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13 Endomorphism algebras 

The key to improving the eÿciency of elliptic curve primality proving (and many other 
algorithms) is the ability to directly construct an elliptic curve E/Fq with a specified number 
of rational points, rather than generating curves at random until a suitable curve is found. 
To do this we need to develop the theory of complex multiplication. As a first step in this 
direction we introduce the endomorphism algebra of an elliptic curve and classify the possible 
endomorphism algebras of an elliptic curve. 

Recall from Lecture 7 that the endomorphism ring End(E) of an elliptic curve E/k 
consists of the isogenies from E to itself, together with the zero morphism; addition is 
defined point-wise and multiplication is composition. The ring End(E) is not necessarily 
commutative, but its center (elements that commute with every other element of the ring) 
always contains the multiplication-by-n maps [n]; there form a subring of End(E) isomorphic 
to Z. We will identify this subring with Z, and may write n rather than [n] without risk of 
confusion: note that nφ = φ + · · · + φ is the same as [n] ◦ φ. We thus have Z ⊆ End(E), but 
this inclusion is not necessarily an equality. The following facts about End(E) were proved 
in Lecture 7: 

• End(E) has no zero divisors; 

• deg : End(E) → Z≥0 defined by α 7→ deg α is multiplicative (with deg 0 := 0); 

• deg n = n2 for all n ∈ Z ⊆ End(E); 

α = αα = deg α = deg ˆ • each α ∈ End(E) has a dual α̂ ∈ End(E) with αˆ ˆ α, and α̂ = α; 

• n̂ = n for all n ∈ Z ⊆ End(E); 

• α\+ β = α̂+ β̂  and c = ˆα for all α, β ∈ End(E); αβ β ̂  

• tr α := α + α̂ satisfies tr α = tr α̂ and tr(α + β) = tr α + tr β; 

• tr α = deg α + 1 − deg(α − 1) ∈ Z for all α ∈ End(E); 

• α and α̂ are the roots of the characteristic equation x2 − (tr α)x + deg α ∈ Z[x]. 

These facts imply that the map ϕ 7→ ϕ̂ is an involution of End(E). 

Definition 13.1. An anti-homomorphism ϕ : R → S of rings is a homomorphism of their 
additive groups that satisfies ϕ(1R) = 1S and ϕ(αβ) = ϕ(β)ϕ(α) for all α, β ∈ R. An 
involution (or anti-involution) is an anti-homomorphism ϕ : R → R that is its own inverse: 
ϕ ◦ ϕ is the identity map. 

An involution of a commutative ring is an automorphism of order 2. 

13.1 The endomorphism algebra of an elliptic curve 

The additive group of End(E), like all abelian groups, is a Z-module. Recall that if R is a 
commutative ring, an R-module M is an (additively written) abelian group that admits a 
scalar multiplication by R compatible with its structure as an abelian group. This means 
that for all α, β ∈ M and r, s ∈ R we have 

(r + s)α = rα + sα, rα + rβ = r(α + β), r(sα) = (rs)α, 1α = α 

(one can check these conditions also imply 0α = 0 and (−1)α = −α). 
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The ring End(E) is not only a Z-module. Like all rings, it has a multiplication that is 
compatible with its structure as a Z-module, making it a Z-algebra. For any commutative 
ring R, an (associative unital) R-algebra A is a (not necessarily commutative) ring equipped 
with a ring homomorphism R → A that maps R into the center of A. 1 In our situation 
the map Z → End(E) sending n to [n] is injective and we simply view Z as a subring of 
End(E) that necessarily lies in its center. When we have a ring A with an involution that 
is also an R-algebra, we typically require the involution to fix R, so that we may view it as 
an R-algebra involution; this holds for the involution α 7→ α̂ on our Z-algebra End(E). 

We now want to “upgrade” our Z-algebra End(E) to a Q-algebra (in other words, a Q-
vector space with a multiplication that is compatible with its structure as a vector space), 
To do this we take the tensor product of End(E) with Q. 

Definition 13.2. The endomorphism algebra of E is End0(E) := End(E) ⊗Z Q. 

Recall that for a commutative ring R, the tensor product A ⊗R B of two R-modules A 
and B can be defined as the R-module generated by the formal symbols α ⊗ β with α ∈ A 
and β ∈ B, subject to the relations 

(α1 +α2)⊗β = α1 ⊗β+α2 ⊗β, α⊗(β1 +β2) = α⊗β1 +α⊗β2, rα⊗β = α⊗rβ = r(α⊗β), 

for α1, α2 ∈ A, β1, β2 ∈ B and r ∈ R. The elements of A ⊗R B are finite sums of pure 
tensors α ⊗R β. We can use the relations above to simplify these sums. In general not every 
element of A ⊗R B can be reduced to a pure tensor, but in our situation this is in fact the 
case (see Lemma 13.5 below). The tensor product behaves quite di˙erently than the direct 
product (for example, A × 0 = A but A ⊗R 0 = 0), but we do have a canonical R-bilinear 
map ϕ : A × B → A ⊗R B defined by (α, β) 7→ α ⊗ β. This map is universal in the sense that 
every R-bilinear map of R-modules ψ : A ×B → C can be written uniquely as a composition 

ϕ 
A × B ← → A ⊗R B 

C 

← 

→ ψ 

←
 

→
 

∃! 

This universal property can also be taken as a definition of the tensor product (without 
guaranteeing its existence). 

When A and B are not only R-modules but R-algebras, we give the tensor product 
A ⊗R B the structure of an R-algebra by defining multiplication of purse tensors 

(α1 ⊗ β1)(α2 ⊗ β2) = α1α2 ⊗ β1β2 P P 
and extending linearly; this means we can compute ( i αi ⊗ βi)( j αj ⊗ βj) using the 
distributive law. The multiplicative identity is necessarily 1A ⊗ 1B . The R-algebras A 
and B can be canonically mapped to A ⊗R B via α 7→ α ⊗ 1B and β 7→ 1A ⊗ β. These maps 
need not be injective; indeed, A ⊗R B may be the zero ring even when A and B are not. 

Example 13.3. The tensor product Z/2Z ⊗Z Z/3Z is the zero ring. To see why, note that 
for any pure tensor α ⊗ β we have 

α ⊗ β = a ⊗−2β = 2α ⊗−β = 0 ⊗−β = 0 ⊗ 0 = 0. 
1Here we consider only associative unital algebras; one can define a more general notion of an R-algebra 

that is not necessarily a ring (Lie algebras, for example). 
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Example 13.4. If V is a k-vector space with basis (v1, . . . , vn) and L/k is any field extension, 
then V ⊗k L is an L-vector space with basis (v1 ⊗ 1, . . . , vn ⊗ 1); multiplication by scalars 
in L takes place on the RHS of each pure tensor. This implies that if V is a k-algebra of 
dimension n, then V ⊗k L is an L-algebra of dimension n. 

Lemma 13.5. Let R be an integral domain with fraction field B, and let A be an R-algebra. 
Every element of A ⊗R B can be written as a pure tensor α ⊗ β. 

Proof. It suÿces to show that α1 ⊗ β1 + α2 ⊗ β2 can be written as α3 ⊗ β3. Let β1 = r1/s2 

and β2 = r2/s2 with r1, r2, s1, s2 ∈ R. Then 
r1 r2 

α1 ⊗ β1 + α2 ⊗ β2 = α1 ⊗ + α2 ⊗ 
s1 s2 
r1s2 r2s1 

= α1 ⊗ + α2 ⊗ 
s1s2 s1s2 

1 1 
= (r1s2α1) ⊗ + (r2s1α2) ⊗ 

s1s2 s1s2 
1 

= (r1s2α1 + r2s1α2) ⊗ , 
s1s2 

so we may take α3 = r1s2α1 + r2s1α2 and β3 = 1/(s1s2). 

The lemma implies that every element of End0(E) = End(E) ⊗Z Q can be written as 
φ ⊗ r for some φ ∈ End(E) and r ∈ Q; to simplify notation we will simply use rφ to denote 

0 φ ⊗ r. Note that this representation is not unique (if r = r/n and φ0 = nφ then r0φ = rφ). 
The only di˙erence between rφ, with r ∈ Q, and nφ, with n ∈ Z, is that the former is not 
necessarily an endomorphism, but if we multiply rα by the denominator of r we will get an 
element of End0(E) that corresponds to an endomorphism. 

The canonical homomorphisms End(E) → End0(E) and Q → End0(E) are injective, 
because End(E) and Q are torsion-free Z-algebras, so we may identify both End(E) and Q 
with corresponding subrings of End0(E) that intersect in Z. Every element of End0(E) has 
an integer multiple that lies in the subring End(E), and the subring Q lies in the center 
of End0(E), which makes End0(E) a Q-algebra. We also note that End0(E) has no zero 

0 divisors: if (rφ)(r0φ0) = rr0φφ0 = 0 then either rr = 0 or φφ0 = 0, so one of r, r0, φ, φ0 is zero 
(since Q and End(E) have no zero divisors); this implies that one of rφ or r0φ0 is zero. 

13.2 The Rosati involution and the reduced norm and trace 

We now extend the involution α 7→ α̂ on End(E) to End0(E) by defining c = α for all rα r ̂  
r ∈ Q. This implies that r̂ = r for all r ∈ Q (take α = 1), and therefore α̂ = α holds for all 
α ∈ End0(E). We also have αβc = α and \ = α̂+ ˆ β̂ ˆ α + β β for all α, β ∈ End0(E), since these 
hold for elements of End(E) and scalars are fixed by α 7→ α̂ and commute. Thus the map 
α 7→ α̂ is an involution of the Q-algebra End0(E), and it is known as the Rosati involution. 

The Rosati involution allows us to extend the notions of degree and trace on End(E) to 
a norm and a trace defined on all of End0(E). 

Definition 13.6. Let α ∈ End0(E). The (reduced) norm of α is Nα = αα̂ and the (reduced) 
2 trace of α is Tα = α + α̂. 

2Nα and Tα are often called the reduced norm and reduced trace and may be denoted Nrd α and Trd α 
to distinguish them from the more general notion of norm and trace in a Q-algebra, which involve taking 
the determinant or trace of the Q-linear transformation β 7→ αβ (this coincides with the reduced norm and 
trace when dimQ End

0(E) = 2, but not otherwise). We shall only consider the reduced norm and trace. 
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We now show that Nα and Tα lie in Q, and prove some other facts we will need. 

Lemma 13.7. For all α ∈ End0(E) we have Nα ∈ Q≥0, with Nα = 0 if and only if α = 0. 
We also have Nα̂ = Nα and N(αβ) = NαNβ for all α, β ∈ End0(E). 

Proof. Write α = rφ, with r ∈ Q, φ ∈ End(E). Then Nα = αα̂ = r2 deg φ ≥ 0. If r or φ is 
zero then α = 0 and Nα = 0, and otherwise Nα > 0. We have αNα̂ = αα̂α = (Nα)α = αNα, 
so Nα̂ = Nα when α 6= 0 (since End0(E) has no zero divisors), and Nα̂ = Nα = 0 when 
α = 0. Finally, for any α, β ∈ End0(E) we have 

N(αβ) = αβαβc = αββ̂α̂ = α(Nβ)α̂ = αα̂Nβ = NαNβ. 

Corollary 13.8. Every nonzero α ∈ End0(E) has a multiplicative inverse α−1 . 

Proof. If we put β = α/Nα, then αβ α/Nα = 1, so β = α−1 . ˆ = Nα/Nα = 1 and βα = Nˆ 

The corollary implies that End0(E) is a division ring ; it satisfies all the field axioms 
except that multiplication need not be commutative. This means that End0(E) is a field if 
and only if it is commutative. 

Lemma 13.9. For all α ∈ End0(E) we have Tα̂ = Tα ∈ Q. For any r ∈ Q, α, β ∈ End0(E) 
we have T(α + β) = Tα +Tβ, and T(rα) = rTα. 

Proof. We first note that Tα̂ = α̂+ α̂ = α̂+ α = α + α̂ = Tα, and 

Tα = α + α̂ = 1 + αα̂ − (1 − α)(1 − α̂) = 1 + Nα − N(1 − α) ∈ Q. 

We also have 

T(α + β) = α + β + \ = α + β + ˆ β α + β + ˆ = Tα +Tβ. α + β α + ˆ = α + ˆ β 

and 
T(rα) = rα + c αˆ αr = rα + rα̂ = r(α + α̂) = rTα, rα = rα + ˆr = rα + ˆ 

since Q lies in the center of End0(E) and is fixed by the Rosati involution. 

Lemma 13.10. Let α ∈ End0(E). Then α and α̂ are roots of the polynomial 

x 2 − (Tα)x +Nα ∈ Q[x]. 

Proof. We have 

0 = (α − α)(α − α̂) = α2 − α(α + α̂) + αα̂ = α2 − (Tα)α +Nα, 

and similarly for α̂, since Tα̂ = Tα and Nα̂ = Nα. 

Corollary 13.11. For any nonzero α ∈ End0(E), if Tα = 0 then α2 = −Nα < 0. An 
element α ∈ End0(E) is fixed by the Rosati involution if and only if α ∈ Q. 

Proof. The first statement follows immediately from α2 − (Tα)α +Nα = 0. For the second, 
we have r̂ = r for r ∈ Q, and if α̂ = α then Tα = α + α̂ = 2α, so α = (Tα)/2 ∈ Q. 
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13.3 Quaternion algebras 

Before we can give a complete classification of the possible endomorphism algebras End0(E) 
that can arise, we need to introduce quaternion algebras. 

Definition 13.12. A quaternion algebra over a field k is a k-algebra that has a k-basis of 
the form {1, α, β, αβ}, with α2, β2 ∈ k× and αβ = −βα. 

Let H be a quaternion algebra over a field k. Then H is a 4-dimensional k-vector space 
with basis {1, α, β, αβ}, and we may distinguish the subspace k ⊆ H spanned by 1, which 
does not depend on the choice of α and β. The complementary subspace H0 (spanned by 
α, β, αβ) is the space of pure quaternions. Every γ ∈ H has a unique decomposition of the 
form a + γ0 with a ∈ k and γ0 ∈ H0. The element γ̂ := a − γ0 is the conjugate of γ. If γ is 
a pure quaternion then γ̂ = −γ, and for γ ∈ k we have γ̂ = γ. 

The map γ 7→ γ̂ is an involution of the k-algebra H, and we define the (reduced) trace 
Tγ := γ + γ̂ and (reduced) norm Nγ := γγ̂, both of which lie in k. It is easy to check that 
Tγ = Tγ̂ and Nγ = Nγ̂, the trace is additive, the norm is multiplicative, and for a ∈ k we 
have Ta = 2a and Na = a2 . 

Lemma 13.13. A quaternion algebra is a division ring if and only if Nγ = 0 implies γ = 0. 

Proof. Let γ be a nonzero element of a quaternion algebra H. Then γ̂ 6= 0 (since 0̂ = 0 =6 γ) 
If H is a division ring, then x has an inverse γ−1 and γ−1Nγ = γ−1γγ̂ = γ̂ =6 0, so Nγ =6 0. 
Conversely, if Nγ =6 0 then γ(γ̂/Nγ) = 1 and (γ̂/Nγ)γ = 1, so γ has an inverse ̂γ/Nγ, which 
implies that H is a division ring. 

Example 13.14. The most well known example of a quaternion algebra is the ring of 
Hamilton quaternions (or Hamiltonians) H: the R-algebra with basis {1, i, j, ij}, where 
i2 = j2 = −1 and ij = −ji (the product ij is often denoted k). This was the first example 
of a noncommutative division ring and has many applications in mathematics and physics. 

Remark 13.15. The elements i, j ∈ J have the same characteristic polynomial x2 + 1, but 
they are not conjugate; x2 + 1 has four distinct solutions in H. 

Example 13.16. Let H = M2(k) be the ring of 2 × 2 matrices over a field k with � � � � � � � � 
1 0 0 1 0 1 0 −1 

α := , β := , αβ = , βα = , 
0 −1 1 0 −1 0 1 0 

then α2 = β2 = 1 ∈ k× and αβ = −βα, so H is a quaternion algebra, but it is not a division 
ring, by Lemma 13.13, since N(1 + α) = (1+ α)(1 − α) = 0 but 1+ α 6= 0. Every quaternion 
algebra that is not a division ring arises in this way. Such quaternion algebras are said to 
be split, while those that are division rings are called non-split. 

13.4 Classification theorem for endomorphism algebras 

Theorem 13.17. Let E/k be an elliptic curve. Then End0(E) is isomorphic to one of: 

(i) the field of rational numbers Q; 

(ii) an imaginary quadratic field Q(α) with α2 < 0; 

(iii) a quaternion algebra Q(α, β) with α2, β2 < 0. 
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Proof. We always have Q ⊆ End0(E), and if Q = End0(E) we are in case (i). 
Otherwise, let α be an element of End0(E) not in Q. By replacing α with α − 1 Tα, we 2 

may assume without loss of generality that Tα = 0, since � � 
1 1 1 

T α − Tα = Tα − TTα = Tα − 2Tα = 0, 
2 2 2 

where TTα = 2Tα because Tα ∈ Q. Now α2 < 0, by Corollary 13.11, and Q(α) ⊆ End0(E) 
is an imaginary quadratic field. If Q(α) = End0(E) then we are in case (ii). 

Otherwise, let β be an element of End0(E) not in Q(α). As with α, we may assume 
without loss of generality that Tβ = 0 so that β2 < 0. By replacing β with 

T(αβ) 
β − α (1) 

2α2 

we can also assume T(αβ) = 0 (to check, multiply (1) by α and compute the trace; replac-
ing β with (1) does not change its trace because Tα = 0). Thus Tα = Tβ = T(αβ) = 0. 
This implies α = −α̂, β β, and αβ αβ β ̂  = − ̂ = − c = − ̂ α. Substituting the first two equalities 
into the third yields αβ = −βα. Applying this together with the fact that α2 < 0 and 
β2 < 0 lie in Q, it is clear that {1, α, β, αβ} spans Q(α, β) as a Q-vector space. 

To show that Q(α, β) is a quaternion algebra, we need to show that 1, α, β, and αβ 
are Q-linearly independent. By construction, 1, α, β are linearly independent, moreover, 
β 6∈ Q(α) by definition, which implies α 6∈ Q(β), since Q(β) = {r + sβ : r, s ∈ Q} (because 
β2 ∈ Q). Now suppose for the sake of contradiction that 

αβ = a + bα + cβ, 

for some a, b, c ∈ Q. We must have a, b, c 6= 0, since β, αβ 6∈ Q(α) and α 6∈ Q(β). Squaring 
both sides yields 

2 (αβ)2 = (a + b2α2 + c 2β2) + 2a(bα + cβ) + bc(αβ + βα). 

The LHS lies in Q, since T(αβ) = 0, as does the first term on the RHS, since Tα = Tβ = 0. 
The last term on the RHS is zero, since αβ = −βα. Thus d := 2a(bα + cβ) lies in Q, but 
then β = (d − 2abα)/(2ac) lies ∈ Q(α), a contradiction. 

Thus Q(α, β) ⊆ End0(E) is a quaternion algebra with α2, β2 < 0. If Q(α, β) = End0(E) 
then we are in case (iii). 

Otherwise, let γ be an element of End0(E) that does not lie in Q(α, β). As with β, we 
may assume without loss of generality that Tγ = 0 and T(αγ) = 0, which implies αγ = −γα. 
Then αβγ = −βαγ = βγα, so α commutes with βγ. By Lemma 13.18 below, βγ ∈ Q(α). 
This implies γ ∈ Q(α, β), contrary to our assumption that γ 6∈ Q(α, β). 

Lemma 13.18. If α, β ∈ End0(E) commute and α 6∈ Q then β ∈ Q(α). 

Proof. As in the proof of the Theorem 13.17, we can transform α and β so that Tα = 
Tβ = T(αβ) = 0, and therefore αβ = −βα; this involves replacing α with α − r and then 
replacing β with β − s − tα for some r, s, t ∈ Q; if α and β commute then so do all Q-linear 
combinations, so the hypothesis still holds. We then have αβ +βα = 2αβ = 0, which implies 
α = 0 or β = 0, since End0(E) has no zero divisors. We cannot have α = 0, since α 6∈ Q, so 
β = 0 ∈ Q(α). 
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Remark 13.19. In the proofs of Theorem 13.17 and Lemma 13.18 we never used the fact 
that End0(E) is the endomorphism algebra of an elliptic curve. Indeed, one can replace 
End0(E) with any Q-algebra A possessing an involution α 7→ α̂ that fixes Q such that the 
associated norm Nα = αα̂ maps nonzero elements of A to positive elements of Q; all other 
properties of End0(E) that we used can be derived from these. 

Having classified the possible endomorphism algebras End0(E), our next task is to clas-
sify the possible endomorphism rings End(E). We begin with the following corollary to 
Theorem 13.17. 

Corollary 13.20. Let E/k be an elliptic curve. The endomorphism ring End(E) is a free 
Z-module of rank r, where r = 1, 2, 4 is the dimension of End0(E) as a Q-vector space. 

Recall that a free Z-module of rank r is an abelian group isomorphic to Zr . 

Proof. Let us pick a basis {e1, . . . , er} for End0(E) as a Q-basis with the property that 
T(eiej ) = 0 unless i = j (use the basis {1, α} when End0(E) = Q(α) and {1, α, β, αβ} when 
End0 = Q(α, β), where α and β are constructed as in the proof of Theorem 13.17). After 
multiplying by suitable integers if necessary, we can assume without loss of generality that 
e1, . . . er ∈ End(E) (this doesn’t change T(eiej ) = 0 for i =6 j). 

For any Z-module A ⊆ End0(E) we have an associated dual Z-module 

A ∗ := {α ∈ End0(E) : T(αφ) ∈ Z ∀φ ∈ A}. 

Note that A∗ is closed under addition and multiplication by integers (if T(αφ), T(βφ) ∈ Z 
then T(mαφ + nβφ) ∈ Z for all m, n ∈ Z), so A∗ is also a Z-module. It is clear from the 
definition that if A and B are any Z-modules in End(E)0 , then A ⊆ B implies B∗ ⊆ A∗ 

(making A bigger imposes a stronger constraint on A∗). 
Now let A be the Z-module spanned by e1, . . . , er ∈ End(E). Then A ⊆ End(E), and 

therefore End(E)∗ ⊆ A∗ . We also note that End(E) ⊆ End(E)∗ , since T(αφ) ∈ Z for all 
α, φ ∈ End(E). Thus 

A ⊆ End(E) ⊆ End(E) ∗ ⊆ A ∗ . 

We can write any α ∈ A∗ ⊆ End0(E) as a1e1 + · · · + arer for some a1, . . . , ar ∈ Q (since 
e1, . . . , er is a Q-basis for End0(E)). For each ei we then have 

T(αei) = a1T(e1ei) + · · · + arT(erei) = aiT(ei 
2), 

2 since T(eiej ) = 0 for i 6= j, and T(αei) = aiT(ei ) ∈ Z since α ∈ A∗ and ei ∈ A. Thus ai is 
2 2 2 an integer multiple of 1/T(ei ), and it follows that {e1/T(e1), . . . , er/T(e )} is a basis for A∗ 

r 
as a Z-module, which is therefore a free Z-module of rank r, as is A (both are torsion free 
because End0(E) is torsion free). It follows that End(E) and End(E)∗ both free Z-modules 
of rank r, since they are both contained in and contain a free Z-module of rank r (every 
subgroup of Zr is isomorphic to Zs for some 0 ≤ s ≤ r).3 

Definition 13.21. An elliptic curve E for which End(E) 6' Z is said to have complex 
multiplication. 

3More generally, if R is a principal ideal domain (PID) then every submodule of a free R-module of rank r 
is free of rank s ≤ r. This fails when R is not a PID (submodules of a free module need not be free) 
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It follows from Theorem 13.17 that if E has complex multiplication then End0(E) is 
either an imaginary quadratic field or a quaternion algebra. Each element of End(E) that 
does not lie in Z is the root of quadratic polynomial in Z[x] that has no real roots, which 
we could view as a complex number (an algebraic integer, in fact). Elements φ of End(E) 
that lie in Z correspond to multiplication by some integer n, and we may view elements of 
End(E) that do not lie in Z as “multiplication” by some complex number that corresponds 
to an algebraic integer that is a root of the characteristic polynomial of φ. 

13.5 Orders in Q-algebras 

Definition 13.22. Let K be a Q-algebra of finite dimension r as a Q-vector space. An 
order O in K is a subring of K that is a free Z-module of rank r. Equivalently, O is a 
subring of K that is finitely generated as a Z-module and satisfies K = O ⊗Z Q. 

Note that an order is required to be both a lattice (a free Z-module of maximal rank) 
and a ring; in particular it must contain 1. 

Example 13.23. The integers Z are the unique example of an order in Q. Non-examples 
include the even integers, which is a lattice but not a ring, and the set {a/2n : a, n ∈ Z}, 
which is a ring but not a lattice (because it is not finitely generated as a Z-module). 

It follows from Corollary 13.20 that the endomorphism ring End(E) is an order in the 
Q-algebra End0(E). Note that if End0(E) = Q, then we must have End(E) = Z, but in 
general there are many infinitely many non-isomorphic possibilities for End(E). 

Every order lies in some maximal order (an order that is not contained in any other); 
this follows from an application of Zorn’s lemma, using the fact that elements of an order 
necessarily have monic minimal polynomials. In general, maximal orders need not be unique, 
but when the Q-algebra K is a number field (a finite extension of Q), this is the case. In 
view of Theorem 13.17, we are primarily interested in the case where K is an imaginary 
quadratic field, but it is just as easy to prove this for all number fields. We first need to 
recall a few standard results from algebraic number theory. 

Definition 13.24. An algebraic number α is a complex number that is the root of a poly-
nomial with coeÿcients in Q. An algebraic integer is a complex number that is the root of 
a monic polynomial with coeÿcients in Z. 

Two fundamental results of algebraic number theory are (1) the set of algebraic integers 
in a number field form a ring, and (2) every number field has an integral basis (a basis whose 
elements are algebraic integers). The following theorem gives a more precise statement. 

Theorem 13.25. The set of algebraic integers OK in a number field K form a ring that is 
a free Z-module of rank r, where r = [K : Q] is the dimension of K as a Q-vector space. 

Proof. See Theorem 2.1 and Corollary 2.30 in [1] (or Theorems 2.9 and 2.16 in [3]).4 

Theorem 13.26. The ring of integers OK of a number field K is its unique maximal order. 
4The proof of the second part of this theorem is essentially the same as the proof of Corollary 13.20; 

instead of the reduced trace in End0(E), one uses the trace map from K to Q, which has similar properties. 
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Proof. The previous theorem implies that OK is an order. To show that it is the unique 
maximal order, we need to show that every order O in K is contained in OK . It suÿces to 
show that every α ∈ O is an algebraic integer. Viewing O as a Z-lattice of rank r = [K : Q], 
consider the sublattice generated by all powers of α. Let [β1, . . . , βr] be a basis for this 
sublattice, where each βi is a Z-linear combination of powers of α. Let n be an integer 
larger than any of the exponents in any of the powers of α that appear in any βi. Then 
αn = c1β1 + · · · + crβr, for some c1, . . . , cn ∈ Z, and this determines a monic polynomial of 
degree n with α as a root. Therefore α is an algebraic integer. 

Finally, we characterize the orders in imaginary quadratic fields, which are the number 
fields we are most interested in. 

Theorem 13.27. Let K be an imaginary quadratic field with ring of integers OK . The 
orders O in K are precisely the subrings Z + fOK , where f is any positive integer. 

Proof. The maximal order OK is a free Z-module (a lattice) of rank 2 that contains 1, so 
it has a Z-basis of the form [1, τ ] for some τ 6∈ Z. Let O = Z + fOK . It is clear that O is 
a sub-lattice of OK that properly contains Z, hence it is of rank 2. The Z-module O is a 
subset of the ring OK and contains 1, so to show that O is a ring it suÿces to show that it 
is closed under multiplication. So let a + fα and b + fβ be arbitrary elements of O, with 
a, b ∈ Z and α, β ∈ OK . Then 

(a + fα)(b + fβ) = ab + afβ + bfα + f2αβ = ab + f(aβ + bα + fαβ) ∈ O, 

since ab ∈ Z and (aβ + bα + fαβ) ∈ OK . So O is a subring of K. To see that O is an order, 
note that O ⊗Z Q = OK ⊗Z Q = K. 

Now let O be any order in K. Then O is a rank-2 sub-lattice of OK = [1, τ ] that contains 
1, so O must contain an integer multiple of τ . Let f be the least positive integer for which 
fτ ∈ O. The lattice [1, fτ ] lies in O, and we claim that in fact O = [1, fτ ]. Any element 
α of O must lie in OK and is therefore of the form α = a + bτ for some a, b ∈ Z. The 
element bτ = α − a then lies in O, and the minimality of f implies that f divides b. Thus 
O = [1, fτ ] = Z + fOK . 

Remark 13.28. In the theorem above we never actually used the fact that the quadratic 
field K is imaginary; in fact, the theorem holds for real quadratic fields as well. 

The integer f in Theorem 13.27 is called the conductor of the order O = Z + fOK . It 
is equal to the index [OK : O], which is necessarily finite. 
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