
Replica-Exchange Molecular Dynamics on
Hadoop

18.337 Final Report

Zachary W. Ulissi

December 16, 2011

1 Background

Replica exchange molecular dynamics (REMD) is a commonly used tech­
nique to accelerate sampling rates of molecular dynamics simulations by
performing a number of parallel replica simulations at different tempera­
tures (see Figure 1). Periodically, the temperatures between pairs of replica
simulations are switched with a probability

 �
(E 1

i−Ej)
1

p = min

�

1, e kT ki
−

Tj

��
.

In most implementations, swaps are only considered for simulations with
the nearest temperature. If the higher temperature simulation has lower
energy than the lower temperature simulation, the exchange is automatically
accepted. However, there is also a chance for the exchange even if this is not
the case (the exponential term). These concept are similar to Monte-Carlo
based optimization techniques, and allow for the efficient sampling of the
simulation potential energy surface without getting trapped in local minima
(see Figure 2).

This problem is highly parallel and hierarchical in nature: each replica
can be simulated using a number of processors, and each replica is indepen­
dent until replicas need to be exchanged. The optimal number of processors
for a small MD system can vary from O(1) to O(100), and the number of
replicas is usually > 10 (setting the number and distribution of tempera­
tures determines the probability of exchanges being accepted, and is thus a
simulation size dependent problem).

1

Replica-Exchange Molecular Dynamics on

Hadoop

18.337 Final Report

Zachary W. Ulissi

December 16, 2011

1 Background

Replica exchange molecular dynamics (REMD) is a commonly used tech-
nique to accelerate sampling rates of molecular dynamics simulations by
performing a number of parallel replica simulations at different tempera-
tures (see Figure 1). Periodically, the temperatures between pairs of replica
simulations are switched with a probability

p = min

(
1, e

(Ei−Ej)

(
1

Replica-Exchange Molecular Dynamics on

Hadoop

18.337 Final Report

Zachary W. Ulissi

December 16, 2011

1 Background

Replica exchange molecular dynamics (REMD) is a commonly used tech-
nique to accelerate sampling rates of molecular dynamics simulations by
performing a number of parallel replica simulations at different tempera-
tures (see Figure 1). Periodically, the temperatures between pairs of replica
simulations are switched with a probability

p = min

(
1, e

(Ei−Ej)

(
1

Replica-Exchange Molecular Dynamics on

Hadoop

18.337 Final Report

Zachary W. Ulissi

December 16, 2011

1 Background

Replica exchange molecular dynamics (REMD) is a commonly used tech-
nique to accelerate sampling rates of molecular dynamics simulations by
performing a number of parallel replica simulations at different tempera-
tures (see Figure 1). Periodically, the temperatures between pairs of replica
simulations are switched with a probability

p = min

(
1, e

(Ei−Ej)

(
1

Replica-Exchange Molecular Dynamics on

Hadoop

18.337 Final Report

Zachary W. Ulissi

December 16, 2011

1 Background

Replica exchange molecular dynamics (REMD) is a commonly used tech-
nique to accelerate sampling rates of molecular dynamics simulations by
performing a number of parallel replica simulations at different tempera-
tures (see Figure 1). Periodically, the temperatures between pairs of replica
simulations are switched with a probability

p = min

(
1, e

(Ei−Ej)

(
1

Figure 1: Illustration of the parallel REMD algorithm (reproduced from
http://www.rikenresearch.riken.jp/eng/frontline/6290).

A number of implementations currently exist for performing REMD,
with most of the production MD codes offering a simple scripting interface.
In addition, a number of papers have been published proposing compli­
cated manager/slave systems for performing REMD. However, these solu­
tions are not amenable to large heterogeneous computing environments, such
as those used by the distributed Folding@Home effort. Instead, this project
enables the REMD simulations using the Apache Hadoop implementation
of the Map/Reduce framework, which separates the simulation design from
the underlying simulation framework. Hadoop handles all distributed in­
put/output and load balancing. Furthermore, using Hadoop allows for the
simple handling of hardware and software failures, which become increas­
ingly disruptive with large-scale MD simulations.

2 Implementation

The REMD algorithm was implemented for Hadoop using the streaming
Hadoop interface. The streaming interface for Hadoop allows Hadoop pro­
grams to be written using simple console input and output. The simulation
was implemented using Python wrappers to implement the map and reduce
steps. For the core MD simulations, the highly optimized academic MD
software NAMD was used. The essential algorithm is illustrated in Fig­
ure 3. The state (and input to the Hadoop program) was the state of each
temperature simulation. The state of the simulation consisted of:

2

Courtesy of RIKEN. Used with permission.

http://www.rikenresearch.riken.jp/eng/frontline/6290

P
ot

en
tia

l E
ne

rg
y

300 K

350 K

400 K

450 K

500 K

550 K

600 K

Figure 2: Illustration of simulations at multiple temperatures exploring a
potential energy surface. Higher temperature simulations can cross potential
barriers more quickly, and when a lower energy region is found these results
are transferred to lower energy simulations.

3

Figure 3: Illustration of REMD simulations in the Map/Reduce framework.

• The setpoint temperature of the simulation

• The energy of the simulation

• The coordinates of each atom

• The velocities of each atom

Each line of input/output corresponded to all of the state information for
a single temperature. A simple python program was written to initialize
the REMD using an initial guess for the atomic coordinates. A full REMD
simulation thus consisted of a series of map/reduce calls.

During the Map step, each temperature simulation was progressed by
100,000 MD time steps (approximately 100 ps). The mapping program was
written as a python wrapper for the NAMD MD program. For each temper­
ature, the current coordinates and velocities were written to the appropriate
NAMD input files and NAMD called through the shell. The resulting output
files were then read, and the updated state sent as output. Since NAMD
was required for the simulation, it was packaged with every map/reduce call
as a 2MB executable.

During the reduce step, the updated states were read and, for each set
of neighboring temperature simulations, the temperatures were exchanged
according to the selection criteria listed above. The updated simulation
states and temperatures were then emmitted as output, which could then be
used for another map/reduce call to further progress the REMD simulation.

4

Figure 4: Example used for simulation testing: the unfolded and folded
deca-alanin helix.

3 Results and Performance

The Hadoop-based REMD method was tested using a simple example sim­
ulation: the folding of a deca-alanin helix, illustrated in Figure 4 in both its
folded and unfolded states. The starting configuration was deca-alanin in
an unfolded state, and REMD was performed using 50 temperatures from
300 K to 800 K (i.e. 10 degree increments). The simulation was carried out
on 25-node and 50-node clusters on Amazon EC2.

After 15 calls of the Hadoop-based REMD code, the simulation had
captured the native state at a high temperature, illustrated in Figure 5,
and upon further calls this low-energy conformation was passed to lower
temperatures.

The performance scaling of the solution was investigated on a 25-node
Amazon EC2 Hadoop cluster, shown in Figure 6. Linear performance scaling
was observed between the usage of 1 and 25 nodes. Using 50 map tasks (twice
as many as the number of nodes) resulted in nearly the same performance
as using 25 tasks, suggesting that load-balancing was not an limitation on
performance. Specifying more map tasks than the number of simulations
resulted in increased simulation times, even though the extra map tasks had
no work to perform.

5

Figure 5: Simulation state after 15 calls of the Hadoop map/reduce REMD
program. The native state is shown to the left, and the state for each
temperature is shown on the right, starting from 300 K in the lower right-
hand corner.

6

100 101 102102

103

104

Ti
m

e
[s

]

Number of Map Tasks

Figure 6: Scaling of the REMD code on a 25-node Amazon EC2 cluster.

7

4 Conclusion and Future Work

This project was successful in developing a Hadoop-based REMD simulation
code. However, a number of factors suggest that this approach will not be
adopted for any significant simulations in the near future:

The startup time and general overhead of the Hadoop framework was sig­
nificant. To achieve reasonable efficiency in usage, the number of map/reduce
steps had to be minimized. A reduced number of temperature exchanges
limited the rate at which the potential surface could be explored. Further­
more, the time for a low-energy structure identified at high temperature to
propagate to low temperature simulations is directly related to the time be­
tween exchange steps. Using 50 temperatures, at least 50 map/reduce steps
would be necessary. The overhead of each map/reduce call could be per­
haps be reduced by writing the wrappers in Java and integrated the program
directly into the Hadoop framework.

The broad availability of computation time on NSF and DOE funded su­
percomputers to academic research labs generally means that a map/reduce
framework is not necessary since all machines are collocated and tightly cou­
pled. Using REMD could perhaps be useful on large distributed problems,
but each distributed computer needs to have Hadoop installed. Map/reduce
based REMD may be most appropriate for private companies that wish to
do large-scale simulations on heterogeneous clusters (i.e. drug companies
wishing to do virtual drug screening).

A number of possibilities exist for future work. Reducing the overhead
of the map/reduce calls would increase the overall simultion efficiency. Sec­
ondly, communication time during the accumulation steps in the map/reduce
call could be reduced by using binary representations of the coordinate and
velocity lists (rather than the character-based ones). Finally, the reduce
step took a significant fraction of the computation time even though it was
one of the simplest steps, suggesting that communication between the map
and reduce steps was a limiting factor.

5 Appendix: Simulation Code

5.1 mapper.py
#!/usr/bin/python
import sys
import subprocess
import os

enindex=11

input comes from STDIN (standard input)

8

http:mapper.py

for	 line in sys.stdin:
z=line.split(’ NEWFIELD ’)
newtemp=float(z[0])
oldtemp=float(z[1])
coord=z[2].replace(’NEWLINE’,’\n’)
vel=z[3].replace(’NEWLINE’,’\n’)

#Set the necessary NAMD configuration inputs
f=open(’set_temp.tcl’,’w’)
f.write(’set temp %f \n’ % newtemp)
f.write(’set rsv %f \n’ % (newtemp/oldtemp))
f.write(’set oname alanin_%d\n’ % newtemp)
f.write(’set ncoor newcoor_%d\n’ % newtemp)
f.write(’set nvel newcoor_%d\n’ % newtemp)
f.close()

#Write the coordinates
f=open(’newcoor_%d’ % newtemp,’w’)
f.write(coord)
f.close()

#Write the velocity file
f=open(’newvel_%d’ % newtemp,’w’)
f.write(vel)
f.close()

#Call NAMD, using python 2.7
#subprocess.check_output(["namd2 alanin.namd > alanin.namd_%d.log" % newtemp],shell=True)
subprocess.call(["chmod +x namd2"],shell=True)
subprocess.call(["./namd2 alanin.namd > alanin.namd_%d.log" % newtemp],shell=True)

#Clean-up the temporary coordinates and velocities
os.remove(’newcoor_%d’ % newtemp)
os.remove(’newvel_%d’ % newtemp)

#Parse the log-file and get the final energy
f=open("alanin.namd_%d.log" % newtemp,’r’)
for line in f:

sline=line.split()
if line!=’\n’:

if sline[0]==’ENERGY:’:
energy=float(sline[enindex])

f.close()

#print(’%d,%f’ % (newtemp,energy))

#Read the final coordinates
f=open(’alanin_%d.coor’ % newtemp,’r’)
newcoord=f.read().replace(’\n’,’NEWLINE’)
f.close()

#Read the final velocities
f=open(’alanin_%d.vel’ % newtemp,’r’)
newvel=f.read().replace(’\n’,’NEWLINE’)
f.close()

#Emit the processed state info
print(str(newtemp)+’ NEWFIELD ’+str(oldtemp)+’ NEWFIELD ’+newcoord+’ NEWFIELD ’+newvel+’ NEWFIELD ’ + str(energy))

5.2 reducer.py
#!/usr/bin/python
import sys
import subprocess
import os
import math
import random

Snewtemp=0
kb=1.38*10**(-23)

for line in sys.stdin:
if Snewtemp==0:

#retrive the temperatures and energy

9

http:reducer.py

Sz=line.split(’ NEWFIELD ’)
Snewtemp=float(Sz[0])
Soldtemp=float(Sz[1])
Senergy=float(Sz[4])

else:
#retrive the temperatures and energy

Nz=line.split(’ NEWFIELD ’)
Nnewtemp=float(Nz[0])
Noldtemp=float(Nz[1])
Nenergy=float(Nz[4])

#Calculate beta=1/k/T for the current and saved versions
Nb=1/Nnewtemp/kb
Sb=1/Snewtemp/kb

delta=(Nb-Sb)*(Senergy-Nenergy)

#Swap configurations
if delta<0:

print(str(Nnewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3])
Sz=Nz
Senergy=Nenergy
Soldtemp=Nnewtemp

#Swap configurations
elif math.exp(-delta)<random.random():

print(str(Nnewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3])
Sz=Nz
Senergy=Nenergy
Soldtemp=Nnewtemp

#emit without swapping
else:

print(str(Snewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3])
Sz=Nz
Senergy=Nenergy
Snewtemp=Nnewtemp
Soldtemp=Nnewtemp

print(str(Snewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3])

5.3 geninput.py

geninput.py sets up the input for the map/reduce simulation based on initial
configuration data.

#!/usr/bin/python

#read initial atom coordinates
f=open(’alanin.coor’,’r’)
startpdb=f.read().replace(’\n’,’NEWLINE’)
f.close()

#read the initial atomic velocities
f=open(’alanin.vel’,’r’)
startvel=f.read().replace(’\n’,’NEWLINE’)
f.close()

#specify the temperatures for simulation
temps=[300,325,350,375,400,425,450,475,500,525,550,575,600]
oldtemp=300

towrite=’’

#For each temperature, write the state
for T in range(300,800,10):

towrite=towrite+str(T)+’ NEWFIELD ’+str(oldtemp)+’ NEWFIELD ’+startpdb+’ NEWFIELD ’+startvel+’\n’

#Write the output
f=open(’torun’,’w+’)
f.write(towrite)
f.close()

10

http:geninput.py
http:geninput.py

5.4 NAMD Configuration File (alanin.namd)

This is the required control file for NAMD, which loads the atomic coordi­
nates and velocities from files written by the map/reduce call and runs the
simulation. The setpoint temperature is read from the set temp.tcl control
file also written by the map/reduce call.

NAMD CONFIGURATION FILE FOR DECALANIN

#Get the simulation conditions
source set_temp.tcl

Set the atomic details
coordinates $ncoor
velocities $nvel
#seed 12345

outputEnergies 50000

output params
outputname $oname
binaryoutput no
#DCDfile $oname.dcd
#DCDfreq 100

integrator params
timestep 1.0

force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
margin 0.0
stepspercycle 20

langevin on
langevinTemp $temp

rescalevels $rsv

#Run the simulation
run 500000

11

MIT OpenCourseWare
http://ocw.mit.edu

18.337J / 6.338J Parallel Computing
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://www.cse.illinois.edu/courses/cs554/notes/13_fft_8up.pdf
http://ocw.mit.edu
http://ocw.mit.edu/terms

	Background
	Implementation
	Results and Performance
	Conclusion and Future Work
	Appendix: Simulation Code
	mapper.py
	reducer.py
	geninput.py
	NAMD Configuration File (alanin.namd)

