z) has a simple pole with residue b0n0 = g(z0)ordz0 (f) at each zero 
or pole z0 of f(z), and no other poles. The theorem follows from the residue formula. 

Applying Theorem 15.17 with g(z) = 1 to an elliptic function f(z) yields the following. 

Theorem 15.18. Let f(z) be a nonzero elliptic function for a lattice L. When counted with 
multiplicity, the number of zeros of f(z) in any fundamental parallelogram Fα for L is equal 
to the number of poles of f(z) in Fα. 

Proof. We first note that by the periodicity of f(z), it suÿces to prove this for any particular 
fundamental parallelogram Fα. The zeros and poles of f(z) are discrete (note that 1/f(z) is 
also a meromorphic function), so we can pick an α for which the boundary ∂Fα of Fα does 
not contain any zeros or poles of f(z). We now consider the contour integral Z 

f 0(z)
dz, 

f(z) ∂Fα 

where the simple closed curve ∂Fα is positively oriented. The fact that f(z) is periodic with 
respect to L implies that f 0(z) is also periodic with respect to L, as is f 0(z)/f(z), and it 
follows that sum of the integral of f 0(z)/f(z)dz along opposite sides of the parallelogram ∂Fα 

is zero, since f 0(z)/f(z) takes on the same values on both sides (because it is periodic) but 
the oriented curve ∂Fα traverses them in opposite directions. We thus have Z 

1 f 0(z)
dz = 0, 

2πi f(z) ∂Fα 

and the theorem then follows from Theorem 15.17. 
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15.3 Eisenstein series 

Before giving some non-trivial examples of elliptic functions, we first define the Eisenstein 
series of a lattice. 

Definition 15.19. Let L be a lattice and let k > 2 be an integer. The weight-k Eisenstein 
series for L is the sum X 1 

Gk(L) = , 
ωk 

ω∈L∗ 

where L∗ = L − {0}. 

Remark 15.20. Gk(L) is a function of the lattice L, so for any fixed lattice, it is a constant. 
If we consider lattices L = [1, τ ] parameterized by a complex number τ in the upper half 
plane h := {z ∈ C : im z > 0}, we can view Gk(L) as a function of τ : X 1 

Gk(τ) := Gk([1, τ ]) = . 
(m + nτ)k 

m,n∈Z 
(m,n)6=(0,0) 

Because it comes from function defined over a lattice, the function Gk(τ) has some very nice 
properties. In particular, we have 

Gk(τ + 1) = Gk(τ) and Gk(−1/τ) = τkGk(τ ) 

for all τ ∈ h. Eisenstein series are the simplest example of modular forms, which we will see 
6 later in the course. 

1 1 Remark 15.21. If k is odd then Gk(L) = 0 for any lattice L, since the terms and 
ωk (−ω)k 

in the sum cancel (note that L is an additive group, so ω ∈ L =⇒ −ω ∈ L, and in the sum 
over L∗ , each ω is distinct from −ω). Thus the only interesting Eisenstein series are those 
of even weight. P 1 Lemma 15.22. For any lattice L, the sum converges absolutely for all k > 2. ω∈L∗ ωk 

Proof. Let δ be the minimum distance between points in L. Consider an annulus A of inner 
radius r and width δ , as depicted in Figure 2. 2 

Any two distinct lattice points in A must be separated by an arc of length at least δ/2 
when measured along the inner rim of A. It follows that A contains at most 4πr/δ lattice 
points. The number of lattice points in the annulus {ω : n ≤ |ω| < n + 1} is therefore 
bounded by cn, where c ≤ (2/δ)(4πr/δ) = 8π/δ2 . We then have 

∞ ∞ X X X 1 cn 1 ≤ = c < ∞, 
k k−1 |ω|k n n 

ω∈L, |ω|≥1 n=1 n=1 P 1 since k > 2. The finite sum ω∈L, 0<|ω|<1 |ω|k is clearly bounded, thus X X X 1 1 1 
= + < ∞, 

|ω|k |ω|k |ω|k 
ω∈L∗ ω∈L ω∈L 

0<|ω|<1 |ω|≥1 

so the sum converges absolutely as claimed. 
6Many authors use Ek to denote Eisenstein series, rather than Gk , but since we are already using the 

(often subscripted) symbol E for elliptic curves, we will stick with Gk . 
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r 

δ 
2 

δ 

Figure 2: Annulus of radius r and width δ/2. 

15.4 The Weierstrass ℘-function 

We now give our first example of a non-constant elliptic function. It may be regarded as 
the elliptic function in the sense that it can be used to construct every other non-constant 
elliptic function, a fact we will prove in the next lecture (or see [4, Thm. VI.3.2]). 

Definition 15.23. The Weierstrass ℘-function of a lattice L is defined by � � X 1 1 1 
℘(z) := ℘(z; L) := + − . 

2 ω2 z 
ω∈L∗ 

(z − ω)2 

When the lattice L is fixed or clear from context we typically just write ℘(z), but we should 
keep in mind that this function depends on L. It is clear from the definition that ℘(z) has 
a pole of order 2 at each point in z ∈ L (including z = 0); we will show that it has no other 
poles and is in fact holomorphic at every point not in L. To do so we rely on the following 
theorem from complex analysis. 

Theorem 15.24. Suppose {fn} is a sequence of functions holomorphic on an open set Ω, 
and that {fn} converges to a function f uniformly on every compact subset of Ω. Then f is 
holomorphic on Ω. 

Proof. See [1, §5 Thm. 1] or [5, §2 Thm. 5.2]. 

Theorem 15.25. For any lattice L, the function ℘(z; L) is holomorphic at every z0 6∈ L. 

18.783 Spring 2019, Lecture #15, Page 9 



���� ���� ���� ����

Proof. For each positive integer n, we define the function � � X 1 1 1 
fn(z) = + − . 

2 z (z − ω)2 ω2 
ω∈L 

0<|ω|<n 

Each fn(z) is clearly holomorphic at any z 6∈ L, since we can di˙erentiate the finite sum 
term by term. We will show that the sequence of functions {fn} converges uniformly to ℘ on 
all compact sets S disjoint from L. Theorem 15.24 will then imply that ℘(z) is holomorphic 
on the open set C − L. 

So let S be a compact subset of C disjoint from L. Then S is bounded and we may fix 
r ∈ R>0 such that |z| ≤ r for all z ∈ S. For all but finitely many ω ∈ L, we have |ω| ≥ 2r. 
By the triangle inequality, |ω − z| + |z| ≥ |ω|, so |ω| ≥ 2r implies the following inequalities: 

1 |ω − z| ≥ |ω| − |z| ≥ |ω|, 
2 

5 |2ω − z| ≤ |2ω| + | − z| ≤ |ω|. 
2 

Thus the bound 
5 1 1 z(2ω − z) r |ω| 10r 2 − = ≤ = 

(z − ω)2 ω2 ω2(z − ω)2 |ω|2(1 |ω|)2 |ω|3 
2 

holds for all z ∈ S. The series 
P 

ω∈L∗ |ω 
1 
|3 converges, by Lemma 15.22, so � � X 1 1 − 
(z − ω)2 ω2 

ω∈L∗ 

converges absolutely for all z ∈ S, and the rate of convergence can be bounded in terms of r 
and L, independent of z. It follows that {fn} converges uniformly to ℘ on S, since for every 
� > 0 there is an N such that for all n ≥ N we have |℘(z) − fn(z)| < � for all z ∈ S. 

With Theorem 15.25 in hand, we can now summarize the key properties of ℘(z). 

Theorem 15.26. For any lattice L, the function ℘(z) = ℘(z; L) and its derivative X 
℘0(z) = −2 1 

(z − ω)3 
ω∈L 

satisfy the following: 

(i) ℘(z) is a meromorphic even function whose poles consist of double poles at each z ∈ L. 

(ii) ℘0(z) is a meromorphic odd function whose poles consist of triple poles at each z ∈ L. 

Proof. We first note that the sequence of functions {fn} defined in the proof of Theo-
rem 15.25 consist of finite partial sums that converge uniformly to ℘(z), and we can therefore 
di˙erentiate ℘(z) term by term to obtain ℘0(z) (note that the sum for ℘0(z) includes ω = 0 
which comes from di˙erentiating the leading 1/z2 term in ℘(z)). It is clear that ℘(z) has a 
double pole at each lattice point, and (i) then follows from Theorem 15.25 and the fact that 
℘(z) = ℘(−z). Part (ii) is clear from the formula for ℘0(z) and the fact that the derivative 
of a function that is holomorphic on an open neighborhood of a point z is also holomorphic 
on that neighborhood (so ℘0(z) is meromorphic at all z 6∈ L since ℘(z) is). 
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Corollary 15.27. Let L be a lattice. The function ℘(z) = ℘(z; L) is an elliptic function of 
order 2 for L, and its derivative ℘0(z) is an elliptic function of order 3 for L. 

Proof. We’ve just shown that ℘(z) and ℘0(z) are meromorphic. Every fundamental region 
of L contains exactly one lattice point, so ℘(z) has two poles in each fundamental region, 
while ℘0(z) has three. It is clear from the formula for ℘0(z) that ℘0(z) is periodic with respect 
to L, we just need to show that ℘(z) is periodic. Let L = [ω1, ω2]. It suÿces to show that 

℘(z + ωi) = ℘(z), for i = 1, 2. 

Now ℘0(z) is periodic, so ℘0(z + ωi) = ℘0(z). Integrating then gives 

℘(z + ωi) − ℘(z) = ci. 

for some constant ci and for all z 6∈ L. To find ci, plug in z = −ωi/2. We have 

℘(ωi/2) − ℘(−ωi/2) = ci, 

but ℘(z) is an even function, so ci = 0 and ℘(z + ωi) = ℘(z) as desired. 

The study of elliptic functions dates back to Gauss, who discovered them as solutions R p 
to elliptic integrals f(z)dz, where f(z) is a cubic or quartic polynomial (they were later 
rediscovered by Abel and Jacobi). We will show that ℘(z) satisfies a di˙erential equation 
of the form ℘0(z)2 = f(℘(z)), where f(x) is a cubic polynomial over C. Notice that if one 
views (℘(z), ℘0(z)) as a pair (x, y), this is exactly the equation of an elliptic curve! This 
explains our interest in ℘(z). 

To derive the di˙erential equation satisfied by the Weierstrass ℘-function, we first need 
to compute its Laurent series. 

Theorem 15.28. Let L be a lattice. The Laurent series expansion for ℘(z) = ℘(z; L) at 
z = 0 is given by 

∞X 1 2n ℘(z) = 
2 + (2n + 1)G2n+2(L)z , 

z 
n=1 

where Gk(L) denotes the Eisenstein series of weight k. 

Proof. For all |x| < 1 we have the power series expansion 

∞X 
2 n 1 

= (1 + x + x + · · · )2 = (n + 1)x . 
(1 − x)2 

n=0 

z Applying this to x = with |x| < 1 (which we can assume holds for all ω ∈ L∗ provided we ω 
keep z close to 0), � � ∞ ∞ n X X 1 1 1 1 1 (n + 1)z n − = − 1 = (n + 1)x = . 

(z − ω)2 ω2 ω2 (1 − x)2 ω2 ωn+2 
n=1 n=1 
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Summing over ω and changing the order of summation (via absolute convergence) gives � � X 1 1 1 
℘(z) = + − 

z2 
ω∈L∗ 

(z − ω)2 ω2 

∞ n X X1 (n + 1)z 
= + 

2 ωn+2 z 
ω∈L∗ n=1 
∞X X 1 1 n = + (n + 1)z 

2 ωn+2 z 
n=1 ω∈L∗ 

∞X 1 n = 
2 + (n + 1)Gn+2(L)z 

z 
n=1 
∞X 1 2n = 

2 + (2n + 1)G2n+2(L)z . 
z 

n=1 

In the last step we used the fact that ℘(z) is an even function, so the coeÿcients of the odd 
terms are 0 and we can sum over 2n rather than n. 

15.5 Lattices define elliptic curves 

The key link between ℘(z) and elliptic curves is given by the following di˙erential equation. 

Theorem 15.29. Let L be a lattice. The function ℘(z) = ℘(z; L) satisfies the di˙erential 
equation 

℘0(z)2 = 4℘(z)3 − g2(L)℘(z) − g3(L), (1) 

where g2(L) = 60G4(L) and g3(L) = 140G6(L). 

Proof. We may apply Theorem 15.28 to compute the first few terms of the Laurent series 
expansions for ℘(z) and ℘0(z) at z0 = 0: 

4 ℘(z) = 
1
+ 3G4(L)z 2 + 5G6(L)z + · · · 

2 z 
3 ℘0(z) = − 

2 
+ 6G4(L)z + 20G6(L)z + · · · 

3 z 
1 9G4(L) 

℘(z)3 = + + 15G6(L) + · · · 
6 2 z z 
4 24G4(L) 

℘0(z)2 = − − 80G6(L) + · · · 
6 2 z z 

Now let 
f(z) = ℘0(z)2 − 4℘(z)3 + 60G4(L)℘(z) + 140G6(L). 

We can compute the Laurent series expansion for f(z) at z0 = 0 as a linear combination of 
those computed above, and one finds that the non-positive powers of z all cancel; we thus 
have f(0) = 0. 

Because ℘ and ℘0 have poles only at points of L, the function f(z) is holomorphic on the 
fundamental parallelogram F0. The function f(z) is periodic with respect to L, since ℘(z) 
and ℘0(z), thus it is holomorphic on the entire complex plane. Note that f(z) is bounded 
because all values attained by f are attained on the closure of a fundamental parallelogram, 
which is a compact set. It then follows from Liouville’s Theorem (see Theorem 15.30 below) 
that f is a constant function, hence identically zero. 
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Theorem 15.30 (Liouville’s Theorem). The only functions that are bounded and holomor-
phic on C are constant functions. 

Proof. See [1, p. 122] or [5, §2 Cor. 4.5]. 

With y = ℘0(z) and x = ℘(z), the di˙erential equation in (1) corresponds to the curve 

2 y = 4x 3 − g2(L)x − g3(L). (2) 

This curve can easily be put into Weierstrass form with g2(L) = −4A and g3(L) = −4B, 
thus every lattice L gives us an equation we can use to define an elliptic curve over C, 
provided we can show that the projective curve defined by (2) is not singular. If the partial 

2 3 derivatives of zy = 4x3 − g2(L)xz2 − g3(L)z simultaneously vanish at some point, then 
there must be a projective solution to the system of equations 

2 2 12x 2 − g2(L)z = 0, 2zy = 0, y 2 + 2g2(L)xz + 3g3(L)z = 0. 

We cannot have z = 0, since this would force x = y = 0, thus we assume z = 1. The second 
equation then implies y = 0 and the third equation forces x = −3g3(L)/(2g2(L)). Plugging 
these values into the first equation yields g2(L)3 − 27g3(L)2 = 0. Thus so long as 

Δ(L) := g2(L)
3 − 27g3(L)

2 

is nonzero, equation (2) defines an elliptic curve over C. 
We will prove that Δ(L) 6= 0, for every lattice L. For this we need the following lemma. 

Lemma 15.31. A point z 6∈ L is a zero of ℘0(z; L) if and only if 2z ∈ L. 

Proof. Suppose 2z ∈ L for some z 6∈ L. Then 

℘0(z) = ℘0(z − 2z) = ℘0(−z) = −℘0(z) = 0, 

where we have used the fact that ℘0(z) is both periodic with respect to L and an odd 
function. If L = [ω1, ω2], then 

ω1 ω2 ω1 + ω2 
, , 

2 2 2 

are the only points z ∈ F0 that are not in L and also satisfy 2z ∈ L. Since ℘0(z) is an 
elliptic function of order 3, it has only these three zeros in F0, by Theorem 15.18. Thus for 
any z 6∈ L we have ℘0(z) = 0 if only if 2z ∈ L. 

This lemma is analogous to the fact that the points of order 2 on the elliptic curve (2) 
are precisely the points (x, y) = (℘(z), ℘0(z)) with y = ℘0(z) = 0. The requirement that 
z 6∈ L simply means that (x, y) is not the point at infinity. 

Lemma 15.32. For any lattice L, the discriminant Δ(L) is nonzero. 

Proof. Let L = [ω1, ω2] and put 

ω1 ω2 ω1 + ω2 
r1 := , r2 := , r3 := . 

2 2 2 
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Then ri 6∈ L and 2ri ∈ L for i = 1, 2, 3. So ℘0(ri) = 0 by Lemma 15.31. From (2) we see 
that ℘(r1), ℘(r2), and ℘(r3) are the zeros of the cubic f(x) = 4x3 − g2(L)x − g3(L). Now 
the discriminant Δ(f) of f(x) is equal to 16Δ(L), thus Y 1 

Δ(L) = (℘(ri) − ℘(rj ))
2 , 

16 
i<j 

and it suÿces to show that the ℘(ri) are distinct. 
Let gi(z) = ℘(z) − ℘(ri). Then gi(z) is an elliptic function of order 2 (its poles are 

the poles of ℘(z)), so it has exactly 2 zeros, by Theorem 15.18. Now ri is a double zero 
0 because g (z) = ℘0(ri) = 0, by Lemma 15.31. Thus gi(z) has no other zeros, and therefore i 

℘(rj ) =6 ℘(ri) for i =6 j. 

We have shown that every lattice L in C gives rise to an elliptic curve E/C defined by 
2 y = 4x3 − g2(L)x − g3(L), and that the map 

Φ: C/L −→ E(C) 
z −→ (℘(z), ℘0(z)) 

sends points on C/L to points on the elliptic curve. This is the first step in proving the 
Uniformization Theorem. In the next lecture we will show that Φ is a group isomorphism 
and that every elliptic curve E/C arises from some lattice L. 
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