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1 Background 

Replica exchange molecular dynamics (REMD) is a commonly used tech­
nique to accelerate sampling rates of molecular dynamics simulations by 
performing a number of parallel replica simulations at different tempera­
tures (see Figure 1). Periodically, the temperatures between pairs of replica 
simulations are switched with a probability 
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In most implementations, swaps are only considered for simulations with 
the nearest temperature. If the higher temperature simulation has lower 
energy than the lower temperature simulation, the exchange is automatically 
accepted. However, there is also a chance for the exchange even if this is not 
the case (the exponential term). These concept are similar to Monte-Carlo 
based optimization techniques, and allow for the efficient sampling of the 
simulation potential energy surface without getting trapped in local minima 
(see Figure 2). 

This problem is highly parallel and hierarchical in nature: each replica 
can be simulated using a number of processors, and each replica is indepen­
dent until replicas need to be exchanged. The optimal number of processors 
for a small MD system can vary from O(1) to O(100), and the number of 
replicas is usually > 10 (setting the number and distribution of tempera­
tures determines the probability of exchanges being accepted, and is thus a 
simulation size dependent problem). 
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Figure 1: Illustration of the parallel REMD algorithm (reproduced from 
http://www.rikenresearch.riken.jp/eng/frontline/6290). 

A number of implementations currently exist for performing REMD, 
with most of the production MD codes offering a simple scripting interface. 
In addition, a number of papers have been published proposing compli­
cated manager/slave systems for performing REMD. However, these solu­
tions are not amenable to large heterogeneous computing environments, such 
as those used by the distributed Folding@Home effort. Instead, this project 
enables the REMD simulations using the Apache Hadoop implementation 
of the Map/Reduce framework, which separates the simulation design from 
the underlying simulation framework. Hadoop handles all distributed in­
put/output and load balancing. Furthermore, using Hadoop allows for the 
simple handling of hardware and software failures, which become increas­
ingly disruptive with large-scale MD simulations. 

2 Implementation 

The REMD algorithm was implemented for Hadoop using the streaming 
Hadoop interface. The streaming interface for Hadoop allows Hadoop pro­
grams to be written using simple console input and output. The simulation 
was implemented using Python wrappers to implement the map and reduce 
steps. For the core MD simulations, the highly optimized academic MD 
software NAMD was used. The essential algorithm is illustrated in Fig­
ure 3. The state (and input to the Hadoop program) was the state of each 
temperature simulation. The state of the simulation consisted of: 
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Figure 2: Illustration of simulations at multiple temperatures exploring a 
potential energy surface. Higher temperature simulations can cross potential 
barriers more quickly, and when a lower energy region is found these results 
are transferred to lower energy simulations. 
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Figure 3: Illustration of REMD simulations in the Map/Reduce framework. 

• The setpoint temperature of the simulation 

• The energy of the simulation 

• The coordinates of each atom 

• The velocities of each atom 

Each line of input/output corresponded to all of the state information for 
a single temperature. A simple python program was written to initialize 
the REMD using an initial guess for the atomic coordinates. A full REMD 
simulation thus consisted of a series of map/reduce calls. 

During the Map step, each temperature simulation was progressed by 
100,000 MD time steps (approximately 100 ps). The mapping program was 
written as a python wrapper for the NAMD MD program. For each temper­
ature, the current coordinates and velocities were written to the appropriate 
NAMD input files and NAMD called through the shell. The resulting output 
files were then read, and the updated state sent as output. Since NAMD 
was required for the simulation, it was packaged with every map/reduce call 
as a 2MB executable. 

During the reduce step, the updated states were read and, for each set 
of neighboring temperature simulations, the temperatures were exchanged 
according to the selection criteria listed above. The updated simulation 
states and temperatures were then emmitted as output, which could then be 
used for another map/reduce call to further progress the REMD simulation. 
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Figure 4: Example used for simulation testing: the unfolded and folded 
deca-alanin helix. 

3 Results and Performance 

The Hadoop-based REMD method was tested using a simple example sim­
ulation: the folding of a deca-alanin helix, illustrated in Figure 4 in both its 
folded and unfolded states. The starting configuration was deca-alanin in 
an unfolded state, and REMD was performed using 50 temperatures from 
300 K to 800 K (i.e. 10 degree increments). The simulation was carried out 
on 25-node and 50-node clusters on Amazon EC2. 

After 15 calls of the Hadoop-based REMD code, the simulation had 
captured the native state at a high temperature, illustrated in Figure 5, 
and upon further calls this low-energy conformation was passed to lower 
temperatures. 

The performance scaling of the solution was investigated on a 25-node 
Amazon EC2 Hadoop cluster, shown in Figure 6. Linear performance scaling 
was observed between the usage of 1 and 25 nodes. Using 50 map tasks (twice 
as many as the number of nodes) resulted in nearly the same performance 
as using 25 tasks, suggesting that load-balancing was not an limitation on 
performance. Specifying more map tasks than the number of simulations 
resulted in increased simulation times, even though the extra map tasks had 
no work to perform. 
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Figure 5: Simulation state after 15 calls of the Hadoop map/reduce REMD 
program. The native state is shown to the left, and the state for each 
temperature is shown on the right, starting from 300 K in the lower right-
hand corner. 
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Figure 6: Scaling of the REMD code on a 25-node Amazon EC2 cluster. 
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4 Conclusion and Future Work 

This project was successful in developing a Hadoop-based REMD simulation 
code. However, a number of factors suggest that this approach will not be 
adopted for any significant simulations in the near future: 

The startup time and general overhead of the Hadoop framework was sig­
nificant. To achieve reasonable efficiency in usage, the number of map/reduce 
steps had to be minimized. A reduced number of temperature exchanges 
limited the rate at which the potential surface could be explored. Further­
more, the time for a low-energy structure identified at high temperature to 
propagate to low temperature simulations is directly related to the time be­
tween exchange steps. Using 50 temperatures, at least 50 map/reduce steps 
would be necessary. The overhead of each map/reduce call could be per­
haps be reduced by writing the wrappers in Java and integrated the program 
directly into the Hadoop framework. 

The broad availability of computation time on NSF and DOE funded su­
percomputers to academic research labs generally means that a map/reduce 
framework is not necessary since all machines are collocated and tightly cou­
pled. Using REMD could perhaps be useful on large distributed problems, 
but each distributed computer needs to have Hadoop installed. Map/reduce 
based REMD may be most appropriate for private companies that wish to 
do large-scale simulations on heterogeneous clusters (i.e. drug companies 
wishing to do virtual drug screening). 

A number of possibilities exist for future work. Reducing the overhead 
of the map/reduce calls would increase the overall simultion efficiency. Sec­
ondly, communication time during the accumulation steps in the map/reduce 
call could be reduced by using binary representations of the coordinate and 
velocity lists (rather than the character-based ones). Finally, the reduce 
step took a significant fraction of the computation time even though it was 
one of the simplest steps, suggesting that communication between the map 
and reduce steps was a limiting factor. 

5 Appendix: Simulation Code 

5.1 mapper.py 
#!/usr/bin/python 
import sys 
import subprocess 
import os 

enindex=11 

# input comes from STDIN (standard input) 
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for	 line in sys.stdin: 
z=line.split(’ NEWFIELD ’) 
newtemp=float(z[0]) 
oldtemp=float(z[1]) 
coord=z[2].replace(’NEWLINE’,’\n’) 
vel=z[3].replace(’NEWLINE’,’\n’) 

#Set the necessary NAMD configuration inputs  
f=open(’set_temp.tcl’,’w’)  
f.write(’set temp %f \n’ % newtemp)  
f.write(’set rsv %f \n’ % (newtemp/oldtemp))  
f.write(’set oname alanin_%d\n’ % newtemp)  
f.write(’set ncoor newcoor_%d\n’ % newtemp)  
f.write(’set nvel newcoor_%d\n’ % newtemp)  
f.close()  

#Write the coordinates  
f=open(’newcoor_%d’ % newtemp,’w’)  
f.write(coord)  
f.close()  

#Write the velocity file  
f=open(’newvel_%d’ % newtemp,’w’)  
f.write(vel)  
f.close()  

#Call NAMD, using python 2.7  
#subprocess.check_output(["namd2 alanin.namd > alanin.namd_%d.log" % newtemp],shell=True)  
subprocess.call(["chmod +x namd2"],shell=True)  
subprocess.call(["./namd2 alanin.namd > alanin.namd_%d.log" % newtemp],shell=True)  

#Clean-up the temporary coordinates and velocities  
os.remove(’newcoor_%d’ % newtemp)  
os.remove(’newvel_%d’ % newtemp)  

#Parse the log-file and get the final energy  
f=open("alanin.namd_%d.log" % newtemp,’r’)  
for line in f:  

sline=line.split() 
if line!=’\n’: 

if sline[0]==’ENERGY:’: 
energy=float(sline[enindex]) 

f.close() 

#print(’%d,%f’ % (newtemp,energy)) 

#Read the final coordinates  
f=open(’alanin_%d.coor’ % newtemp,’r’)  
newcoord=f.read().replace(’\n’,’NEWLINE’)  
f.close()  

#Read the final velocities  
f=open(’alanin_%d.vel’ % newtemp,’r’)  
newvel=f.read().replace(’\n’,’NEWLINE’)  
f.close()  

#Emit the processed state info  
print(str(newtemp)+’ NEWFIELD ’+str(oldtemp)+’ NEWFIELD ’+newcoord+’ NEWFIELD ’+newvel+’ NEWFIELD ’ + str(energy))  

5.2 reducer.py 
#!/usr/bin/python 
import sys 
import subprocess 
import os 
import math 
import random 

Snewtemp=0 
kb=1.38*10**(-23) 

for line in sys.stdin: 
if Snewtemp==0: 

#retrive the temperatures and energy 
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Sz=line.split(’ NEWFIELD ’)  
Snewtemp=float(Sz[0])  
Soldtemp=float(Sz[1])  
Senergy=float(Sz[4])  

else: 
#retrive the temperatures and energy 

Nz=line.split(’ NEWFIELD ’) 
Nnewtemp=float(Nz[0]) 
Noldtemp=float(Nz[1]) 
Nenergy=float(Nz[4]) 

#Calculate beta=1/k/T for the current and saved versions  
Nb=1/Nnewtemp/kb  
Sb=1/Snewtemp/kb  

delta=(Nb-Sb)*(Senergy-Nenergy) 

#Swap configurations 
if delta<0: 

print(str(Nnewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3]) 
Sz=Nz 
Senergy=Nenergy 
Soldtemp=Nnewtemp 

#Swap configurations 
elif math.exp(-delta)<random.random(): 

print(str(Nnewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3]) 
Sz=Nz 
Senergy=Nenergy 
Soldtemp=Nnewtemp 

#emit without swapping 
else: 

print(str(Snewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3]) 
Sz=Nz 
Senergy=Nenergy 
Snewtemp=Nnewtemp 
Soldtemp=Nnewtemp 

print(str(Snewtemp)+’ NEWFIELD ’+str(Snewtemp)+’ NEWFIELD ’+Sz[2]+’ NEWFIELD ’+Sz[3]) 

5.3 geninput.py 

geninput.py sets up the input for the map/reduce simulation based on initial 
configuration data. 

#!/usr/bin/python 

#read initial atom coordinates 
f=open(’alanin.coor’,’r’) 
startpdb=f.read().replace(’\n’,’NEWLINE’) 
f.close() 

#read the initial atomic velocities 
f=open(’alanin.vel’,’r’) 
startvel=f.read().replace(’\n’,’NEWLINE’) 
f.close() 

#specify the temperatures for simulation 
temps=[300,325,350,375,400,425,450,475,500,525,550,575,600] 
oldtemp=300 

towrite=’’ 

#For each temperature, write the state 
for T in range(300,800,10): 

towrite=towrite+str(T)+’ NEWFIELD ’+str(oldtemp)+’ NEWFIELD ’+startpdb+’ NEWFIELD ’+startvel+’\n’ 

#Write the output 
f=open(’torun’,’w+’) 
f.write(towrite) 
f.close() 
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5.4 NAMD Configuration File (alanin.namd) 

This is the required control file for NAMD, which loads the atomic coordi­
nates and velocities from files written by the map/reduce call and runs the 
simulation. The setpoint temperature is read from the set temp.tcl control 
file also written by the map/reduce call. 

# NAMD CONFIGURATION FILE FOR DECALANIN 

#Get the simulation conditions 
source set_temp.tcl 

# Set the atomic details 
coordinates $ncoor 
velocities $nvel 
#seed 12345 

outputEnergies 50000 

# output params 
outputname $oname 
binaryoutput no 
#DCDfile $oname.dcd 
#DCDfreq 100 

# integrator params 
timestep 1.0 

# force field params 
structure alanin.psf 
parameters alanin.params 
exclude scaled1-4 
1-4scaling 1.0 
switching on 
switchdist 8.0 
cutoff 12.0 
pairlistdist 13.5 
margin 0.0 
stepspercycle 20 

langevin on 
langevinTemp $temp 

rescalevels $rsv 

#Run the simulation 
run 500000 
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