
2 18.217 PROBLEM SET (FALL 2019) 

ps1 

ps1 

ps1 

ps1 

ps1? 

ps1? 

ps1 

ps1? 

A. Introduction 

A1. Ramsey’s theorem 
(a) Let s and r be positive integers. Show that there is some integer n = n(s, r) so that if 

every edge of the complete graph Kn on n vertices is colored with one of r colors, then 
there is a monochromatic copy of Ks. �

2s−2� 
(b) Let s ≥ 3 be a positive integer. Show that if the edges of the complete graph on s−1 

vertices are colored with 2 colors, then there is a monochromatic copy of Ks. 
A2. Prove that it is possible to color N using two colors so that there is no infinitely long monochro-

matic arithmetic progression. 
A3. Many monochromatic triangles 

(a) True or false: If the edges of Kn are colored using 2 colors, then at least 1/4 − o(1) 

fraction of all triangles are monochromatic. (Note that 1/4 is the fraction one expects 
if the edges were colored uniformly at random.) 

(b) True or false: if the edges of Kn are colored using 3 colors, then at least 1/9 − o(1) 

fraction of all triangles are monochromatic. 
(c) (? do not submit) True or false: if the edges of Kn are colored using 2 colors, then at 

least 1/32 − o(1) fraction of all copies of K4’s are monochromatic. 
(d) (do not submit) Prove that for every s and r, there is some constant c > 0 so that for 

every suÿciently large n, if the edges of Kn are colored using r colors, then at least c 
fraction of all copies of Ks are monochromatic. 

B. Forbidding subgraphs � � 
B1. Show that a graph with n vertices and m edges has at least 4m m − n

2 
triangles. � � 

3n 4 

B2. Prove that every n-vertex graph with at least n2/4 + 1 edges contains at least bn/2c 
triangles. � � 

B3. Prove that every n-vertex graph with at least n2/4 +1 edges contains some edge in at least 
(1/6 − o(1))n triangles, and that this constant 1/6 is best possible. 

B4. Kr+1-free graphs close to the Turán bound are nearly r-partite� � 
(a) Let G be an n-vertex triangle-free graph with at least n2/4 − k edges. Prove that G 

can be made bipartite by removing at most k edges. 
(b) Let G be an n-vertex Kr+1-free graph with at least e(Tn,r) − k edges, where Tn,r is the 

Turán graph. Prove that G can be made r-partite by removing at most k edges. 
B5. Let G be a Kr+1-free graph. Prove that there is another graph H on the same vertex set as 

G such that χ(H) ≤ r and dH (x) ≥ dG(x) for every vertex x (here dH (x) is the degree of x 

in H, and likewise with dG(x) for G). Give another proof of Turán’s theorem from this fact. 
B6. Turán density. Let H be a r-uniform hypergraph, let its Turán number ex(r)(n, H) be the 

maximum number of edges in an r-uniform hypergraph on n vertices that does not contain � � 
n H as a subgraph. Prove that the fraction ex(r)(n, H)/ is a nonincreasing function of n, so r 

that it has a limit π(H) as n →∞, called the Turán density of H. 
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� � 
n B7. Supersaturation. Let H be a graph and ρ a constant such that lim supn→∞ ex(n, H)/ ≤ ρ. 2 

Prove that for every � > 0 there exists some constant c = c(H, �) > 0 such that for suÿciently � � 
n large n, every n-vertex graph with at least (ρ + �) edges contains at least cnv(H) copies of 2 

H. 
B8. Let S be a set of n points in the plane, with the property that no two points are at distance � � 

greater than 1. Show that S has at most n2/3 pairs of points at distance greater than √ � � 
1/ 2. Also, show that the bound n2/3 is tight (i.e., cannot be improved). 

B9. (How not to define density in a product set) Let S ⊂ Z2 . Define 

|S ∩ (A × B)| 
dk(S) = max . 

A,B⊂Z |A||B| 
|A|=|B|=k 

Show that limk→∞ dk(S) exists and is always either 0 or 1. 
B10. Show that, for every � > 0, there exists δ > 0 such that every graph with n vertices and at 

least �n2 edges contains a copy of Ks,t where s ≥ δ log n and t ≥ n0.99 . 
B11. Density version of K®vári–Sós–Turán. Prove that for every positive integers s ≤ t, there are � � 

n st s+t constants C, c > 0 such that every n-vertex graph with p edges contains at least cp n 2 

copies of Ks,t, provided that p ≥ Cn−1/s. 
B12. Hypergraph K®vári–Sós–Turán and a proof of Erd®s–Stone–Simonovits 

(a) Prove that for every positive integer t there is some C so that every 3-uniform hypergraph 
(3) on n vertices and at least Cn3−t

−2 edges (i.e., triples) contains a copy of K , the t,t,t 

complete tripartite 3-uniform hypergraph with t vertices in each part. 
(b) Deduce that ex(n, H) ≤ (1 + o(1))n2 for every graph H with χ(H) ≤ 3. 4 

(c) Explain how to generalize the above strategy to prove the Erd®s–Stone–Simonovits the-
orem for every H (sketch the key steps). 

1 2 B13. Find a graph H with χ(H) = 3 and ex(n, H) > n + n1.99 for all suÿciently large n. 4 

B14. Construction of a C6-free graph. Let q be an odd prime power. Let S denote the quadratic 
surface in the 4-dimensional projective space over Fq (whose points are nonzero points of F5 

q 

modulo the equivalence relation (x0, x1, x2, x3, x4) ∼ (λx0, λx1, λx2, λx3, λx4) for λ ∈ F×) q 

given by the equation (you may use another quadratic form if you wish) 

x0
2 + 2x1x2 + 2x3x4 = 0. 

Let L be the set of lines contained in S. 
(a) Prove that no three lines of L lie in the same plane. 
(b) Show that the point-line incidence bipartite graph between S and L is a (q + 1)-regular 

3 2 graph on 2(q + q + q + 1) vertices with no cycles of length at most 6. Conclude that 
ex(n, C6) ≥ cn4/3 for some constant c > 0. 

The next two problems concern the dependent random choice technique. 
B15. Let � > 0. Show that, for suÿciently large n, every K4-free graph with n vertices and at least 

�n2 edges contains an independent set of size at least n1−� . 
B16. Extremal numbers of degenerate graphs 
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(a) Prove that there is some absolute constant c > 0 so that for every positive integer r, 
every n-vertex graph with at least n2−c/r edges contains disjoint vertex subsets A and B 

c such that every subset of r vertices in A has at least n neighbors in B and every subset 
c of r vertices in B has at least n neighbors in A. 

(b) We say that a graph H is r-degenerate if its vertices can be ordered so that every vertex 
has at most r neighbors that appear before it in the ordering. Show that for every r-
degenerate bipartite graph H there is some constant C > 0 so that ex(n, H) ≤ Cn2−c/r, 
where c is the same absolute constant from part (a) (c should not depend on H or r). 

ps2 B17. Let T be a tree with k edges. Show that ex(n, T ) ≤ kn. 
ps2? B18. Show that every n-vertex triangle-free graph with minimum degree greater than 2n/5 is 

bipartite. 

C. Szemerédi’s regularity lemma and applications 

For simplicity, you are welcome to apply the equitable version of Szemerédi’s regularity lemma. 

C1. Let G be a graph and X, Y ⊂ V (G). If (X, Y ) is an �η-regular pair, then (X 0, Y 0) is �-regular 
for all X 0 ⊂ X with |X 0| ≥ η|X| and Y 0 ⊂ Y with |Y 0| ≥ η|Y |. 

C2. Let G be a graph and X, Y ⊂ V (G). Say that (X, Y ) is �-homogeneous if for all A ⊂ X and 
B ⊂ Y , one has 

|e(A, B) − |A| |B| d(X, Y )| ≤ � |X| |Y | . 

Show that if (X, Y ) is �-regular, then it is �-homogeneous. Also, show that if (X, Y ) is 
�3-homogeneous, then it is �-regular. 

ps2 C3. Unavoidability of irregular pairs. Let the half-graph Hn be the bipartite graph on 2n vertices 
{a1, . . . , an, b1, . . . , bn} with edges {aibj : i ≤ j}. 
(a) For every � > 0, explicitly construct an �-regular partition of Hn into O(1/�) parts. 
(b) Show that there is some c > 0 such that for every � ∈ (0, c), every integer k and 

suÿciently large multiple n of k, every partition of the vertices of Hn into k equal-sized 
parts contains at least ck pairs of parts which are not �-regular. 

ps2 C4. Show that there is some absolute constant C > 0 such that for every 0 < � < 1/2, every 
graph on n vertices contains an �-regular pair of vertex subsets each with size at least δn, 
where δ = 2−�

−C . 
C5. Existence of a regular set. Given a graph G, we say that X ⊂ V (G) is �-regular if the pair 

(X, X) is �-regular, i.e., for all A, B ⊂ X with |A|, |B| ≥ �|X|, one has |d(A, B)−d(X, X)| ≤ �. 
This problem asks for two di˙erent proofs of the claim: for every � > 0, there exists δ > 0 

such that every graph contains an �-regular subset of vertices of size at least δ fraction of the 
vertex set. 

ps3 (a) Prove the claim using Szemerédi’s regularity lemma, showing that one can obtain the 
�-regular subset by combining a suitable sub-collection of parts from a regular partition. 

ps3? (b) Give an alternative proof of the claim showing that one can take δ = exp(− exp(�−C )) 

for some constant C. 
ps3 C6. Show that for every � > 0, there exists δ > 0 such that every n-vertex K4-free graph with at 

least (18 + �)n2 edges contains an independent set of size at least δn. 
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C7. Show that for ever � > 0, there exists δ > 0 such that every n-vertex K4-free graph with 
at least (1 

8 
2 − δ)n edges and independence number at most δn can be made bipartite by 

removing at most �n2 edges. 
ps3 

2 C8. Show that the number of non-isomorphic n-vertex triangle-free graphs is 2(1/4+o(1))n . 
C9. Show that for every H there exists some δ > 0 such that for all suÿciently large n, if G is an 

n-vertex graph with average degree at least (1 − δ)n and the edges of G are colored using 2 
colors, then there is a monochromatic copy of H. 

ps3 C10. Show that for every H and � > 0 there exists δ > 0 such that every graph on n vertices 
without an induced copy of H contains an induced subgraph on at least δn vertices whose 
edge density is at most � or at least 1 − �. 

C11. Random graphs are �-regular. Let G be a random bipartite graph between disjoint sets of 
vertices X and Y with |X| = |Y | = n, such that every pair in X × Y appears as an edge 
of G independently with the same probability. Show that there is some absolute constant 

1+c −nc > 0 such that with probability at least 1 − e for suÿciently large n, the pair (X, Y ) is 
−c �-regular in G with � = n . 

(You may use the following special case of the Azuma–Hoe˙ding inequality: if X1, . . . , XN 

are independent random variables taking values in [−1, 1], and S = X1 + · · · + XN , then 
P(S ≥ ES + t) ≤ e−t

2/(2N).) 
ps3? C12. Show that for every graph H there is some graph G such that if the edges of G are colored 

with two colors, then some induced subgraph of G is a monochromatic copy of H. 
ps3? C13. 0 Show that for every c > 0, there exists c > 0 such that every graph on n vertices with at 

2 least cn 0edges contains a d-regular subgraph with d ≥ c n (here d-regular refers to every 
vertex having degree d). 

ps4 C14. Show that there is a constant c > 0 so that for every suÿciently small � > 0 and suÿciently 
large n > n0(�) there exists an n-vertex graph with at most �c log(1/�)n3 triangles that cannot 
be made triangle-free by removing fewer than �n2 edges. (In particular, this shows that one 
cannot take δ = �C for some constant C > 0 in the triangle removal lemma.) 

C15. Removal lemma for bipartite graphs with polynomial bounds. Prove that for every bipartite 
graph H, there is a constant C such that for every � > 0, every n-vertex graph with fewer 
than �C nv(H) copies of H can be made H-free by removing at most �n2 edges. 

ps4 C16. Let H be a n-vertex 3-uniform hypergraph such that every 6 vertices contain strictly fewer 
than 3 triples. Prove that H has o(n2) edges. 
(Hint in white: ) 

ps4 C17. Assuming the tetrahedron removal lemma for 3-uniform hypergraphs, deduce that if A ⊂ [N ]2 

contains no axes-aligned squares (i.e., four points of the form (x, y), (x + d, y), (x, y + d), (x + 

d, y + d), where d 6= 0), then |A| = o(N2). 
ps4? C18. Show that for every � > 0, there exists δ > 0 such that if A ⊂ [n] has fewer than δn2 many 

triples (x, y, z) ∈ A3 with x + y = z, then there is some B ⊂ A with |A \ B| ≤ �n such that 
B is sum-free, i.e., there do not exist x, y, z ∈ B with x + y = z. 
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D. Spectral graph theory and pseudorandom graphs 

ps4 D1. Let G be an n-vertex graph. The Laplacian of G is defined to be LG = DG − AG, where AG 

is the adjacency matrix of G and DG a diagonal matrix whose entry corresponding to the 
vertex v ∈ V (G) is the degree of v in G (so that LG is a symmetric matrix with all row sums 
zero). Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of LG, with λ1 = 0 corresponding to the 
all-1 vector. Prove that for every S ⊂ V (G) with |S| ≤ n/2, one has (writing S := V (G) \ S) 

1 
e(S, S) ≥ λ2|S| 

2 

ps4? D2. Let p be an odd prime and A, B ⊂ Z/pZ. Show that � � XX a + b √ ≤ p p 
p 

a∈A b∈B 

where (a/p) is the Legendre symbol defined by ⎧ � � ⎪0 if a ≡ 0 (mod p) ⎨ a 
= 1 if a is a nonzero quadratic residue mod p 

p ⎩⎪ 
−1 if a is a quadratic nonresidue mod p 

D3. Quasirandom transitive graphs. Prove that if an n-vertex d-regular vertex-transitive graph G 

satisfies 
e(X, Y ) − d |X||Y | ≤ �dn for all X, Y ⊆ V (G), n 

then all the eigenvalues of the adjacency matrix of G, other than the largest one, are at most 
8�d in absolute value. 

ps4 D4. Prove that the diameter of an (n, d, λ)–graph is at most dlog n/ log(d/λ)e. (The diameter of 
a graph is the maximum distance between a pair of vertices.) 

D5. Let G be an n-vertex d-regular graph. Suppose n is divisible by k. Color the vertices of G 

with k colors (not necessarily a proper coloring) such that each color appears exactly n/k 

times. Suppose that all eigenvalues, except the top one, of the adjacency matrix of G are at 
most d/k in absolute value. Show that there is a vertex of G whose neighborhood contains 
all k colors. 

ps4 D6. Prove that for every positive integer d and real � > 0, there is some constant c > 0 so that if G 

is an n-vertex d-regular graph with adjacency matrix AG, then at least cn of the eigenvalues √ 
of AG are greater than 2 d − 1 − �. 

ps4? D7. Show that for every d and r, there is some � > 0 such that if G is a d-regular graph, and 
S ⊂ V (G) is such that every vertex of G is within distance r of S, then the top eigenvalue of 
the adjacency matrix of G − S (i.e., remove S and its incident edges from G) is at most d − �. 

ps4? D8. Prove or disprove: there exists an absolute constant C such that the adjacency matrix of every 
n-vertex Cayley graph has an eigenbasis in Cn (consisting of n orthonormal unit eigenvectors) 

√ 
all of whose coordinates are each at most C/ n in absolute value. 
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E. Graph limits and homomorphism density inequalities 

Note: A “graphon” is a symmetric measurable function W : [0, 1]2 → [0, 1]. 

ps5 E1. Weak regularity decomposition (instead of partition). 
(a) Let � > 0. Show that for every graphon W , there exist measurable S1, . . . , Sk, T1, . . . , Tk ⊆ 

[0, 1] and reals a1, . . . , ak ∈ R, with k < �−2 , such that 
kX 

W − ai1Si×Ti ≤ �. 
i=1 � 

The above conclusion allows one to approximate an arbitrary graph(on) as a sum of most 
�−2 components. In the next following parts, you will show how to recover a regularity 
partition from the approximation above. 

(b) Show that the stepping operator P is contractive with respect to the cut norm, in the 
sense that if W : [0, 1]2 → R is a measurable symmetric function, then kWP k� ≤ kW k�. 

(c) Let P be a partition of [0, 1] into measurable sets. Let U be a graphon that is constant 
on S × T for each S, T ∈ P. Show that for every graphon W , one has 

kW − WP k� ≤ 2kW − Uk�. 

(d) Use (a) and (c) to give a di˙erent proof of the weak regularity lemma (with slightly worse 
bounds than the one given in class): show that for every � > 0 and every graphon W , 
there exists partition P of [0, 1] into 2O(1/�2) measurable sets such that kW − WP k� ≤ �. 

E2. Define W : [0, 1]2 → R by W (x, y) = 2 cos(2π(x − y)). Let G be a graph. Show that t(G, W ) 

is the number of ways to orient all edges of G so that every vertex has the same number of 
incoming edges as outgoing edges. 

E3. Show that for every � > 0 there is some C > 0 such that if W is a graphon, and S ⊂ [0, 1] is R 
a set of such that, writing W ◦ W (x, z) = W (x, y)W (y, z) dy, [0,1] Z 

|W ◦ W (s, z) − W ◦ W (t, z)| dz > � 
[0,1] 

for all distinct s, t ∈ S, then |S| ≤ C. 
E4. Let W be a {0, 1}-valued graphon. Suppose graphons Wn satisfy kWn − W k� → 0 as n →∞. 

Show that kWn − W k1 → 0 as n →∞. 
ps5 E5. “Regularity lemma” for bounded degree graphs. The r-local sample of a graph G is defined to 

be the random rooted graph induced by all vertices within distance r from a uniform random 
vertex v of G, and setting v to be the root. 

Show that for every � > 0 and r, Δ ∈ N there exists M = M(�, r, Δ) such that if G is a 
graph with maximum degree at most Δ, then there exists a graph H on at most M vertices 
such that the r-local samples of G and H di˙er by at most � in total variation distance. 

E6. Strong regularity lemma. In this problem, you will give an alternate proof of the strong 
regularity lemma with explicit bounds. 

Let � = (�1, �2, . . . ) be a sequence of positive reals. By repeatedly applying the weak 
regularity lemma, show that there is some M = M(�) such that for every graphon W , there 
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is a pair of partitions P and Q of [0, 1] into measurable sets, such that Q refines P, |Q| ≤ M 

(here |Q| denotes the number of parts of Q), 

kW − WQk� ≤ �|P| and kWQk22 ≤ kWP k22 + �1
2 . 

Furthermore, deduce the strong regularity lemma in the following form: one can write 

W = Wstr + Wpsr + Wsml 

where Wstr is a k-step-graphon with k ≤ M , kWpsrk� ≤ �k, and kWsmlk1 ≤ �1. State 
your bounds on M explicitly in terms of �. (Note: the parameter choice �k = �/k2 roughly 
corresponds to Szemerédi’s regularity lemma, in which case your bound on M should be an 
exponential tower of 2’s of height �−O(1); if not then you are doing something wrong.) 

ps5 E7. Inverse counting lemma. Using the moments lemma (t(F, U) = t(F, W ) for all F implies 
δ�(U, W ) = 0) and compactness of the space of graphons, deduce that for every � > 0, there 
exist k ∈ N and η > 0 such that if U and W are graphons such that |t(F, U) − t(F, W )| ≤ η 

for all graphs F on k vertices, then δ�(U, W ) ≤ �. 
ps5? E8. Generalized maximum cut. For symmetric measurable functions W, U : [0, 1]2 → R, define Z 

C(W, U) := sup hW, Uϕi = sup W (x, y)U(ϕ(x), ϕ(y)) dxdy, 
ϕ ϕ 

where ϕ ranges over all measure-preserving bijections on [0, 1]. Extend the definition of C(·, ·) 
to graphs by C(G, ·) := C(WG, ·), etc. 
(a) Is C(U, W ) continuous jointly in (U, W ) with respect to the cut norm? Is it continuous 

in U if W is held fixed? 
(b) Show that if W1 and W2 are graphons such that C(W1, U) = C(W2, U) for all graphons 

U , then δ�(W1,W2) = 0. 
(c) Let G1, G2, . . . be a sequence of graphs such that C(Gn, U) converges as n → ∞ for 

every graphon U . Show that G1, G2, . . . is convergent. 
(d) Can the hypothesis in (c) be replaced by “C(Gn, H) converges as n →∞ for every graph 

H”? 
E9. (a) Let G1 and G2 be two graphs such that hom(F, G1) = hom(F, G2) for every graph F . 

Show that G1 and G2 are isomorphic. 
(b) Let G1 and G2 be two graphs such that hom(G1, H) = hom(G2, H) for every graph H. 

Show that G1 and G2 are isomorphic. 
E10. Fix 0 < p < 1. Let G be a graph on n vertices with average degree at least pn. Prove: 

6 (a) The number of labeled copies of K3,3 in G is at least (p9 − o(1))n . 
6 ps5 (b) The number of labeled 6-cycles in G is at least (p6 − o(1))n . (You may not use part (d) 

for part (b)) 
8 ps5 (c) The number of labeled copies of Q3 = in G is at least (p12 − o(1))n . 
4 ps5? (d) The number of labeled paths on 4 vertices in G is at least (p3 − o(1))n . 
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ps5? 

ps5? 

E11. 

E12. 

Let Fm denote the set of all m-edge graphs without isolated vertices (up to isomorphism). 
Suppose p ∈ [0, 1] is a constant, and Gn is a sequence of graphs such that X X 

|E(F )| lim t(F, Gn) = p
n→∞ 

F ∈Fm F ∈Fm 

for every positive integer m. Prove that Gn converges to the constant graphon p. 
Prove there is a function f : [0, 1] → [0, 1] with f(x) ≥ x2 and limx→0 f(x)/x

2 = ∞ such that 

t(K− , W ) ≥ f(t(K3, W )) 4 

for all graphons W . Here K− is K4 with one edge removed. 4 

F. Fourier analysis and linear patterns 

Some conventions: for f : Fn → C with prime p, p 

• bf(r) = Ex∈F 
2πi/p f(x)ω−r·x where ω = e n

p 

• kfks := (E[|f |s])1/s 

• kfbk∞ |fb(r)| = maxr∈F np 

ps5 F1. Fourier does not control 4-AP counts. Let A = {x ∈ Fn : x · x = 0}. Write N = 5n . 5 

(a) Show that |A| = (1/5 + o(1))N and |c1A(r)| = o(1) for all r 6= 0. 
(b) Show that |{(x, y) ∈ Fn : x, x + y, x + 2y, x + 3y ∈ A}| 6= (5−4 + o(1))N2 . 5 

ps6 F2. Linearity testing. Show that for every prime p and real � > 0, there exists δ > 0 such that if 
f : Fn is a function such that p → Fp 

Px,y∈F np 
(f(x) + f(y) = f(x + y)) ≥ 1 − δ 

then there exists some a ∈ Fn such that p 

Px∈F np 
(f(x) = a1x1 + · · · + anxn) ≥ 1 − �, 

where in the above P expressions x and y are chosen i.i.d. uniform from Fn . p 

ps6 F3. Counting solutions to a single linear equation. 
(a) Given a function f : Z → C with finite support, define bf : R/Z → C by X b −2πint f(t) = f(n)e . 

n∈Z 

Let c1, . . . , ck ∈ Z. Let A ⊂ Z be a finite set. Show that Z 1 

|{(a1, . . . , ak) ∈ Ak : c1a1 + · · · + ckak = 0}| = c1A(c1t)c1A(c2t) · · · c1A(ckt) dt. 
0 

(b) Show that if a finite set A of integers contains β |A|2 solutions (a, b, c) ∈ A3 to a+2b = 3c, 
then it contains at least β2 |A|3 solutions (a, b, c, d) ∈ A4 to a + b = c + d. 

ps6 F4. Let a1, . . . , am, b1, . . . , bm, c1, . . . , cm ∈ Fn 
2 . Suppose that the equation ai + bj + ck = 0 holds 

if and only if i = j = k. Show that there is some constant � > 0 such that m ≤ (2 − �)n for 
all suÿciently large n. 
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F5. Strong arithmetic regularity lemma. Show that for every � = (�0, �1, . . . ) with 1 ≥ �0 ≥ �1 ≥ 

· · · there exists m = m(�) such that for every f : Fn → [0, 1] there exist a pair of subspaces 3 

W ≤ U of Fn 
3 with codimW ≤ m and a decomposition 

f = fstr + fpsr + fsml 

such that 
• fstr = fU and fstr + fsml = fW , 
• kdfpsrk∞ ≤ �codim U 

• kfsmlk2 ≤ �0 

F6. Counting lemma for 3-APs with restricted di˙erences. Let f : Fn 
3 → [0, 1] be written as 

f = fstr + fpsr + fsml where 
• fstr and fstr + fsml take values in [0, 1], 
• kdfpsrk∞ ≤ η, and 
• kfsmlk2 ≤ �. 

Let U be a subspace of Fn 
3 . Show that there is some absolute constant C so that 

Ex∈Fn 
3 ,y∈U (f(x)f(x + y)f(x + 2y) − fstr(x)fstr(x + y)fstr(x + 2y) ) ≤ C(|U⊥|η + �) 

F7. Gowers U2 uniformity norm. Let Γ be a finite abelian group. For f : Γ → C, define � �1/4 
kfkU2 := Ex,h,h0∈Γf(x)f(x + h)f(x + h0)f(x + h + h0) . 

(a) Show that the expectation above is always a nonnegative real number, so that the above 
expression is well defined. Also, show that kfkU2 ≥ |Ef |. 

(b) For f1, f2, f3, f4 : Γ → C, let 

hf1, f2, f3, f4i = Ex,h,h0∈Γf1(x)f2(x + h)f3(x + h0)f4(x + h + h0). 

Prove that 

|hf1, f2, f3, f4i| ≤ kf1kU2 kf2kU2 kf3kU2 kf4kU 2 

(c) By noting that hf1, f2, f3, f4i is multilinear, and using part (b), show that 

kf + gkU2 ≤ kfkU2 + kgkU2 . 

Conclude that k kU2 is a norm. 
(d) Show that kfkU2 = kfbk`4 , i.e., X 

kfk4 = |fb(γ)|4 . U2 

γ∈Γb 

Furthermore, deduce that if kfk∞ ≤ 1, then 

kfbk∞ ≤ kfkU2 ≤ kfbk1/2 . ∞ 

(This gives a so-called “inverse theorem” for the U2 norm: if kfkU2 ≥ δ then |f(γ)| ≥ δ2 

for some γ ∈ Γb, i.e., if f is not U2-uniform, then it must correlate with some character.) 
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G. Structure of set addition 

ps6 G1. Show that for every real K ≥ 1 there is some CK such that for every finite set A of an abelian 
group with |A + A| ≤ K|A|, one as |nA| ≤ nCK |A| for every positive integer n. 

ps6? G2. Show that there is some constant C so that if S is a finite subset of an abelian group, and k 

is a positive integer, then |2kS| ≤ C |S| |kS|. 
ps6? G3. Show that for every suÿciently large K there is there some finite set A ⊂ Z such that 

|A + A| ≤ K|A| and |A − A| ≥ K1.99|A|. 
ps6? G4. Show that for every finite subsets A, B, C in an abelian group, one has 

|A + B + C|2 ≤ |A + B| |A + C| |B + C| . 

ps6 G5. Let A ⊂ Z with |A| = n. 
(a) Let p be a prime. Show that there is some integer t relatively prime to p such that 

kat/pkR/Z ≤ p−1/n for all a ∈ A. 
(b) Show that A is Freiman 2-isomorphic to a subset of [N ] for some N = (4 + o(1))n . 

= 2n−2 (c) Show that (b) cannot be improved to N . 
(You may use the fact that the smallest prime larger than m has size m + o(m).) 

G6. Let r3(N) denote the size of the largest 3-AP-free subset of [N ]. Show that there is some 
constant c > 0 so that if A is 3-AP-free, then |A + A| ≥ c|A|1+cr3(|A|)−c . 

ps6 G7. Let A ⊂ Fn with |A| = α2n . 2 

2n (a) Show that if |A + A| < 0.99 · , then there is some r ∈ Fn \{0} such that |1cA(r)| > cα3/2 
2 

for some constant c > 0. 
(b) By iterating (a), show that A + A contains 99% of a subspace of codimension O(α−1/2). 
(c) Deduce that 4A contains a subspace of codimension O(α−1/2) (i.e., Bogolyubov’s lemma 

with better bounds than the one shown in class) 
G8. Prove that there is some C > 0 so that every set of n integers has a 3-AP-free subset of size 

√ 
−C log n ne . 
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