A. INTRODUCTION

A1. Ramsey's theorem

ps1

ps1

ps1

ps1

 $ps1*$

- (a) Let s and r be positive integers. Show that there is some integer $n = n(s, r)$ so that if every edge of the complete graph K_n on n vertices is colored with one of r colors, then there is a monochromatic copy of K_s .
- (b) Let $s \geq 3$ be a positive integer. Show that if the edges of the complete graph on $\binom{2s-2}{s-1}$ vertices are colored with 2 colors, then there is a monochromatic copy of K_s .
- A2. Prove that it is possible to color N using two colors so that there is no infinitely long monochromatic arithmetic progression.
- A3. Many monochromatic triangles
	- (a) True or false: If the edges of K_n are colored using 2 colors, then at least $1/4 o(1)$ fraction of all triangles are monochromatic. (Note that $1/4$ is the fraction one expects if the edges were colored uniformly at random.)
	- (b) True or false: if the edges of K_n are colored using 3 colors, then at least $1/9 o(1)$ fraction of all triangles are monochromatic.
	- (c) (\star do not submit) True or false: if the edges of K_n are colored using 2 colors, then at least $1/32 - o(1)$ fraction of all copies of K_4 's are monochromatic.
	- (d) (do not submit) Prove that for every s and r, there is some constant $c > 0$ so that for every sufficiently large n, if the edges of K_n are colored using r colors, then at least c fraction of all copies of K_s are monochromatic.

B. Forbidding subgraphs

- ps1 B1. Show that a graph with *n* vertices and *m* edges has at least $\frac{4m}{3n} \left(m - \frac{n^2}{4} \right)$ triangles.
- $ps1*$ B2. Prove that every *n*-vertex graph with at least $n^2/4 + 1$ edges contains at least $n/2$ triangles.
- $ps1*$ B3. Prove that every *n*-vertex graph with at least $n^2/4 + 1$ edges contains some edge in at least $(1/6 - o(1))n$ triangles, and that this constant $1/6$ is best possible.
	- B4. K_{r+1} -free graphs close to the Turán bound are nearly r-partite
		- (a) Let G be an n-vertex triangle-free graph with at least $n^2/4$ k edges. Prove that G can be made bipartite by removing at most k edges.
		- (b) Let G be an n-vertex K_{r+1} -free graph with at least $e(T_{n,r}) k$ edges, where $T_{n,r}$ is the Turán graph. Prove that G can be made r-partite by removing at most k edges.
	- B5. Let G be a K_{r+1} -free graph. Prove that there is another graph H on the same vertex set as G such that $\chi(H) \leq r$ and $d_H(x) \geq d_G(x)$ for every vertex x (here $d_H(x)$ is the degree of x in H, and likewise with $d_G(x)$ for G). Give another proof of Turán's theorem from this fact.
	- B6. Turán density. Let H be a r-uniform hypergraph, let its Turán number $ex^{(r)}(n, H)$ be the maximum number of edges in an r -uniform hypergraph on n vertices that does not contain H as a subgraph. Prove that the fraction $\exp(n, H) / \binom{n}{r}$ is a nonincreasing function of n, so that it has a limit $\pi(H)$ as $n \to \infty$, called the Turán density of H.
- ps1 B7. Supersaturation. Let H be a graph and ρ a constant such that $\limsup_{n\to\infty} \exp(n, H)/\binom{n}{2} \leq \rho$. Prove that for every $\epsilon > 0$ there exists some constant $c = c(H, \epsilon) > 0$ such that for sufficiently large n, every n-vertex graph with at least $(\rho + \epsilon) {n \choose 2}$ edges contains at least $cn^{v(H)}$ copies of H.
- ps1 B8. Let S be a set of n points in the plane, with the property that no two points are at distance greater than 1. Show that S has at most $n^2/3$ pairs of points at distance greater than $1/\sqrt{2}$. Also, show that the bound $n^2/3$ is tight (i.e., cannot be improved).
	- B9. (How not to define density in a product set) Let $S \subset \mathbb{Z}^2$. Define

ps1

ps2

ps2 $ps2*$

ps2

$$
d_k(S) = \max_{\substack{A,B \subset \mathbb{Z} \\ |A| = |B| = k}} \frac{|S \cap (A \times B)|}{|A||B|}.
$$

Show that $\lim_{k\to\infty} d_k(S)$ exists and is always either 0 or 1.

- B10. Show that, for every $\epsilon > 0$, there exists $\delta > 0$ such that every graph with n vertices and at least ϵn^2 edges contains a copy of $K_{s,t}$ where $s \geq \delta \log n$ and $t \geq n^{0.99}$.
- B11. Density version of Kővári–Sós–Turán. Prove that for every positive integers $s \leq t$, there are constants $C, c > 0$ such that every *n*-vertex graph with $p{n \choose 2}$ edges contains at least $cp^{st}n^{s+t}$ copies of $K_{s,t}$, provided that $p \geq Cn^{-1/s}$.
- $ps2*$ B12. Hypergraph Kővári–Sós–Turán and a proof of Erdős–Stone–Simonovits
	- (a) Prove that for every positive integer t there is some C so that every 3-uniform hypergraph on *n* vertices and at least Cn^{3-t-2} edges (i.e., triples) contains a copy of $K_{t,t,t}^{(3)}$, the complete tripartite 3-uniform hypergraph with t vertices in each part.
	- (b) Deduce that $ex(n, H) \leq (\frac{1}{4} + o(1))n^2$ for every graph H with $\chi(H) \leq 3$.
	- (c) Explain how to generalize the above strategy to prove the Erd®s–Stone–Simonovits theorem for every H (sketch the key steps).
	- B13. Find a graph H with $\chi(H) = 3$ and $ex(n, H) > \frac{1}{4}n^2 + n^{1.99}$ for all sufficiently large n.
	- B14. Construction of a C_6 -free graph. Let q be an odd prime power. Let S denote the quadratic surface in the 4-dimensional projective space over \mathbb{F}_q (whose points are nonzero points of \mathbb{F}_q^5 modulo the equivalence relation $(x_0, x_1, x_2, x_3, x_4) \sim (\lambda x_0, \lambda x_1, \lambda x_2, \lambda x_3, \lambda x_4)$ for $\lambda \in \mathbb{F}_q^{\times}$ given by the equation (you may use another quadratic form if you wish)

$$
x_0^2 + 2x_1x_2 + 2x_3x_4 = 0.
$$

Let $\mathcal L$ be the set of lines contained in S .

- (a) Prove that no three lines of $\mathcal L$ lie in the same plane.
- (b) Show that the point-line incidence bipartite graph between S and $\mathcal L$ is a $(q+1)$ -regular graph on $2(q^3 + q^2 + q + 1)$ vertices with no cycles of length at most 6. Conclude that $ex(n, C_6) \geq cn^{4/3}$ for some constant $c > 0$.

The next two problems concern the dependent random choice technique.

- B15. Let $\epsilon > 0$. Show that, for sufficiently large n, every K_4 -free graph with n vertices and at least ϵn^2 edges contains an independent set of size at least $n^{1-\epsilon}$.
- $ps2*$ B16. Extremal numbers of degenerate graphs
- (a) Prove that there is some absolute constant $c > 0$ so that for every positive integer r, every n-vertex graph with at least $n^{2-c/r}$ edges contains disjoint vertex subsets A and B such that every subset of r vertices in A has at least n^c neighbors in B and every subset of r vertices in B has at least n^c neighbors in A.
- (b) We say that a graph H is r-degenerate if its vertices can be ordered so that every vertex has at most r neighbors that appear before it in the ordering. Show that for every r degenerate bipartite graph H there is some constant $C > 0$ so that $ex(n, H) \leq Cn^{2-c/r}$, where c is the same absolute constant from part (a) $(c$ should not depend on H or r).
- ps2 B17. Let T be a tree with k edges. Show that $ex(n,T) \leq kn$.
- $_{ps2\star}$ B18. Show that every *n*-vertex triangle-free graph with minimum degree greater than $2n/5$ is bipartite.

C. Szemerédi's regularity lemma and applications

For simplicity, you are welcome to apply the equitable version of Szemerédi's regularity lemma.

- C1. Let G be a graph and $X, Y \subset V(G)$. If (X, Y) is an $\epsilon \eta$ -regular pair, then (X', Y') is ϵ -regular for all $X' \subset X$ with $|X'| \ge \eta |X|$ and $Y' \subset Y$ with $|Y'| \ge \eta |Y|$.
- C2. Let G be a graph and $X, Y \subset V(G)$. Say that (X, Y) is ϵ -homogeneous if for all $A \subset X$ and $B \subset Y$, one has

 $|e(A, B) - |A| |B| d(X, Y)| \le \epsilon |X| |Y|.$

Show that if (X, Y) is ϵ -regular, then it is ϵ -homogeneous. Also, show that if (X, Y) is ϵ^3 -homogeneous, then it is ϵ -regular.

- ps2 C3. Unavoidability of irregular pairs. Let the half-graph H_n be the bipartite graph on 2n vertices $\{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ with edges $\{a_i b_j : i \leq j\}.$
	- (a) For every $\epsilon > 0$, explicitly construct an ϵ -regular partition of H_n into $O(1/\epsilon)$ parts.
	- (b) Show that there is some $c > 0$ such that for every $\epsilon \in (0, c)$, every integer k and sufficiently large multiple n of k, every partition of the vertices of H_n into k equal-sized parts contains at least ck pairs of parts which are not ϵ -regular.
- ps2 C4. Show that there is some absolute constant $C > 0$ such that for every $0 < \epsilon < 1/2$, every graph on n vertices contains an ϵ -regular pair of vertex subsets each with size at least δn , where $\delta = 2^{-\epsilon^{-C}}$.
	- C5. Existence of a regular set. Given a graph G, we say that $X \subset V(G)$ is ϵ -regular if the pair (X, X) is ϵ -regular, i.e., for all $A, B \subset X$ with $|A|, |B| \geq \epsilon |X|$, one has $|d(A, B) - d(X, X)| \leq \epsilon$. This problem asks for two different proofs of the claim: for every $\epsilon > 0$, there exists $\delta > 0$ such that every graph contains an ϵ -regular subset of vertices of size at least δ fraction of the vertex set.
- ps3 (a) Prove the claim using Szemerédi's regularity lemma, showing that one can obtain the ϵ -regular subset by combining a suitable sub-collection of parts from a regular partition.
- $p s 3*$ (b) Give an alternative proof of the claim showing that one can take $\delta = \exp(-\exp(\epsilon^{-C}))$ for some constant C.
- ps3 C6. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that every *n*-vertex K_4 -free graph with at least $(\frac{1}{8} + \epsilon)n^2$ edges contains an independent set of size at least δn .
- C7. Show that for ever $\epsilon > 0$, there exists $\delta > 0$ such that every *n*-vertex K_4 -free graph with at least $(\frac{1}{8} - \delta)n^2$ edges and independence number at most δn can be made bipartite by removing at most ϵn^2 edges.
- \overline{p} s3 C8. Show that the number of non-isomorphic *n*-vertex triangle-free graphs is $2^{(1/4+o(1))n^2}$.
	- C9. Show that for every H there exists some $\delta > 0$ such that for all sufficiently large n, if G is an n-vertex graph with average degree at least $(1 - \delta)n$ and the edges of G are colored using 2 colors, then there is a monochromatic copy of H.
- ps3 C10. Show that for every H and $\epsilon > 0$ there exists $\delta > 0$ such that every graph on n vertices without an induced copy of H contains an induced subgraph on at least δn vertices whose edge density is at most ϵ or at least $1 - \epsilon$.
	- C11. Random graphs are ϵ -regular. Let G be a random bipartite graph between disjoint sets of vertices X and Y with $|X| = |Y| = n$, such that every pair in $X \times Y$ appears as an edge of G independently with the same probability. Show that there is some absolute constant $c > 0$ such that with probability at least $1 - e^{-n^{1+c}}$ for sufficiently large n, the pair (X, Y) is ϵ -regular in G with $\epsilon = n^{-c}$.

(You may use the following special case of the Azuma–Hoeffding inequality: if X_1, \ldots, X_N are independent random variables taking values in [−1, 1], and $S = X_1 + \cdots + X_N$, then $\mathbb{P}(S \geq \mathbb{E}S + t) \leq e^{-t^2/(2N)}$.)

- $p\in3*$ C12. Show that for every graph H there is some graph G such that if the edges of G are colored with two colors, then some induced subgraph of G is a monochromatic copy of H .
- $\overline{ps3*}$ C13. Show that for every $c > 0$, there exists $c' > 0$ such that every graph on *n* vertices with at least cn^2 edges contains a d-regular subgraph with $d \geq c'n$ (here d-regular refers to every vertex having degree d).
- ps4 C14. Show that there is a constant $c > 0$ so that for every sufficiently small $\epsilon > 0$ and sufficiently large $n > n_0(\epsilon)$ there exists an *n*-vertex graph with at most $\epsilon^{c \log(1/\epsilon)} n^3$ triangles that cannot be made triangle-free by removing fewer than ϵn^2 edges. (In particular, this shows that one cannot take $\delta = \epsilon^C$ for some constant $C > 0$ in the triangle removal lemma.)
	- C15. Removal lemma for bipartite graphs with polynomial bounds. Prove that for every bipartite graph H, there is a constant C such that for every $\epsilon > 0$, every n-vertex graph with fewer than $\epsilon^C n^{v(H)}$ copies of H can be made H-free by removing at most ϵn^2 edges.
- $\overline{ps4}$ C16. Let H be a n-vertex 3-uniform hypergraph such that every 6 vertices contain strictly fewer than 3 triples. Prove that H has $o(n^2)$ edges. (Hint in white:
- \overline{p} s4 C17. Assuming the tetrahedron removal lemma for 3-uniform hypergraphs, deduce that if $A \subset [N]^2$ contains no axes-aligned squares (i.e., four points of the form (x, y) , $(x + d, y)$, $(x, y + d)$, $(x + d, y)$ $d, y + d$, where $d \neq 0$, then $|A| = o(N^2)$.
- \sqrt{p} C18. Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that if $A \subset [n]$ has fewer than δn^2 many triples $(x, y, z) \in A^3$ with $x + y = z$, then there is some $B \subset A$ with $|A \setminus B| \leq \epsilon n$ such that B is sum-free, i.e., there do not exist $x, y, z \in B$ with $x + y = z$.

D. Spectral graph theory and pseudorandom graphs

ps4 D1. Let G be an n-vertex graph. The Laplacian of G is defined to be $L_G = D_G - A_G$, where A_G is the adjacency matrix of G and D_G a diagonal matrix whose entry corresponding to the vertex $v \in V(G)$ is the degree of v in G (so that L_G is a symmetric matrix with all row sums zero). Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of L_G , with $\lambda_1 = 0$ corresponding to the all-1 vector. Prove that for every $S \subset V(G)$ with $|S| \leq n/2$, one has (writing $\overline{S} := V(G) \setminus S$)

$$
e(S,\overline{S})\geq \frac{1}{2}\lambda_2|S|
$$

ps4 \star D2. Let p be an odd prime and $A, B \subset \mathbb{Z}/p\mathbb{Z}$. Show that

$$
\sum_{a \in A} \sum_{b \in B} \left(\frac{a+b}{p} \right) \le p\sqrt{p}
$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol defined by

$$
\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \pmod{p} \\ 1 & \text{if } a \text{ is a nonzero quadratic residue mod } p \\ -1 & \text{if } a \text{ is a quadratic nonresidue mod } p \end{cases}
$$

D3. Quasirandom transitive graphs. Prove that if an n-vertex d-regular vertex-transitive graph G satisfies

 $e(X, Y) - \frac{d}{n}|X||Y| \leq \epsilon dn$ for all $X, Y \subseteq V(G)$,

then all the eigenvalues of the adjacency matrix of G , other than the largest one, are at most 8d in absolute value.

- ps4 D4. Prove that the diameter of an (n, d, λ) –graph is at most $\lceil \log n / \log(d/\lambda) \rceil$. (The *diameter* of a graph is the maximum distance between a pair of vertices.)
	- D5. Let G be an *n*-vertex d-regular graph. Suppose *n* is divisible by k. Color the vertices of G with k colors (not necessarily a proper coloring) such that each color appears exactly n/k times. Suppose that all eigenvalues, except the top one, of the adjacency matrix of G are at most d/k in absolute value. Show that there is a vertex of G whose neighborhood contains all k colors.
- ps4 D6. Prove that for every positive integer d and real $\epsilon > 0$, there is some constant $c > 0$ so that if G is an *n*-vertex d-regular graph with adjacency matrix A_G , then at least cn of the eigenvalues of A_G are greater than $2\sqrt{d-1} - \epsilon$.
- $ps4\star$ D7. Show that for every d and r, there is some $\epsilon > 0$ such that if G is a d-regular graph, and $S \subset V(G)$ is such that every vertex of G is within distance r of S, then the top eigenvalue of the adjacency matrix of $G-S$ (i.e., remove S and its incident edges from G) is at most $d-\epsilon$.
- \vert ps4 \star D8. Prove or disprove: there exists an absolute constant C such that the adjacency matrix of every n-vertex Cayley graph has an eigenbasis in \mathbb{C}^n (consisting of n orthonormal unit eigenvectors) all of whose coordinates are each at most C/\sqrt{n} in absolute value.

E. Graph limits and homomorphism density inequalities

Note: A "graphon" is a symmetric measurable function $W: [0, 1]^2 \rightarrow [0, 1]$.

 $p s5$ E1. Weak regularity decomposition (instead of partition).

(a) Let $\epsilon > 0$. Show that for every graphon W, there exist measurable $S_1, \ldots, S_k, T_1, \ldots, T_k \subseteq$ [0, 1] and reals $a_1, \ldots, a_k \in \mathbb{R}$, with $k < \epsilon^{-2}$, such that

$$
W - \sum_{i=1}^k a_i \mathbf{1}_{S_i \times T_i} \le \epsilon.
$$

The above conclusion allows one to approximate an arbitrary graph(on) as a sum of most ϵ^{-2} components. In the next following parts, you will show how to recover a regularity partition from the approximation above.

- (b) Show that the stepping operator $\mathcal P$ is contractive with respect to the cut norm, in the sense that if $W: [0, 1]^2 \to \mathbb{R}$ is a measurable symmetric function, then $||W_{\mathcal{P}}||_{\square} \le ||W||_{\square}$.
- (c) Let P be a partition of [0, 1] into measurable sets. Let U be a graphon that is constant on $S \times T$ for each $S, T \in \mathcal{P}$. Show that for every graphon W, one has

$$
||W - W_{\mathcal{P}}||_{\square} \le 2||W - U||_{\square}.
$$

- (d) Use (a) and (c) to give a different proof of the weak regularity lemma (with slightly worse bounds than the one given in class): show that for every $\epsilon > 0$ and every graphon W, there exists partition P of [0, 1] into $2^{O(1/\epsilon^2)}$ measurable sets such that $||W - W_{\mathcal{P}}||_{\square} \leq \epsilon$.
- E2. Define $W: [0, 1]^2 \to \mathbb{R}$ by $W(x, y) = 2\cos(2\pi(x y))$. Let G be a graph. Show that $t(G, W)$ is the number of ways to orient all edges of G so that every vertex has the same number of incoming edges as outgoing edges.
- E3. Show that for every $\epsilon > 0$ there is some $C > 0$ such that if W is a graphon, and $S \subset [0, 1]$ is a set of such that, writing $W \circ W(x, z) = \int_{[0,1]} W(x, y)W(y, z) dy$,

$$
\int_{[0,1]} |W \circ W(s, z) - W \circ W(t, z)| \ dz > \epsilon
$$

for all distinct $s, t \in S$, then $|S| \leq C$.

- E4. Let W be a $\{0,1\}$ -valued graphon. Suppose graphons W_n satisfy $\|W_n W\|_{\square} \to 0$ as $n \to \infty$. Show that $||W_n - W||_1 \to 0$ as $n \to \infty$.
- $\overline{ps5}$ E5. "Regularity lemma" for bounded degree graphs. The r-local sample of a graph G is defined to be the random rooted graph induced by all vertices within distance r from a uniform random vertex v of G , and setting v to be the root.

Show that for every $\epsilon > 0$ and $r, \Delta \in \mathbb{N}$ there exists $M = M(\epsilon, r, \Delta)$ such that if G is a graph with maximum degree at most Δ , then there exists a graph H on at most M vertices such that the r-local samples of G and H differ by at most ϵ in total variation distance.

E6. Strong regularity lemma. In this problem, you will give an alternate proof of the strong regularity lemma with explicit bounds.

Let $\epsilon = (\epsilon_1, \epsilon_2, \dots)$ be a sequence of positive reals. By repeatedly applying the weak regularity lemma, show that there is some $M = M(\epsilon)$ such that for every graphon W, there

is a pair of partitions P and Q of [0, 1] into measurable sets, such that Q refines $\mathcal{P}, |\mathcal{Q}| \leq M$ (here $|Q|$ denotes the number of parts of Q),

$$
||W - W_{\mathcal{Q}}||_{\Box} \le \epsilon_{|\mathcal{P}|}
$$
 and $||W_{\mathcal{Q}}||_2^2 \le ||W_{\mathcal{P}}||_2^2 + \epsilon_1^2$.

Furthermore, deduce the strong regularity lemma in the following form: one can write

$$
W = W_{\rm str} + W_{\rm psr} + W_{\rm sml}
$$

where W_{str} is a k-step-graphon with $k \leq M$, $||W_{\text{psr}}||_{\square} \leq \epsilon_k$, and $||W_{\text{sm}}||_1 \leq \epsilon_1$. State your bounds on M explicitly in terms of ϵ . (Note: the parameter choice $\epsilon_k = \epsilon/k^2$ roughly corresponds to Szemerédi's regularity lemma, in which case your bound on M should be an exponential tower of 2's of height $\epsilon^{-O(1)}$; if not then you are doing something wrong.)

- ps5 E7. Inverse counting lemma. Using the moments lemma $(t(F, U) = t(F, W)$ for all F implies $\delta_{\Box}(U, W) = 0$ and compactness of the space of graphons, deduce that for every $\epsilon > 0$, there exist $k \in \mathbb{N}$ and $\eta > 0$ such that if U and W are graphons such that $|t(F, U) - t(F, W)| \leq \eta$ for all graphs F on k vertices, then $\delta_{\square}(U, W) \leq \epsilon$.
- $\overline{ps5*}$ E8. Generalized maximum cut. For symmetric measurable functions $W, U : [0, 1]^2 \to \mathbb{R}$, define

$$
\mathcal{C}(W,U):=\sup_{\varphi}\left\langle W,U^{\varphi}\right\rangle=\sup_{\varphi}\int W(x,y)U(\varphi(x),\varphi(y))\,dxdy,
$$

where φ ranges over all measure-preserving bijections on [0, 1]. Extend the definition of $\mathcal{C}(\cdot, \cdot)$ to graphs by $\mathcal{C}(G, \cdot) := \mathcal{C}(W_G, \cdot),$ etc.

- (a) Is $\mathcal{C}(U, W)$ continuous jointly in (U, W) with respect to the cut norm? Is it continuous in U if W is held fixed?
- (b) Show that if W_1 and W_2 are graphons such that $\mathcal{C}(W_1, U) = \mathcal{C}(W_2, U)$ for all graphons U, then $\delta_{\square}(W_1, W_2) = 0$.
- (c) Let G_1, G_2, \ldots be a sequence of graphs such that $\mathcal{C}(G_n, U)$ converges as $n \to \infty$ for every graphon U. Show that G_1, G_2, \ldots is convergent.
- (d) Can the hypothesis in (c) be replaced by " $\mathcal{C}(G_n, H)$ converges as $n \to \infty$ for every graph H "?
- E9. (a) Let G_1 and G_2 be two graphs such that $hom(F, G_1) = hom(F, G_2)$ for every graph F. Show that G_1 and G_2 are isomorphic.
	- (b) Let G_1 and G_2 be two graphs such that $hom(G_1, H) = hom(G_2, H)$ for every graph H. Show that G_1 and G_2 are isomorphic.

E10. Fix $0 < p < 1$. Let G be a graph on n vertices with average degree at least pn. Prove:

- (a) The number of labeled copies of $K_{3,3}$ in G is at least $(p^9 o(1))n^6$.
- **ps5** (b) The number of labeled 6-cycles in G is at least $(p^6 o(1))n^6$. (You may not use part (d) for part (b))
- **ps5** (c) The number of labeled copies of $Q_3 = \prod_{i=1}^{n} \ln G$ is at least $(p^{12} o(1))n^8$.
- $\overline{\text{ps5}\star}$ (d) The number of labeled paths on 4 vertices in G is at least $(p^3 o(1))n^4$.

 $|$ ps5 \star $|$ E11. Let \mathcal{F}_m denote the set of all m-edge graphs without isolated vertices (up to isomorphism). Suppose $p \in [0, 1]$ is a constant, and G_n is a sequence of graphs such that

$$
\lim_{n \to \infty} \sum_{F \in \mathcal{F}_m} t(F, G_n) = \sum_{F \in \mathcal{F}_m} p^{|E(F)|}
$$

for every positive integer m. Prove that G_n converges to the constant graphon p.

$$
\boxed{\text{ps5}\star}
$$
 E12. Prove there is a function $f: [0,1] \to [0,1]$ with $f(x) \geq x^2$ and $\lim_{x\to 0} f(x)/x^2 = \infty$ such that

 $t(K_{4}^{-}, W) \geq f(t(K_{3}, W))$

for all graphons W. Here K_4^- is K_4 with one edge removed.

F. Fourier analysis and linear patterns

Some conventions: for $f: \mathbb{F}_p^n \to \mathbb{C}$ with prime p ,

• $\widehat{f}(r) = \mathbb{E}_{x \in \mathbb{F}_p^n} f(x) \omega^{-r \cdot x}$ where $\omega = e^{2\pi i/p}$

•
$$
||f||_s := (\mathbb{E}[|f|^s])^{1/s}
$$

• $||f||_{\infty} = \max_{r \in \mathbb{F}_p^n} |f(r)|$

ps5 F1. Fourier does not control 4-AP counts. Let $A = \{x \in \mathbb{F}_5^n : x \cdot x = 0\}$. Write $N = 5^n$.

- (a) Show that $|A| = (1/5 + o(1))N$ and $|1_A(r)| = o(1)$ for all $r \neq 0$.
- (b) Show that $|\{(x,y)\in \mathbb{F}_5^n : x, x+y, x+2y, x+3y \in A\}| \neq (5^{-4}+o(1))N^2$.

ps6 F2. Linearity testing. Show that for every prime p and real $\epsilon > 0$, there exists $\delta > 0$ such that if $f: \mathbb{F}_p^n \to \mathbb{F}_p$ is a function such that

$$
\mathbb{P}_{x,y\in\mathbb{F}_p^n}(f(x)+f(y)=f(x+y))\geq 1-\delta
$$

then there exists some $a \in \mathbb{F}_p^n$ such that

$$
\mathbb{P}_{x\in\mathbb{F}_p^n}(f(x)=a_1x_1+\cdots+a_nx_n)\geq 1-\epsilon,
$$

where in the above $\mathbb P$ expressions x and y are chosen i.i.d. uniform from $\mathbb F_p^n$.

ps6 F3. Counting solutions to a single linear equation.

(a) Given a function $f: \mathbb{Z} \to \mathbb{C}$ with finite support, define $\widehat{f}: \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ by

$$
\widehat{f}(t) = \sum_{n \in \mathbb{Z}} f(n) e^{-2\pi int}.
$$

Let $c_1, \ldots, c_k \in \mathbb{Z}$. Let $A \subset \mathbb{Z}$ be a finite set. Show that

$$
|\{(a_1,\ldots,a_k)\in A^k: c_1a_1+\cdots+c_ka_k=0\}|=\int_0^1\widehat{1_A}(c_1t)\widehat{1_A}(c_2t)\cdots\widehat{1_A}(c_kt)\,dt.
$$

- (b) Show that if a finite set A of integers contains $\beta |A|^2$ solutions $(a, b, c) \in A^3$ to $a+2b = 3c$, then it contains at least $\beta^2 |A|^3$ solutions $(a, b, c, d) \in A^4$ to $a + b = c + d$.
- $\overline{\text{ps6}}$ F4. Let $a_1, \ldots, a_m, b_1, \ldots, b_m, c_1, \ldots, c_m \in \mathbb{F}_2^n$. Suppose that the equation $a_i + b_j + c_k = 0$ holds if and only if $i = j = k$. Show that there is some constant $\epsilon > 0$ such that $m \leq (2 - \epsilon)^n$ for all sufficiently large n .

F5. Strong arithmetic regularity lemma. Show that for every $\epsilon = (\epsilon_0, \epsilon_1, \dots)$ with $1 \ge \epsilon_0 \ge \epsilon_1 \ge$ \cdots there exists $m = m(\epsilon)$ such that for every $f: \mathbb{F}_3^n \to [0,1]$ there exist a pair of subspaces $W \leq U$ of \mathbb{F}_3^n with $\operatorname{codim} {\mathbf W} \leq m$ and a decomposition

$$
f = f_{\rm str} + f_{\rm psr} + f_{\rm sml}
$$

such that

- $f_{\text{str}} = f_U$ and $f_{\text{str}} + f_{\text{sml}} = f_W$,
- $||f_{\text{psr}}||_{\infty} \leq \epsilon_{\text{codim }U}$
- $||f_{\text{sml}}||_2 \leq \epsilon_0$

F6. Counting lemma for 3-APs with restricted differences. Let $f: \mathbb{F}_3^n \to [0,1]$ be written as $f = f_{\rm str} + f_{\rm psr} + f_{\rm sml}$ where

- f_{str} and $f_{\text{str}} + f_{\text{sml}}$ take values in [0, 1],
- $||f_{\text{psr}}||_{\infty} \leq \eta$, and
- $||f_{\text{sml}}||_2 \leq \epsilon$.

Let U be a subspace of \mathbb{F}_3^n . Show that there is some absolute constant C so that

$$
\mathbb{E}_{x \in \mathbb{F}_3^n, y \in U} (f(x)f(x+y)f(x+2y) - f_{\text{str}}(x)f_{\text{str}}(x+y)f_{\text{str}}(x+2y)) \leq C(|U^\perp|\eta + \epsilon)
$$

F7. Gowers U^2 uniformity norm. Let Γ be a finite abelian group. For $f: \Gamma \to \mathbb{C}$, define

$$
||f||_{U^{2}} := \left(\mathbb{E}_{x,h,h' \in \Gamma} f(x) \overline{f(x+h)f(x+h')} f(x+h+h') \right)^{1/4}.
$$

- (a) Show that the expectation above is always a nonnegative real number, so that the above expression is well defined. Also, show that $||f||_{U^2} \geq |Ef|$.
- (b) For $f_1, f_2, f_3, f_4 \colon \Gamma \to \mathbb{C}$, let

$$
\langle f_1, f_2, f_3, f_4 \rangle = \mathbb{E}_{x, h, h' \in \Gamma} f_1(x) \overline{f_2(x+h) f_3(x+h')} f_4(x+h+h').
$$

Prove that

$$
|\langle f_1, f_2, f_3, f_4 \rangle| \leq ||f_1||_{U^2} ||f_2||_{U^2} ||f_3||_{U^2} ||f_4||_{U^2}
$$

(c) By noting that $\langle f_1, f_2, f_3, f_4 \rangle$ is multilinear, and using part (b), show that

$$
||f+g||_{U^2} \le ||f||_{U^2} + ||g||_{U^2}.
$$

Conclude that $\| \cdot \|_{U^2}$ is a norm.

(d) Show that $||f||_{U^2} = ||f||_{\ell^4}$, i.e.,

$$
||f||_{U^2}^4 = \sum_{\gamma \in \widehat{\Gamma}} |\widehat{f}(\gamma)|^4.
$$

Furthermore, deduce that if $||f||_{\infty} \leq 1$, then

$$
\|\widehat{f}\|_{\infty} \le \|f\|_{U^2} \le \|\widehat{f}\|_{\infty}^{1/2}.
$$

(This gives a so-called "inverse theorem" for the U^2 norm: if $||f||_{U^2} \ge \delta$ then $|f(\gamma)| \ge \delta^2$ for some $\gamma \in \hat{\Gamma}$, i.e., if f is not U^2 -uniform, then it must correlate with some character.)

- ps6 G1. Show that for every real $K \geq 1$ there is some C_K such that for every finite set A of an abelian group with $|A + A| \le K|A|$, one as $|nA| \le n^{C_K}|A|$ for every positive integer n.
- $\overline{\text{ps6}\star}$ G2. Show that there is some constant C so that if S is a finite subset of an abelian group, and k is a positive integer, then $|2kS| \leq C^{|S|} |kS|$.
- $\overline{\text{ps6}\star}$ G3. Show that for every sufficiently large K there is there some finite set $A \subset \mathbb{Z}$ such that $|A + A| \le K|A|$ and $|A - A| \ge K^{1.99} |A|$.
- $\vert \mathsf{ps6}\star \vert$ G4. Show that for every finite subsets A, B, C in an abelian group, one has

$$
|A + B + C|^2 \le |A + B| |A + C| |B + C|.
$$

ps6 G5. Let $A \subset \mathbb{Z}$ with $|A| = n$.

- (a) Let p be a prime. Show that there is some integer t relatively prime to p such that $||at/p||_{\mathbb{R}/\mathbb{Z}} \leq p^{-1/n}$ for all $a \in A$.
- (b) Show that A is Freiman 2-isomorphic to a subset of [N] for some $N = (4 + o(1))^n$.
- (c) Show that (b) cannot be improved to $N = 2^{n-2}$.

(You may use the fact that the smallest prime larger than m has size $m + o(m)$.)

- G6. Let $r_3(N)$ denote the size of the largest 3-AP-free subset of [N]. Show that there is some constant $c > 0$ so that if A is 3-AP-free, then $|A + A| \ge c|A|^{1+c} r_3(|A|)^{-c}$.
- ps6 G7. Let $A \subset \mathbb{F}_2^n$ with $|A| = \alpha 2^n$.
	- (a) Show that if $|A + A| < 0.99 \cdot 2^n$, then there is some $r \in \mathbb{F}_2^n \setminus \{0\}$ such that $|\widehat{1_A}(r)| > c\alpha^{3/2}$ for some constant $c > 0$.
	- (b) By iterating (a), show that $A + A$ contains 99% of a subspace of codimension $O(\alpha^{-1/2})$.
	- (c) Deduce that 4A contains a subspace of codimension $O(\alpha^{-1/2})$ (i.e., Bogolyubov's lemma with better bounds than the one shown in class)
	- G8. Prove that there is some $C > 0$ so that every set of n integers has a 3-AP-free subset of size $ne^{-C\sqrt{\log n}}$.

18.217 Graph Theory and Additive Combinatorics Fall 2019

For information about citing these materials or our Terms of Use, visit: https[://ocw.mit.edu/terms.](https://ocw.mit.edu/terms)