
  

          
             

                  

         
               

              

       

                

             

           

18.783 Elliptic Curves Spring 2019 

Problem Set #6 

Description 

These problems are related to the material covered in Lectures 12-13. 

Instructions: Solve any combination of problems that sum to 100 points. Your solutions 
are to be written up in latex and submitted as a pdf-file with a filename of the form 
SurnamePset6.pdf. 

Collaboration is permitted/encouraged, but you must identify your collaborators, 
and any references not listed in the course syllabus. The first to spot each non-trivial 
typo/error in the problem sets or lecture notes will receive 1-5 points of extra credit. 

Problem 1. A noncommutative endomorphism ring (29 points) 

Let p = 7, and consider the finite field F 2 , which we may represent explicitly as p 

Fp2 ' Fp[i]/(i
2 + 1) = {a + bi : a, b ∈ Fp}. 

To create the field F 2 in Sage using this particular representation, use p 

F7.<x>=PolynomialRing(GF(7)) 
F49.<i>=GF(49,modulus=xˆ2+1) 

Now consider the elliptic curve E/Fp2 defined by 

2 y = x 3 + (1 + i)x. 

The group of F 2 -rational points on E is isomorphic to Z/6Z ⊕ Z/6Z and is generated p 

by the affine points 
P1 = (i, i), P2 = (i + 2, 2i), 

which you can construct in Sage using P1=E(i,i) and P2=E(i+2,2*i). Let πE 

denote the Frobenius endomorphism of E. 

(a) Prove that πE = 7 in End(E). 

Since πE corresponds to an integer in End(E), you might be tempted to conclude that 
End(E) ' Z. But this is far from true. 

(b) Show that the p-power Frobenius map π of degree p = 7 does not lie in End(E). 

(c) Prove that nevertheless End(E) does contain an endomorphism α of degree 7 by 
exhibiting an explicit rational map α : E → E that satisfies α2 = −7. 

(d) Now find an endomorphism β that satisfies β2 = −1 (give β explicitly). 

(e) Prove that α and β do not commute, but αβ = −βα holds. 
Conclude that End0(E) is a quaternion algebra. 
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Problem 2. The image of Galois (69 points) 

Let E/Q be an elliptic curve, let ` be a prime, and let K = Q(E[`]) be the associated 
`-torsion field obtained by adjoining the coordinates of all the points in the `-torsion 
subgroup E[`] to Q. As you proved in Problem Set 3, the `-torsion field K is a Galois 
extension of Q, and the Galois group Gal(K/Q) acts linearly on the vector space 

E[`] ' Z/`Z ⊕ Z/`Z ' F2 . ` 

This induces a group homomorphism 

ρE,` : Gal(K/Q) → Aut(E[`]) ' GL2(F`) 

that maps each field automorphism σ ∈ Gal(K/Q) to an element of GL2(F`) that we 
may view as an invertible 2 × 2 matrix with coefficients in F`, once we have fixed a choice 
of basis for E[`] ' F2 . ` 

As you may recall, a homomorphism from a group G to a group of linear transfor-
mations is called a (linear) representation of G. The map ρE,` is a representation of the 

1 group Gal(K/Q), known as the mod-` Galois representation attached to E. 
For each prime p 6= ` where E has good reduction there is a corresponding Frobenius 

element Frobp ∈ Gal(K/Q). To construct Frobp one picks a prime ideal p of the ring 
of integers OK (the integral closure of Z in K) that divides the ideal pOK , and then 
considers the decomposition subgroup Dp := {σ ∈ Gal(K/Q) : σ(p) = p}. Our conditions 
on p ensure that Dp is naturally isomorphic to Gal(Fp/Fp), where Fp := OK /p is the 
residue field of p, which necessarily contains Fp as a subfield (because p contains pOK ); 
the isomorphism is given by restricting σ ∈ Dp to OK and reducing modulo p to obtain 
an automorphism of OK /p = Fp. The Galois group Gal(Fp/Fp) is cyclic, generated by 

p the Frobenius automorphism π : x 7→ x , and we take Frobp to be the inverse image of π 
∼ 

under the natural isomorphism Dp −→ Gal(Fp/Fp). Now Frobp depends on our choice 
of the prime ideal p dividing pOK , but different choices lead to conjugate elements, and 
since the representation ρE,` : Gal(K/Q) ' GL2(F`) is only determined up to conjugacy 
in any case (it depends on a choice of basis for E[`]), this ambiguity will not concern us. 

The property of Frobp that is relevant to us here is that we can make the identification 

ρE,`(Frobp) = π` ∈ End(Ep[`]) ' GL2(F`). 

Here Ep/Fp is the reduction of the elliptic curve E/Q modulo p obtained by reduc-
2 3 ing the coefficients of an integral equation y = x + Ax + B for E/Q modulo p, and 

π` ∈ End(Ep[`]) is the restriction of the Frobenius endomorphism πEp to the `-torsion 
subgroup Ep[`]. Both sides of the equality above are determined only up to conju-
gacy (each depends on a choice of basis), so there is no harm in making this identifica-
tion, provided that we keep this in mind. The key point is that the conjugacy class of 
ρE,`(Frobp) = π` ∈ GL2(F`) is uniquely determined. In particular, we have 

tr ρE,`(Frobp) ≡ tr πEp mod ` and det ρE,`(Frobp) ≡ p mod `. 

(recall that we have assumed p 6= `). 

1One can replace the `-torsion field K = Q(E[`]) with any algebraic extension of K, including an 
algebraic closure of Q, but the representation is still determined by its restriction to K. 
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The Chebotarev density theorem implies that for any conjugacy class C of Gal(K/Q), 
the proportion of primes p (over p ≤ B as B →∞) for which Frobp lies in C is exactly 
#C/#Gal(K/Q) Asymptotically, we can think of each prime p as being assigned a 
uniformly random Frobenius element Frobp ∈ Gal(K/Q) which is mapped by ρE,` to a 
uniformly random element of the image of ρE,` in GL2(F`). For a typical elliptic curve 
E/Q, the representation ρE,` is surjective and its image is all of GL2(F`), but this is 
not always the case. Number theorists (and others) are very interested in understanding 
these exceptional cases. The image of ρE,` has a direct impact on the statistical behavior 
of Ep[`] as p varies. For instance, the proportion of primes p for which Ep[`] = Ep(Fp)[`] 
is precisely 1/# im ρE , since this occurs if and only if ρE(Frobp) = π` is the identity. 

In this problem you will attempt to determine the image of ρE,` for various elliptic 
curves E/Q by analyzing the statistics of π` as p =6 ` varies over primes of good reduc-
tion, by comparing these statistics to the corresponding statistics for various candidate 
subgroups of GL2(F`). 

(a) Prove that for ` = 2 the image of ρE,2 in GL2(F2) is isomorphic to the Galois 
group of the splitting field of the cubic f(x) := x3 + Ax + B. Conclude that (up to 
conjugacy) every possible subgroup of GL2(F2) arises as the image of ρE,2 for some 
elliptic curve E/Q and give an explicit example of each case. 

For ` > 2, not every subgroup of GL2(F`) can arise as the image of ρE,`. 

(b) Show that there exists a set of primes p of good reduction for E whose reductions 
modulo ` generates (Z/`Z)× (you don’t need Dirichlet’s theorem on primes in arith-
metic progressions or the Chebotarev density theorem to do this). Conclude that 
the image of ρE,` must contain elements of every possible determinant (all of F×). ` 

For ` = 3 there are, up to conjugacy, 8 candidate subgroups G of GL2(F3) for the image of 
ρE,3. These are listed in Table 1. 

group order description generators � � 

C2 2 cyclic 2 
0 � 

0 
1 � � � 

D2 = C2 
2 4 dihedral 2 

0 � 

0 2 
, 

1 0 � � 

0 
2 � 

D3 = S3 6 dihedral 2 
2 � 

1 
, 

0 � 

1 
1 

0 
2 

C8 8 cyclic 1 
1 � 

1 
0 � � � 

D4 8 dihedral 2 
0 � 

0 0 
, 

1 1 � � 

2 
0 � 

D6 12 dihedral 1 
1 � 

2 0 
, 

0 1 � � 

1 
0 � 

Q16 16 semi-dihedral 1 
2 � 

1 0 
, 

1 1 � � 

1 
0 � 

GL2(F3) 48 general linear 2 
0 

0 
1 

, 
2 
2 

1 
0 

Table 1. Candidates for the image of ρE,3 in GL2(F3). 
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(c) The determinant det A, trace tr A, and multiplicative order |A| of a matrix A in 
GL2(F`) are invariant under conjugation. Prove that the pair (det A, tr A) does not 
determine the conjugacy class of A in GL2(F3), but the triple (det A, tr A, |A|) does. 

Part (c) implies that we can get more information about π` if, in addition to computing 
its trace, we also compute its multiplicative order in the ring End(Ep[`]). 

(d) Devise and prove a criterion for computing the order of π2 in GL2(F2) based on 
2 the number of roots the cubic f(x) has in Fp, where y = f(x) is the Weierstrass 

equation for E. 

(e) Modify the function trace mod that was used in our implementation of Schoof’s 
algorithm in Lecture 9 (which can be found in this Sage workhseet) so that it also 
computes the order of π` and returns both the trace t` and the order |π`| of π`. 
Important: The order of π` must be computed modulo the full division polyno-
mial ψ`, not modulo one of its factors. So compute |π`| before computing q`, which 
is the first place where a division-by-zero error could occur, causing h to be replaced 
by a proper factor. Also, be sure to compute |π`| only the first time through the loop 
when you know that h = ψ`, don’t accidentally recompute it if the loop repeats. 

Now address the first part of (c) in a different way: pick an elliptic curve E/Q and 
find two primes p and p0 for which π3 ∈ End(Ep[3]) and π3 

0 ∈ End(Ep0 [3]) have the 
same characteristic polynomial but different orders in GL2(F3). 

(f) Write a program that, given an elliptic curve E, a prime `, and an upper bound N , 
enumerates the primes p ≤ N distinct from ` for which E has good reduction, and for 
each Ep, computes the triple (det π`, tr π`, |π`|). You can use prime range(N+1) 
to efficiently enumerate primes p ≤ N . Keep a count of how often each distinct triple 
occurs (use a dictionary, as in the group stats function in this Sage worksheet). 
Normalize the counts by dividing by the number of primes p you used, yielding a 
ratio for each triple. 

For ` = 3, use your program to provisionally determine the image of ρE,3 for each of 
the ten elliptic curves below, by comparing the statistics computed by your program 
with the corresponding statistics for each of the 8 candidate subgroups of GL2(F3). 
With N around 5000 or 10000 you should be able to easily distinguish among the 
possibilities. The curves below are also listed in this Sage worksheet. 

2 3 2 y = x + x y = x3 + 1 
2 2 3 y = x3 + 432 y = x + x + 1 
2 y = x3 + 21x + 26 y2 = x3 − 112x + 784 
2 2 y = x3 − 3915x + 113670 y = x3 + 4752x + 127872 
2 2 y = x3 + 5805x − 285714 y = x3 + 652509x − 621544482 

(g) Note that if a given triple (det π3, tr π3, |π3|) occurs for some Ep but does not occur in 
a candidate subgroup G ⊂ GL(F3), you can immediately rule out G as a possibility 
for the image of ρE,3. Analyze the 8 candidate subgroups in Table 1 to find a pair 
of triples that arise in GL2(F3) but do not both arise in any of its proper subgroups. 
If for a given curve E/Q you can find both of these triples for some Ep1 and Ep2 , 
then you have unconditionally proved that ρE,3 is surjective. 
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Use this to devise an algorithm that attempts to prove ρE,3 is surjective. Your 
algorithm should return true as soon as it can determine im ρE,3 = GL2(F3) (this 
should happen quite quickly, if it is true). If this fails to happen after computing 
triples for Ep for every prime up to, say, 10000, then your algorithm should give up 
and return false. You can think of this as a Monte Carlo algorithm with one-sided 
error: the “randomness” comes from the assumption that the Frobenius elements 
Frobp is uniformly and independently distributed over Gal(K/Q) as p varies. If 
your program returns true, then ρE,3 is definitely surjective; if it returns false 
it is almost certainly not surjective, but there is a small probability of error. Give 
an upper bound on the probability of error under the assumption that Frobenius 
elements are independent and uniformly distributed. 

(h) Using ZZ.random element(-100,100), generate random elliptic curves E/Q of 
the form y2 = x3 + Ax + B, with A and B uniformly distributed over the interval 
[−100, 100]. Excluding cases where AB(4A3 + 27B2) = 0, use your program to test 
whether the mod-3 Galois representation ρE,3 is surjective or not. List five curves 
for which your program returns false, and provisionally identify the image of ρE,3 

in each such case as in part 3 above (you may need to test a few thousand curves 
to achieve this). 

Problem 3. ECPP (69 points) 

Let us define an elliptic curve primality proof (ECPP) for p as a sequence of certificates 
C1, C2, . . . , Ck, where each certificate Ci is of the form (pi, Ai, Bi, xi, yi, pi+1) with p1 = p 
and pk+1 < (log p)4 . In each certificate Ci, the primes pi and pi+1 satisfy 

( 
√ 
4 pi + 1)2 < pi+1 < ( 

√ 
pi + 1)2/2, (1) 

2 3 and Pi = (xi, yi) is a point of order pi+1 on Ei : y = x + Aix + Bi over Fpi . 

(a) Let p be the least prime greater than 2128 ·N +364 , where N is the first four digits of 
your student ID (use the next prime function in Sage to compute p). Construct a 
short elliptic curve primality proof for p; this means each prime pi+1 should be close 
to the lower bound in (1) (you should not need more than 6 or 7 certificates). Note: 
the Goldwasser-Kilian algorithm typically will not produce a proof this short, it 
will have pi+1 closer to the upper bound in (1), so you will need to do something 
slightly different. 

(b) Give an algorithm for verifying an elliptic curve primality proof and analyze its 
complexity. Express your answer solely in terms of n = log p and assume the worst-
case (so the proof might not be as short as the one you generated in (a)). 

(c) Analyze the asymptotic complexity of constructing an elliptic curve primality proof 
using the Goldwasser-Kilian algorithm given in class, under the heuristic assumption 
that the orders of random elliptic curves over Fp have factorizations comparable to 
random integers in the interval [p, 2p]. Assume that trial division and the Miller-
Rabin test are used for attempted factorizations. Use an O(n5 log log n) complexity 
bound for point-counting via Schoof’s algorithm. 
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(d) Now suppose that you want to construct an elliptic curve primality proof that can 
always be verified in O(nM(n)) time, where n = log p. Under the heuristic as-
sumption above, give a probabilistic algorithm for constructing such a proof whose 
expected running time is bounded by Lp[α, c], using the smallest value of α that 
you can (hint: you can make α < 1/2). Your answer should include a high-level 
description of the algorithm and a (heuristically proven) bound on its complexity. 

Problem 4. Pomerance proofs (69 points) 

A Pomerance proof is a special form of an elliptic curve primality proof that involves 

√ 
4 

3 just a single certificate (p, A, x0, k) and uses a Montgomery curve By2 = x + Ax2 + x 
p + 1)2 ≥ 2k−1 over Fp on which there is a point (x0, y0) of point of order 2k > ( . Note 

that neither the y-coordinate nor B is needed to verify the certificate (no matter what 
3x0 + Ax20 + x0 is, there exists a nonzero B and a y0 that will work and the verifier does 

not need to know what they are), but the verifier should check that gcd(A2 − 4, p) = 1 
to ensure that the curve is not singular. 

Every prime p has a Pomerance proof, but for a general prime p no efficient algorithm 
is known for finding one. In this problem you will develop a very efficient algorithm to 
construct a Pomerance proof for primes of a special form. 

Let us first convince ourselves Pomerance proofs actually do prove primality, and 
that every sufficiently large prime has a Pomerance proof; for the latter we need the 
following theorem, which we will prove later in the course. 

Theorem 1. Let p be a prime. For every integer N in the Hasse interval 

√ √ H(p) = [p + 1 − 2 p, p + 1 + 2 p] 

there exists an elliptic curve E/Fp for which E(Fp) is a cyclic group of order N . 

(a) Show that Pomerance certificates (p, A, x0, k) ∈ Z4 
>0 exist only for prime integers p. 

(b) Using the theorem above, prove that every prime p > 31 has a Pomerance proof. 

2 Now let E be the elliptic curve y = x3 + 8 over Fp. � � 
(c) Using the formula #E(Fp) = p +1+ 

P x3+8 , prove that for every odd prime x∈Fp p 

p ≡ 2 mod 3 we have #E(Fp) = p + 1. 

(d) Prove that for any prime p ≡ 11 mod 12 the curve E/Fp can be put in Montgomery 
3 form By2 = x + Ax2 + x. Give a deterministic algorithm that computes A and B 

in time O(nM(n)), where n = log p. 

(e) Design a Las Vegas algorithm that takes as input an integer p = 3·2mc−1 with c odd √ 
p + 1)2 and outputs a Pomerance proof for prime p and a Miller-Rabin and 2m > ( 4 

witness for composite p. Analyze the expected running time of your algorithm as a 
function of n = log p. 

(f) Implement your algorithm and use it to construct a Pomerance proof for a prime of 
the form p = 2k · 3m − 1 that is greater than 21000 . Be sure to format you answer so 
that all of the digits in the certificate you construct fit on the page. 
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(g) As noted above, no efficient algorithm is known for constructing Pomerance proofs 
in general. On the other hand, there certainly is an algorithm; for example, one 
could simply enumerate all the possible certificates (clearly a finite set) and attempt 
to verify them. But you can certainly do better than this. Give the most efficient 
algorithm you can come up with for constructing a Pomerance proof for a given 
prime p > 31 and bound its complexity. Your algorithm need not be deterministic, 
and you should feel free to assume any heuristics that you believe are reasonable. 

Problem 5. Quaternion algebras (69 points) 

Throughout this problem k is a field whose characteristic is not 2, and a division k-
algebra is a k-algebra that is a division ring (every nonzero element is invertible). Recall 
that a quaternion algebra over k is a k-algebra H with elements α, β ∈ H satisfying 
α2, β2 ∈ k× and αβ = −βα such that 1, α, β, αβ is a basis for H as a k-vector space. 
The Hamilton quaternions H are the quaternion algebra over R with α2 = β2 = −1. 

(a) Show that any k-algebra generated by elements α, β satisfying α2, β2 ∈ k× and 
αβ = −βα is a quaternion algebra (in particular, we don’t need to require that 
1, α, β, αβ are a basis, this follows from the relations they satisfy). � � 

For a, b ∈ k× , let a,b be the quaternion algebra k(α, β) with α2 = a, β2 = b, αβ = −βα. k � � � � � � � � � � � � 
a,b b,a a,−ab b,−ab a,b ac2,bd2 

(b) Show that = = = and = for c, d ∈ k× . k k k k k k � � 
Then show that 1,1 ' M2(k) (the 2 × 2 matrix ring over k). Conclude that when k 

k is algebraically closed all quaternion algebras over k are isomorphic. 

(c) Show over k = R every quaternion algebra H is isomorphic to M2(R) or H, the � � 
latter occurring if and only if H = a,b with a, b < 0. R 

A central k-algebra is a k-algebra with center k. 

(d) Show that quaternion k-algebras are central k-algebras. 

An involution α 7→ α̂ of a k-algebra H is standard if αα̂ ∈ k for all α ∈ H. As proved 
in lecture, for quaternion k-algebras H, the involution given by conjugation is standard. 
The degree deg(H) of a k-algebra H is the least positive integer m such that every α ∈ H 
is the root of a monic polynomial in k[x] of degree m, or ∞ if no such m exists. 

(e) Show that a k-algebra H with a standard involution satisfies deg(H) ≤ 2. Conclude 
that the k-algebra Mn(k) has a standard involution if and only if n ≤ 2. 

(f) Show that every commutative k-algebra of dimension 2 has a unique standard invo-
lution, and that in general, if a k-algebra has a standard involution, it is unique. 

(g) Let H be a division k-algebra. Show that deg(H) ≤ 2 if and only if (i) H = k, 
(ii) H is a quadratic field extension of k, or (iii) H is a division quaternion algebra. 
Conclude that deg(H) ≤ 2 if and only if H has a standard involution. 

(h) Show that for a division k-algebra H, the following are equivalent: (i) H is a quater-
nion algebra, (ii) H is noncommutative and deg(H) = 2, (iii) H is central and 
deg(H) = 2. 
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Problem 6. Survey (2 points) 

Complete the following survey by rating each of the problems you attempted on a scale 
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 
= “mind-blowing”), and how hard you found the problem (1 = “trivial,” 10 = “brutal”). 
Also estimate the amount of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 
Problem 5 

Also, please rate each of the following lectures that you attended, according to the quality 
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic 
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”) 
and the novelty of the material (1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Pace Novelty 
3/15 Elliptic curve primality proving 
3/18 Endomorphism algebras 

Please feel free to record any additional comments you have on the problem sets or 
lectures, in particular, ways in which they might be improved. 
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