
18.783 Elliptic Curves Spring 2019 

Problem Set #9 

Description 

These problems are related to the material covered in Lectures 16-18. 

Instructions: Solve any combination of problems that sum to 100 points. Your solutions 
are to be written up in latex and submitted as a pdf-file with a filename of the form 
SurnamePset9.pdf. 

Collaboration is permitted/encouraged, but you must identify your collaborators, 
and any references not listed in the course syllabus. The first to spot each typo/error in 
the problem sets or lecture notes will receive 1-5 points of extra credit. 

Problem 1. Complex multiplication (49 points) 
√ 

Let τ = (1 + −7)/2. In problem 1 of Problem Set 8 you computed j(τ) = −3375. In 
problem 2 of Problem Set 7 you proved that the endomorphism ring of the elliptic curve 
2 y = x3 − 35x −√98 with j-invariant −3375 is equal to [1, τ ], the maximal order (ring of 
integers) of Q( −7). Let us now set g2 := −4(−35) = 140 and g3 := −4(−98) = 392 
and work with the isomorphic elliptic curve E/C defined by 

2 y = 4x 3 − g2x − g3, 

2 which is isomorphic to y = x3 − 35x − 98. 
We should note that g2([1, τ ]) and g3([1, τ ]) are not equal to 140 and 392, but there 

is a lattice L homothetic to [1, τ ] for which g2(L) = 140 and g3(L) = 392 (you computed 
this lattice L in problem 2 of Problem Set 8). In particular, τL ⊆ L, thus τ satisfies 
condition (1) of Theorem 17.4. The goal of this problem is to compute the polynomials 
u, v ∈ C[x] for which condition (2) of Theorem 17.4 holds, and the endomorphism φ for 
which condition (3) of Theorem 17.4 holds, and to explicitly confirm that the diagram 

τ φ 

C/L Φ E(C) 

C/L 

  

          

             
                  

         
                
            

     

Φ E(C) 

commutes, where τ denotes the multiplication-by-τ map z 7→ τz. 
Recall that the Weierstrass ℘-function satisfying the differential equation 

℘0(z)2 = 4℘(z)3 − g2℘(z) − g3 (1) P∞ −2 2n has a Laurent series expansion about 0 of the form ℘(z) = z + . n=1 a2nz 

(a) Use g2 and g3 to determine a2 and a4, and then determine a6 by comparing coeffi-
cients in the Laurent expansions of both sides of (1). 

1 



We now wish to compute the polynomials u, v ∈ C[x] for which � � 
u ℘(z) 

℘(τz) = � � , 
v ℘(z) 

as in condition (2) of Theorem 17.4. Following Corollary 17.5, we have N(τ) = τ τ̄  = 2, 
so deg u = 2 and deg v = 1. We can make u = x2 + ax + b monic, and with v = cx + d 
we must have 

(c℘(z) + d)℘(τz) = ℘(z)2 + a℘(z) + b (2) 

(b) Use (2) to determine the coefficients a, b, c, d, expressing your answers in terms of τ . 
It will be convenient to work in the subfield K = Q(τ), rather than C. To define 
the field K and the polynomial ring K[x] in Sage, use 

RQ.<w>=PolynomialRing(QQ) 
K.<tau>=NumberField(wˆ2-w+2) 
RK.<x>=PolynomialRing(K) 

Once you have determined a, b, c, d ∈ K, you can verify u, v ∈ K[x] via1 

RL.<z>=LaurentSeriesRing(K,100) 
wp=EllipticCurve([-35,-98]).weierstrass_p(100).change_ring(K) 
assert wp(tau*z) == u(wp(z))/v(wp(z)) 

(c) Following the proof of Theorem 17.4, construct polynomials s, t ∈ K[x] that satisfy � � 
s ℘(z) 

℘0(τz) = � � ℘0(z). 
t ℘(z) 

You can verify your results in Sage via 

wpp = wp.derivative() 
assert wpp(tau*z) == s(wp(z))/t(wp(z))*wpp(z) � � u(x) s(x) (d) Now let φ = y . Use Sage to verify that φ is an endomorphism by checking v(x) , t(x) 

2 that its coordinate functions satisfy the curve equation y = 4x3 − g2x − g3. 

The symbolic verifications in parts (b) and (d) confirm that Φ(τz) = φ(Φ(z)), showing 
that the diagram commutes (at least for the first 100 terms in the Laurent expansion 
of ℘(z)). But we would like to explicitly check this for some specific values of z ∈ C. 
In order to do this in Sage, we need to redefine τ and the polynomials u, v, s, t over C, 
rather than K. You can use the following Sage script to do this: 

R.<X>=PolynomialRing(CC) 
pi = K.embeddings(CC)[0] 
tauC = pi(tau) 
def coerce(f,pi,X): 

c = f.coefficients(sparse=False) 
return sum([pi(c[i])*Xˆi for i in range(len(c))]) 

uC = coerce(u,pi,X) 
vC = coerce(v,pi,X) 
sC = coerce(s,pi,X) 
tC = coerce(t,pi,X) 

1 2 2 3 Sage effectively computes ℘(z) using y = 4x 3 − g2x − g3 when we define E : y = x + Ax + B with 
g2 = −4A and g3 = −4B. 
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(e) Pick three “random” nonzero complex numbers z1, z2, z3 of norm less than 0.1 (they 
need to be close to 0 in order for the Laurent series of ℘(x) to converge quickly). � � 
You can approximate the point P1 = Φ(z1) = ℘(z1), ℘

0(z1) on the elliptic curve 
2 y = 4x3 − g2x − g3 in Sage using2 

wp = EllipticCurve([CC(-35),CC(-98)]).weierstrass_p(100) 
wpp = wp.derivative() 
P1=(wp.laurent_polynomial()(z1),wpp.laurent_polynomial()(z1)) 

For i = 1, 2, 3, compute the points Pi = Φ(zi) and Qi = Φ(τzi) (remember to use 
the embedding of τ in C). Check that the points all approximately satisfy the curve 

2 equation y = 4x3 − g2x − g3 (if not, use zi with smaller norms). Then verify that 
Qi and φ(Pi) are approximately equal in each case. Report the values of zi, Pi, Qi 

and φ(Pi). 

Problem 2. Binary quadratic forms (49 points) 

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables: 

f(x, y) = ax 2 + bxy + cy 2 , 

which we identify by the coefficient vector (a, b, c). We are interested in a particular set of 
binary quadratic forms, those that are integral (a, b, c ∈ Z), primitive (gcd(a, b, c) = 1), 
and positive definite (b2 − 4ac < 0 and a > 0). Henceforth we shall use the word form to 
refer to an integral, primitive, positive definite, binary quadratic form. The discriminant 
of a form is the negative integer D = b2 − 4ac, which is evidently a square modulo 4. 
We call such integers (imaginary quadratic) discriminants, and let F (D) denote the set 
of forms with discriminant D. 

t (a) For each γ = ( s ) ∈ SL2(Z) and f(x, y) ∈ F (D) define u v 

fγ (x, y) := f(sx + ty, ux + vy). 

Show that fγ ∈ F (D), and that this defines a right group action of SL2(Z) on the 
set F (D) (this means f I = f and f (γ1γ2) = (fγ1 )γ2 ). 

Forms f and g are (properly) equivalent if g = fγ for some γ ∈ SL2(Z). In this 
problem and the next, you will prove that the set cl(D) of SL2(Z)-equivalence classes of 
F (D) forms a finite abelian group, and develop algorithms to compute in this group. 
The group cl(D) is called the class group, and it plays a key role in the theory of 

complex multiplication. Our first objective is to prove that cl(D) is finite, and to develop 
an algorithm to enumerate unique representatives of its elements (which also allows us 
to determine its cardinality). We define the (principal) root τ of a form f = (a, b, c) to 
be the unique root of f(x, 1) in the upper half plane: 

√ 
−b + D 

τ = . 
2a 

Recall that SL2(Z) acts on the upper half plane H via linear fractional transformations � � 
s t sτ + t 

τ = , 
u v uτ + v 

2You need to use the laurent polynomial method in order to evaluate wp at a complex number. 
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	 	and that the set � � 
F = τ ∈ H : re(τ ) ∈ [−1/2, 0] and |τ | ≥ 1 ∪ τ ∈ H : re(τ) ∈ (0, 1/2) and |τ | > 1 

is a fundamental region for H modulo the SL2(Z)-action. 

(b) Prove that γ ∈ SL2(Z) acts compatibly on forms and their roots by showing that 
if τ is the root of f , then γ−1τ is the root of fγ . Conclude that two forms are 
equivalent if and only if their roots are equivalent. 

A form f = (a, b, c) is said to be reduced if 

−a < b ≤ a < c or 0 ≤ b ≤ a = c. 

(c) Prove that a form is reduced if and only if its root lies in the fundamental region F . 
Conclude that each equivalence class in F (D) contains exactly one reduced form. 

(d) Prove that if f is reduced then a ≤ 
p
|D|/3. Conclude that the set cl(D) is finite, 

and show that in fact its cardinality h(D) satisfies h(D) ≤ |D|/3. Prove that F (D) 
contains a unique reduced form (a, b, c) with a = 1, and conclude that h(−3) = 
h(−4) = 1. 

The positive integer h(D) is called the class number of the discriminant D. The 
bound h(D) ≤ |D|/3 is a substantial overestimate. In fact, h(D) = O(|D|1/2 log |D|), but 
proving this requires some analytic number theory that is beyond the scope of this course. 
Under the generalized Riemann hypothesis one can show h(D) = O(|D|1/2 log log |D|). 

(e) Give an algorithm to enumerate the reduced forms in F (D). Using the upper bound 
h(D) = O(|D|1/2 log |D|), prove that your algorithm runs in O(|D|M(log |D|)) time. 

(f) Implement your algorithm and use it to enumerate the five reduced forms in F (−103) 
and the six reduced forms in F (−396). Then use it to compute h(D) for the first 
three discriminants D < −N , where N is the integer formed by the first four digits 
of your student ID. 

Problem 3. The class group (98 points) 

In Problem 2 we proved that cl(D) is a finite set. In this problem you will prove that it 
is an abelian group, and develop an algorithm for computing the group operation.√ 

2 To each form f(x, y) = ax + bxy + cy2 in F (D) with root τ = (−b + D)/(2a), we 
associate the lattice L(f) = L(a, b, c) = a[1, τ ]. 

(a) Show that two forms f, g ∈ F (D) are equivalent if and only if the lattices L(f) and 
L(g) are homothetic (use may use part (b) of problem 2 if you wish). 

For any lattice L, the order of L is the set 

O(L) = {α ∈ C : αL ⊆ L}. 

(b) Prove that either O(L) = Z or O(L) is an order in an imaginary quadratic field, 
and that homothetic lattices have the same order. Prove that if L is the lattice of √ 
a form in F (D), then O(L) is the order of discriminant D in the field K = Q( D). 
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For the rest of this problem let O denote the (not necessarily maximal) imaginary 
quadratic order of discriminant D, which may be represented as a lattice [1, ω], where ω 

2 is an algebraic integer whose minimal polynomial x +bx+c has discriminant b2 −4c = D. 
Recall that an (integral) O-ideal a is an additive subgroup of O that is closed under 

multiplication by O. Every O-ideal a is necessarily a sublattice of O, and its norm 
N(a) is the index [O : a] = |O/a|. An O-ideal a is said to be proper if O(a) = O. In 
Lecture 18 we showed that a is proper if and only if it is invertible as a fractional ideal, 
which explains our interest in this property. Note that we always have O ⊆ O(a), so 
when O is maximal every nonzero O-ideal is proper. 

(c) Prove that if L(a, b, c) = a[1, τ ] is the lattice of a form in F (D), then L is a proper 
O-ideal of norm a, where O = O(L) = [1, aτ ]. 

(d) Conversely prove that every proper O-ideal a is homothetic to the lattice of a form 
in F (D). Show that the assumption that a is proper is necessary by giving an explicit 
example of an O-ideal a that is not proper (so by (c) it cannot be homothetic to the 
lattice of a form in F (d)). 

(e) Prove that if the norm of a is relatively prime to the conductor u = [OK : O] of O 
then a is proper. Give an explicit example showing that the converse is not true. 

The product of two lattices [ω1, ω2] and [ω3, ω4] in C is the additive group generated 
by {ω1ω3, ω1ω4, ω2ω3, ω2ω4}. 

(f) Show that, in general, the product of two lattices need not be a lattice, but the 
product of two lattices that are O-ideals is a lattice. 

(g) Let cl(O) denote the set of equivalence classes (under homothety) of lattices that 
are proper O-ideals. Prove that the lattice product makes cl(O) into an abelian 
group. Conclude that the corresponding operation on the equivalence classes of 
F (D) makes cl(D) into an abelian group that is isomorphic to cl(O). 

To do explicit computations in cl(D) we need to translate the product operation on 
lattices L(f1) and L(f2) into a corresponding product operation on forms f1, f2 ∈ F (D). 
This is known as composition of forms, and is performed as follows. If f1 = (a1, b1, c1) 
and f2 = (a2, b2, c2) are forms in F (D), then let s = (b1 +b2)/2 (this is an integer because 
b1, b2 and D all have the same parity). Use the extended Euclidean algorithm (twice) 
to compute integers u, v, w, and d such that ua1 + va2 + ws = d = gcd(a1, a2, s). The 
composition of f1 and f2 is then given by � � 

b2 a1a2 2a2 3 − D 
f1 ∗ f2 = (a3, b3, c3) = , b2 + (v(s − b2) − wc2), . 

d2 d 4a3 

It is a straight-forward but tedious task to verify that this composition formula satisfies 
L(f1 ∗ f2) = L(f1) ∗ L(f2); you are not required to do this. 

(h) Verify that the inverse of (a, b, c) is (a, −b, c) and that the unique reduced from with 
a = 1 acts as the identity (see Problem 2 for the definition of a reduced form). 

Unfortunately, even if f1 and f2 are reduced forms, the composition of f1 and f2 need 
not be reduced. In order to compute in cl(D) effectively, we need a reduction algorithm. � � 

0 −1 Recall the matrices S = and T = ( 1 1 ) that generate SL2(Z). 1 0 0 1 
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(i) Let f be the form (a, b, c). Compute the forms fS , fT m 
, and fT −m 

, for a positive 
integer m. 

A form (a, b, c) with −a < b ≤ a is said to be normalized. 

(j) Show that for any form f there is an integer m such that fT m 
is normalized, and 

give an explicit formula for m. Let us call fT m 
the normalization of f . Now let 

f = (a, b, c) be a normalized form and prove the following: 

(a) If a < 
p
|D|/2 then f is reduced. 

(b) If a < 
p
|D| and f is not reduced, then the normalization of Sf is reduced. 

(c) If a ≥ 
p
|D| then the normalization (a0, b0, c0) of Sf has a0 ≤ a/2. 

(k) Give an algorithm to compute the reduction of a form f in F (D), and bound its 
complexity as a function of n = log |D|, assuming that its coefficients are O(n) bits 
in size. Then bound the complexity of computing the reduction of the product of 
two reduced forms (this corresponds to performing a group operation in cl(D)).3 

(l) Implement your algorithm and then use it to compute the reduction of a form 
(a, b, c) ∈ F (D), with a equal to the least prime greater than |D|2 for which (D ) = 1. a 
Do this for the discriminants D = −103 and D = −396, and for the first three 
discriminants D < −N , where N is the first four digits of your student ID. For the 
largest |D|, list the sequence of normalized forms computed during the reduction. 

Problem 4. Subgroups of GL2(F`) (49 points) 

Let E be an elliptic curve defined over Q. Recall that for each integer n > 1, the n-
torsion subgroup of E(Q) is a rank 2 (Z/nZ)-module we denote E[n]. As explained in 
Problem Sets 3 and 6, the action of the absolute Galois group GQ := Gal(Q/Q) on the 
coordinates of points gives rise to an action on the set E(Q) that commutes with the 
group law. Hence the GQ-action preserves E[n] and gives rise to a linear representation 
of the absolute Galois group 

ρE,n : GQ → Aut(E[n]) ' GL2(Z/nZ), 

which we call the mod-n Galois representation attached to E. In this problem we restrict 
our attention to prime n = `, in which case we have following theorem of Serre. 

Theorem (Serre, 1972). Let E be an elliptic curve over Q for which End(EQ) = Z. For 
all but finitely many primes `, the image of the mod-` Galois representation is surjective: 

ρE,`(GQ) = GL2(F`). 

Remark. For an elliptic curve over Q (or any number field) we know that End(EQ) is 
either Z or an order in an imaginary quadratic field. The latter case is quite special: it 
applies to only 13 Q-isomorphism classes of elliptic curves over Q, corresponding to the 
13 imaginary quadratic orders of class number one.4 

3A quasi-linear bound is known [1], but your bound does not need to be this tight. However it should 
be polynomial in n. 

4Elliptic curves E/Q with End(EQ) 6= Z are often said to have complex multiplication and called CM 
curves, even though this is not strictly true: the extra endomorphisms are only defined over a quadratic 
extension (it would be more correct to say these curves have “potential complex multiplication”). 
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Remark. It is conjectured that Serre’s theorem actually applies to all primes ` > 37 
(independent of E). There is ample evidence and some recent progress toward a proof 
of this conjecture, but it remains a major open question. 

A key component of the proof of Serre’s theorem is understanding the maximal 
subgroups of GL2(F`) In order to discuss subgroups of GL2(F`) in a basis-free manner, it 
is often convenient to write GL(V ) where V is a 2-dimensional vector space over F` and 
GL(V ) denotes its group of automorphisms. In this problem you will give a complete 
classification of the maximal subgroups of GL2(V ). 
Let L1 and L2 be distinct 1-dimensional subspaces of V , which we can think of as 

lines through the origin in V , and let Cs be the subgroup of GL(V ) that preserves both 
L1 and L2 (individually, no swapping allowed). 

(a) Show that for ` 6= 2, the subgroup Cs uniquely determines the lines L1, L2 ⊂ V (and 
hence is equivalent to specifying two such lines). 

We call such a C a split Cartan subgroup of GL(V ). If we choose a basis for V 
compatible with the decomposition V = L1 ⊕ L2, we then have � � 

∗ 0 
Cs = , 

0 ∗ � �2 
where ∗ indicates any element of F× . From this we see that C ' F× is an abelian ` ` 
group of order (` − 1)2 . 
As an F`-vector space, F`2 ' F2; but F`2 also has a multiplicative structure, and so ` 

the action of the multiplicative group F× on F`2 ' V gives a cyclic subgroup Cns of `2 

GL(V ) isomorphic to F× Such a subgroup Cns is called a non-split Cartan subgroup. 
`2 . 

We collectively refer to split and non-split Cartan subgroups as Cartan subgroups. 

(b) Show that for ` 6= 2, if we fix a quadratic non-residue � ∈ F× , then in an appropriate ` 
basis we have �� � � 

x �y 
Cns = : x, y ∈ F`, (x, y) 6= (0, 0) . 

y x 

(c) Show that the intersection of any two distinct Cartan subgroups (either split or 
non-split) is the group of scalar matrices Z = ( z 0 ) with z ∈ F× . 0 z ` 

(d) Show that any element s ∈ GL(V ) with Δ(s) = tr(s)2 − 4 · det(s) =6 0 is contained in 
a unique Cartan subgroup, and determine a condition involving Δ(s) that specifies 
the type of Cartan. Deduce that the union of all Cartan subgroups of GL(V ) is the 
set of elements of order prime to `. (If you are stuck, look at part (h) below.) 

(e) Let N denote the normalizer of a Cartan subgroup C in GL(V ), that is all elements 
s ∈ GL(V ) such that sCs−1 = C. Show that (N : C) = 2 and give an explicit 
description of this group in the split and non-split cases separately. 

It is easy to show that the group Z of scalar matrices forms the center of GL(V ). 
We define PGL(V ) to be the quotient of GL(V ) by its center, so PGL(V ) := GL(V )/Z. 
Let ϕ : GL(V ) → PGL(V ) denote the quotient map. 
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(f) Show that if C is a split (resp. non-split) Cartan subgroup, then ϕ(C) ⊂ PGL(V ) 
is cyclic of order ` − 1 (resp. ` +1). Show that the image in PGL(V ) of a normalizer 
of a Cartan subgroup is a dihedral group.5 

By part (d) above, it remains to understand the elements of GL(V ) of order divisible 
by `. A Borel subgroup B of GL(V ) is the group of automorphisms of V fixing a specified 
line (through the origin). A Borel subgroup of GL(V ) has order `(`−1)2 . After choosing 
an appropriate basis, this has the form � � 

∗ ∗ 
B = . 

0 ∗ 

(g) Show that any element s ∈ GL(V ) of order ` is conjugate to the matrix ( 1 1 ). 0 1 

(h) Using the fact that SL(V ) is generated ( 1 1 ) and ( 1 0 ), deduce that any subgroup 0 1 1 1 
of GL(V ) of order divisible by ` either lies in a Borel subgroup, or contains SL(V ). 

Let k be any field. If H is a finite subgroup of PGL2(k) of order prime to the 
characteristic of k that is not cyclic or dihedral, then H is isomorphic to either A4, S4, 
or A5. (In the case k = C, this result is well known; these subgroups correspond 
to the symmetry groups of the regular polyhedra: tetrahedron, cube/octahedron, and 
icosahedron/dodecahedron, respectively.) 

(i) Use parts (a) to (h) to prove the following classification theorem. 

Theorem (Maximal subgroups of GL2(F`)). Let G be a subgroup of GL2(F`); let H 
denote the image of G in PGL2(F`). Then one of the following holds: 

1. G has order prime to ` and either: 

(i) H is cyclic and G is contained in a Cartan subgroup of GL2(F`); 

(ii) H is dihedral and G is contained in the normalizer of a Cartan subgroup C 
of GL2(F`) but not in C; 

(iii) H is isomorphic to A4, S4 or A5 and we call G exceptional; 

2. G has order divisible by ` and either: 

(iv) G is contained in a Borel subgroup; 

(v) G contains SL2(F`). 

Serre’s theorem states that except for elliptic curves E/Q with (potential) complex mul-
tiplication, for all but finitely many primes ` we are in case (v) of the classification above. 
On later problem sets we will see that for ` 6= 2 this never happens if E has complex 
multiplication, so the hypothesis End(EQ) = Z in Serre’s theorem is necessary. 

5For this problem, the product of two cyclic groups of order 2 (the Klein group) is a dihedral group. 
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Problem 5. Survey (2 points) 

Complete the following survey by rating each of the problems you attempted on a scale 
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 
= “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also 
estimate the amount of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 

Also, please rate each of the following lectures that you attended, according to the quality 
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material (1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Pace Novelty 
4/10 Complex multiplication 
4/17 The CM torsor 

Please feel free to record any additional comments you have on the problem sets or 
lectures, in particular, ways in which they might be improved. 
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